Cohomology mod p of the 4-connected Cover of the Classifying Space of Simple Lie Groups

Masana Harada and Akira Kono

$\mathbf{S}_{\mathbf{2}}^{\mathbf{\prime} \mathbf{0}}$. Introduction

Let G be a compact, connected, simply connected, simple Lie group and $B G$ its classifying space. A prime p is called good (for G) (resp. exceptional (for G)) if $H_{*}(G ; \boldsymbol{Z})$ is p-torsion free (resp. not p-torsion free). As is well known $B G$ is 3 -connected and $\pi_{4}(B G)=H_{4}(G B ; Z)=H^{4}(B G ; Z)$ $=Z$ (cf. [3]). Represent a generator of $H^{4}(B G ; Z)$ by a map $Q^{\prime \prime}: B G \rightarrow$ $K(Z, 4)$ and denote its homotopy fibre by $B \widetilde{G}$. The purpose of this paper is to determine $H^{*}\left(B \widetilde{G} ; \boldsymbol{F}_{p}\right)$ for any odd prime p.

Consider the following pull back diagram:

where T is a maximal torus, i and \bar{i} are the maps induced by the inclusion. Note that $\bar{i}^{*}: H^{4}(B G ; Z) \rightarrow H^{4}(B T ; Z)$ is a monomorphism and $\operatorname{Im} \bar{i}^{*}=H^{4}(B T ; \boldsymbol{Z})^{W(G)}$ where $W(G)$ is the Weyl group of G. Therefore $Q^{\prime}=\bar{i}^{*} Q^{\prime \prime}$ is a generator of $H^{4}(B T: Z)^{W(G)}$. Denote the $\bmod p$ reduction of $\mid Q^{\prime}$ by Q. Since $H^{*}\left(B T ; \boldsymbol{F}_{p}\right) \cong S\left(H_{2}\left(B T, F_{p}\right)^{*}\right)$, where S denotes the symmetric algebra, we may consider that Q is a quadratic form. Let $h=h(G, p)$ be the codimension of a Q-isotropic subspace of maximum dimension.

As is well known that

$$
H^{*}\left(K(Z, 3) ; F_{p}\right) \cong S\left(\beta P_{k} u_{3} ; k \geq 1\right) \otimes E\left(P_{k} u_{3} ; k \geq 0\right)
$$

where E denotes the exterior algebra, $P_{k}=\mathscr{P}^{p k-1} \ldots \mathscr{P}^{1}$ and u_{3} is a generator of $H^{3}\left(K(Z, 3) ; \boldsymbol{F}_{p}\right)(=\boldsymbol{Z} / p)$. Denote the subalgebra generated by $\left\{\beta P_{k} u_{3} ; k \geq 1\right\} \cup\left\{P_{k} u_{3} ; k \geq j\right\}$ by R_{j}. Then the main results of this paper are the following:

Theorem 2.2. As an algebra $H^{*}\left(B \tilde{T} ; \boldsymbol{F}_{p}\right)$ is isomorphic to $H^{*}\left(B T ; F_{p}\right) / J \otimes R_{h}$ where J is the ideal generated by $Q, P_{1} Q, \cdots, P_{h-1} Q$.

Theorem 2.3. For a good prime $p, H^{*}\left(B \widetilde{G} ; \boldsymbol{F}_{p}\right)$ is isomorphic to $H^{*}\left(B G ; F_{p}\right) / J^{\prime} \otimes R_{h}$ as an algebra where J^{\prime} is the ideal generated by $x_{4}, P_{1} x_{4}, \cdots, P_{h-1} x_{4}\left(x_{4}=i^{*} Q\right)$.

Theorem 4.1. The Serre spectral sequence for the fibering $G / T \rightarrow B \tilde{T}$ $\rightarrow B \widetilde{G}$ collapses for any G and any odd prime p.

The paper is organized as follows: In Section 1 we prove certain algebraic results which are used in Section 2. In Section 2 we determine $H^{*}\left(B \widetilde{G} ; \boldsymbol{F}_{p}\right)$ for a good prime p. In Section 3 we determine $h=h(G, p)$. For an exceptional prime p, the module structure and the algebra structure of $H^{*}\left(B \widetilde{G} ; \boldsymbol{F}_{p}\right)$ are determined in Section 4 and Section 5 respectively.

For a classical type G the result was announced in [5].
Throughout the paper p is an odd prime.

§ 1. A note on a quadratic form over \boldsymbol{F}_{p}

In this section we prepare some algebraic results. Let V be an n dimensional vector space over F_{p}. Let $S\left(V^{*}\right)$ be the symmetric algebra over V^{*}, the dual of V. Consider a quadratic form Q on V and define its associated bilinear form by $B(x, y)=\frac{1}{2}(Q(x+y)-Q(x)-Q(y))$. We consider the following sequence of homogeneous elements in $S\left(V^{*}\right)$:

$$
\begin{equation*}
Q(x), B\left(x, x^{p}\right), \cdots, B\left(x, x^{p^{h-1}}\right) \tag{1.1}
\end{equation*}
$$

where h is the codimension of a Q-isotropic subspace of maximum dimension. Firtst we should do is to prove the following:

Theorem 1.2. The sequence (1.1) is a regular sequence and all maximal Q-isotropic subspaces of V are of same dimension $n-h$.

Proof. Let J be an ideal of $S\left(V^{*}\right)$ generated by (1.1) and Var J the common zeros of (1.1) in $V_{\Omega}=V \otimes \Omega$, where Ω is a universal field of \boldsymbol{F}_{p}. It is well known that (1.1) is a regular sequence if and only if $\operatorname{dim} \operatorname{Var} J=$ $n-h$ (see Theorem 2 of p. 397 of [15]). Therefore Theorem 1.2 is an easy consequence of the following Lemma 1.3.

Lemma 1.3. $\operatorname{Var} J=\cup W_{\Omega}$, where W ranges over maximal Q-isotropic subspaces.

Proof of Lemma 1.3. Using the identity

$$
Q\left(\sum t_{i} x^{p^{i}}\right)=\sum t_{i}^{2} Q(x)^{p^{i}}+2 \sum_{i<j} t_{i} t_{j} B\left(x, x^{p^{j-i}}\right)^{p^{i}}
$$

we see easily that $x \in \operatorname{Var} J$ if and only if the Ω-subspace

$$
M_{x}=\Omega x+\cdots+\Omega x^{p h-1}
$$

is Q-isotropic in V_{Ω} (Q is extended to V_{Ω} naturally). It is also seen that $\operatorname{Var} J=\cup_{x \in \operatorname{Var} J} M_{x}$. Clearly $W_{\Omega} \subset \operatorname{Var} J$. We need only show $M_{x} \subset W_{\Omega}$ for some maximal Q-isotropic subspace W. Since a space which is stable under the Frobenius map F should have a form W_{Ω}^{\prime} for some subspace W^{\prime} in $V, W^{\prime} \subset W$ and so $M_{x}=W_{\Omega}^{\prime}$ is a subspace of W_{Ω} for some maximal Q-isotropic subspace W.

Therefore we will show that M_{x} is stable under F. Recall the classification of quadratic forms over \boldsymbol{F}_{p}. First $V=V^{\prime} \perp V_{0}$, where \perp denotes the orthogonal decomposition, B is nondegenerate on V^{\prime} and V_{0} is the radical of $V . \quad V^{\prime}$ can be decomposed as follows:

$$
V^{\prime}=P_{1} \perp P_{2} \perp \cdots \perp P_{m} \perp S
$$

where P_{i} is a hyperbolic plane ($\operatorname{dim} P_{i}=2$ and $Q=x_{1} x_{2}$ on P_{i}) and S is one of the following four types:

$$
\begin{array}{lll}
\text { type } 0: & \operatorname{dim} S=0 & \\
\text { type I } & \operatorname{dim} S=1 & Q=x^{2} \text { on } S \\
\text { type I_: } & \operatorname{dim} S=1 & Q=g x^{2} \text { on } S \tag{1.4}\\
\text { type II: } & \operatorname{dim} S=2 & Q=x_{1}^{2}-g x_{2}^{2} \text { on } S
\end{array}
$$

where g is one of non-square elements of F_{p}, fixed once for all (see for example Ch. IV. 3 of [1]). We check that M_{x} is stable under F in each form of four types in (1.4). It is enough to prove the lemma when $V_{0}=0$. If $\operatorname{dim} M_{x} \leq h-1$, there is a linear relation

$$
x^{p^{h-1}}=\sum_{i=0}^{h-2} \lambda_{i} x^{p^{i}} \quad\left(\lambda_{i} \in \Omega\right) .
$$

Hence M_{x} is stable under F. Now we explain in each form of four types: type $\mathrm{I}_{ \pm}: \operatorname{dim} V=2 m+1$ and $h=m+1 . \quad M_{x}$ is Q-isotropic. Therefore $\operatorname{dim} M_{x}=\operatorname{dim} V-h=m=h-1$ and so Lemma 1.3 holds.
type II: $\operatorname{dim} V=2 m+2$ and $h=m+2 . \quad S_{\Omega}$ is a hyperbolic plane. Therefore $\operatorname{dim} M_{x}=\frac{1}{2} \operatorname{dim} V=m+1=h-1$ and so Lemma 1.3 holds.
type 0: $\operatorname{dim} V=2 m$ and $h=m$. If $\operatorname{dim} M_{x} \leq m-1=h-1$, Lemma 1.3 holds as above. Assume $\operatorname{dim} M_{x}=m$. In this case we can write $V=U \oplus U^{*}$ with $Q(u+v)=\langle u, v\rangle$, where U is a subspace of dimension
m, U^{*} its dual and \langle,$\rangle is the pairing of U$ and U^{*}. By the assumption $\pi_{1}: M_{x} \rightarrow U_{\Omega}$ may be surjective. Then there is a unique linear transformation $T: U \rightarrow U^{*}$ such that

$$
M_{x}=\left\{z+T z ; z \in U_{\Omega}\right\} .
$$

The fact that M_{x} is Q-isotropic can be rewritten as

$$
\langle z, T z\rangle=0 \quad \text { and } \quad\left\langle z, T z^{\prime}\right\rangle=\left\langle z^{\prime}, T z\right\rangle
$$

for any $z, z^{\prime} \in U_{a}$. Let $x=u+v$ for $u \in U$ and $v \in U^{*}$. As $x^{p^{i}} \in M_{x}$ for $0 \leq i<m$, we have $T\left(u^{p}\right)=v^{p^{i}}$ for $0 \leq i<m$. So for $1 \leq i<m$

$$
\begin{aligned}
\left\langle u^{p^{i}}, T u^{p m}\right\rangle & =\left\langle u^{p^{m}}, T u^{p^{i}}\right\rangle=\left\langle u^{p^{m}}, v^{p^{i}}\right\rangle=\left\langle u^{p m-1}, v^{p i-1}\right\rangle^{p} \\
& =\left\langle u^{p m-1}, T u^{p i-1}\right\rangle^{p}=\left\langle u^{p-1}, T u^{p m-1}\right\rangle^{p}=\left\langle u^{p^{i-1}}, v^{p m-1}\right\rangle^{p} \\
& =\left\langle u^{p^{i}}, v^{p m}\right\rangle .
\end{aligned}
$$

And also $\left\langle u^{p^{m}}, T u^{p^{m}}\right\rangle=0=\langle u, v\rangle^{p^{m}}=\left\langle u^{p^{m}}, v^{p^{m}}\right\rangle$. In $U_{\Omega}, u, \cdots, u^{p^{m-1}}$ form a basis and also $u^{p}=F(u), \cdots, u^{p n}=F\left(u^{p m-1}\right)$ form a basis since F is a semi-linear automorphism. Therefore $T u^{p m}=v^{p m}$ in U^{*} and so M_{x} is stable under F. This completes the proof of Lemma 1.3 and so Theorem 1.2 is proved.

Next we examine primary components of the ideal $J . J$ has a primary decomposition

$$
\begin{equation*}
J=\cap q_{i} \tag{1.5}
\end{equation*}
$$

where q_{i} is a primary ideal associated to a prime ideal p_{i}. The irreducible components of Var J are in 1-1 correspondence with minimal primes p_{i} (cf. p. 163 of [15]). The theorem of Macauley says that there is no embedded component in J for it is generated by the regular sequence (1.1) (cf. p. 203 of [15]). Therefore all p_{i} 's are distinct and minimal. Now we have the following:

Proposition 1.6. $J=\bigcap_{W} q_{W}$ where W ranges all maximal Q-isotropic subspaces of V and q_{W} is a primary ideal whose associated prime ideal p_{W} is functions in $S\left(V^{*}\right)$ vanishing on W_{Ω}.

We now assume that $V_{0}=0$ until Remark 1.12 for some technical reasons.

We determine $e\left(q_{w}\right)$, multiplicity of q_{w}. Because Var $p_{W}=W_{Q}$, $\operatorname{deg} p_{w}=1$. Thus the generalized Bezout's theorem implies (cf. $\S 27$ of [9])

$$
\begin{equation*}
\prod_{j=0}^{h-1}\left(1+p^{j}\right)=\sum_{W} e\left(q_{W}\right) . \tag{1.7}
\end{equation*}
$$

To determine $e\left(q_{W}\right)$ and q_{W}, we need to count the number of maximal Q-isotropic subspaces of V in each form of four types in (1.4).
type 0: Let $W_{m} \supset \cdots \supset W_{1} \supset 0$ be a Q-isotropic flag where W_{m} is a maximal Q-isotropic subspace. The number of isotropic vectors is $\left(p^{m}-1\right)\left(p^{m-1}+1\right)$ (see p. 146 of [1]). Once W_{1} is chosen the rest of the flag are the same as an isotropic flag in the space W_{1}^{\perp} / W_{1} which has dimension $2 m-2$ and still type 0 . Therefore the number of maximal Q-isotropic subspaces is

$$
\begin{equation*}
\prod_{j=1}^{m}\left(p^{j-1}+1\right) \tag{1.8}
\end{equation*}
$$

(see [11]).
type $I_{ \pm}$: Using the method as above. Note that the number of isotropic vectors is $p^{2 m}-1$ (see p. 146 of [1]). Hence the number of maximal Q-isotropic subspaces is

$$
\begin{equation*}
\prod_{j=1}^{m}\left(p^{j}+1\right) \tag{1.9}
\end{equation*}
$$

type II: In this case the number of isotropic vectors is $\left(p^{m}-1\right)\left(p^{m+1}\right.$ +1) (see p. 146 of [1]). As before the number of maximal Q-isotropic subspaces is

$$
\begin{equation*}
\prod_{j=1}^{m}\left(p^{j+1}+1\right) \tag{1.10}
\end{equation*}
$$

Using the above computation we can now determine $e\left(q_{w}\right)$ and the ideal q_{W}.

Theorem 1.11. If W is a maximal Q-isotropic subspace of V, then

$$
q_{W}=\operatorname{Ker}\left\{r_{W}: S\left(V^{*}\right) \rightarrow S\left(\left(W^{\perp}\right)^{*}\right) / J\left(W^{\perp}\right)\right\}
$$

where W^{\perp} is the annihilator subspace of $W, J\left(W^{\perp}\right)$ is the ideal generated by $Q^{\prime}(x), B^{\prime}\left(x, x^{p}\right), \cdots, B^{\prime}\left(x, x^{p^{\prime \prime-1}}\right)\left(Q^{\prime}\right.$ or B^{\prime} is the restriction of Q or B to W^{\perp} and $h^{\prime}=\operatorname{dim} W^{\perp}-\operatorname{dim} W$.) and r_{W} is the natural map induced by the inclusion. Moreover $e\left(q_{W}\right)=1,2$, or $2(p+1)$ if Q is of type $0, \mathrm{I}_{ \pm}$, or II respectively.

Remark 1.12. We have assumed that $V_{0}=0$ (i.e. B is nondegenerate) since Proposition 1.6. But it is obvious that Theorem 1.11 holds for all non-degenerate cases, it is also valid in degenerate cases. Therefore we still assume in the proof that $V_{0}=0$. Theorem 1.11 holds unless $V_{0}=0$.

Proof of Theorem 1.11. We prove in each form of four types in (1.4).
type 0: Compare (1.7) and (1.8). These are equal and so $e\left(q_{w}\right)=1$ for all $W . \quad W^{\perp}=W$ and $J\left(W^{\perp}\right)=0$ and so the theorem holds.
type $\mathrm{I}_{ \pm}: \quad W^{\perp}=W \oplus S$ then

$$
\begin{equation*}
S\left(\left(W^{\perp}\right)^{*}\right) / J\left(W^{\perp}\right) \cong S\left(W^{*}\right) \otimes \boldsymbol{F}_{p}[x] /\left(x^{2}\right) \tag{1.13}
\end{equation*}
$$

and the zero ideal of this ring is a primary ideal of multiplicity 2 . Let $q_{w}^{\prime}=\operatorname{Ker}\left\{S\left(V^{*}\right) \rightarrow S\left(\left(W^{\perp}\right)^{*}\right) / J\left(W^{\perp}\right)\right\}$. Then q_{w}^{\prime} is a primary ideal of multiplicity 2 associated with $p_{W}=\operatorname{Ker}\left\{S\left(V^{*}\right) \rightarrow S\left(W^{*}\right)\right\}$. Because $J \subset$ $q_{w}^{\prime}, q_{w} \subset q_{w}^{\prime}$ and so $e\left(q_{w}\right) \geq e\left(q_{w}^{\prime}\right)=2$. Compare now (1.7) and (1.9), $e\left(q_{w}\right) \geq 2$ implies $e\left(q_{w}\right)=2$ and so $q_{w}=q_{w}^{\prime}$.
type II: $\quad W^{\perp}=W \oplus S$ then

$$
\begin{equation*}
S\left(\left(W^{\perp}\right)^{*}\right) / J\left(W^{\perp}\right)=S\left(W^{*}\right) \otimes S\left(S^{*}\right) / J(S) \cong S\left(W^{*}\right) \otimes \boldsymbol{F}_{p}\left[x_{1}, x_{2}\right] / J(S) \tag{1.14}
\end{equation*}
$$

where $J(S)$ is the ideal generated by $x_{1}^{2}-g x_{2}^{2}$ and $x_{1}^{p+1}-g x_{2}^{p+1}$. The multiplicity of $J(S)$ in $F_{p}\left[x_{1}, x_{2}\right]$ is a special case of this theorem. Set $W=0$ and $V=S$. By $(1.7) e(J(S))=2(p+1)$. As before we can prove the theorem by (1.7) and (1.10).

Finally we show the following:
Theorem 1.15. For all $m, B\left(x, x^{p m}\right) \in J$.
Proof. From the proof of Theorem 1.11, only type II case is non trivial. Here $\operatorname{dim} S=2$ and $Q=x_{1}^{2}-g x_{2}^{2}$ and so $J=J(S)$ in the proof of Theorem 1.11. $x_{1}^{2} \equiv g x_{2}^{2} \bmod J$ and so $g^{(p+1) / 2} x_{2}^{p+1} \equiv x_{1}^{p+1} \equiv g x_{2}^{p+1} \bmod J$. Thus we have

$$
\begin{aligned}
x_{1}^{p 2 n+1+1} & \equiv g^{\left(p^{2 n+1+1) / 2} x_{2}^{p n+1+1} \equiv g^{(p+1) p(1) / 2} x_{2}^{(p+1) p(1)}\right.} \\
& \equiv g^{p(1)} x_{2}^{p 2 n+1+1} \equiv g x_{2}^{p 2 n+1+1}
\end{aligned}
$$

and

$$
\begin{aligned}
x_{1}^{p 2 n+1} & \equiv x_{1}^{p 2 n-1} x_{2}^{2} \equiv g^{\left(p^{2 n-1}\right) / 2} x_{2}^{x_{2}^{2 n-1}} \times g x_{2}^{2} \equiv g^{(p+1) p(2)} x_{2}^{(p+1) p(2)} \times g x_{2}^{2} \\
& \equiv g^{p(2)} \cdot g x_{2}^{p 2 n+1} \equiv g x_{2}^{p 2 n+1}
\end{aligned}
$$

$\bmod J$ where $(p+1) p(1)=p^{2 n+1}+1$ and $(p+1) p(2)=p^{2 n}-1$. Thus $B\left(x, x^{p m}\right) \in J$ for $m \geq 2$.

§ 2. $\quad H^{*}\left(\boldsymbol{B} \tilde{\boldsymbol{G}} ; \boldsymbol{F}_{\boldsymbol{p}}\right)$ for a good prime \boldsymbol{p}

In this section we determine the algebra structure of $H^{*}\left(B \widetilde{G} ; \boldsymbol{F}_{p}\right)$ for a good prime p. Note that an odd prime p is exceptional if and only if (G, p) is one of the following:

$$
\begin{equation*}
\left(E_{6}, 3\right),\left(E_{7}, 3\right),\left(E_{8}, 3\right),\left(F_{4}, 3\right),\left(E_{8}, 5\right) . \tag{2.1}
\end{equation*}
$$

First we determine $H^{*}\left(B \tilde{T} ; \boldsymbol{F}_{p}\right)$. Consider the Serre spectral sequence for the fibering $K(Z, 3) \xrightarrow{j^{\prime}} B \widetilde{T} \xrightarrow{\pi^{\prime}} B T$ with F_{p} coefficient

$$
E_{2}=H^{*}\left(B T ; \boldsymbol{F}_{p}\right) \otimes H^{*}\left(K(\boldsymbol{Z}, 3) ; \boldsymbol{F}_{p}\right) \Longrightarrow E_{\infty}=\operatorname{Gr}\left(H^{*}\left(B \tilde{T} ; \boldsymbol{F}_{p}\right)\right) .
$$

The element u_{3} is transgressive with $\tau\left(u_{3}\right)=Q$. Therefore $P_{k} u_{3}$ and $\beta P_{k} u_{3}$ are transgressive with $\tau\left(P_{k} u_{3}\right)=P_{k} Q=2^{k} B\left(x, x^{k}\right)$ and $\tau\left(\beta P_{k} u_{3}\right)=\beta P_{k} Q=0$. Theorem 1.2 says $\tau\left(u_{3}\right), \tau\left(P_{1} u_{3}\right), \cdots, \tau\left(P_{k-1} u_{3}\right)$ is a regular sequence. On the other hand $\tau\left(P_{h} u_{3}\right) \in J=\left(\tau\left(u_{3}\right), \cdots, \tau\left(P_{h-1} u_{3}\right)\right)$ by Theorem 1.15 and so $P_{h} u_{3} \in \operatorname{Im} j^{\prime *}$. Thus we have $E_{\infty}=H^{*}\left(B T ; \boldsymbol{F}_{p}\right) / J \otimes R_{h}$. Since $H^{*}\left(B T ; \boldsymbol{F}_{p}\right) / J$ is $\operatorname{Im} \pi^{*}$ and R_{h} is a free commutative algebra we have the following:

Theorem 2.2. As an algebra $H^{*}\left(B \widetilde{T} ; \boldsymbol{F}_{p}\right)$ is isomorphic to $H^{*}(B T$; $\left.F_{p}\right) / J \otimes R_{h}$ where J is the ideal generated by $Q, P_{1} Q, \cdots, P_{h-1} Q$.

From now on we assume that p is good for G. In this case $H^{2 j-1}(B G$; \boldsymbol{F}_{p}) and $H^{2 j-1}\left(G / T ; \boldsymbol{F}_{p}\right)=0$ for any j (see Borel [2] and Bott [3]), and the Serre spectral sequence for the fibering $G / T \xrightarrow{\bar{\lambda}} B T \xrightarrow{\bar{i}} B G$ with F_{p} coefficient collapses. Hence $H^{*}\left(B T ; \boldsymbol{F}_{p}\right)$ is a free module over $H^{*}\left(B G ; \boldsymbol{F}_{p}\right)$ and so i^{*} is faithfully flat. Put $x_{4}=i^{*} Q$, then in the Serre spectral sequence for the fibering u_{3} is transgressive with $\tau\left(u_{3}\right)=x_{4}, \tau\left(P_{k} u_{3}\right)=P_{k} x_{4}=i^{*} 2^{k}\left(x, x^{p^{k}}\right)$ and $\tau\left(\beta P_{k} u_{3}\right)=0$. Since $Q, B\left(x, x^{p}\right), \cdots, B\left(x, x^{p^{h-1}}\right)$ is a regular sequence, $B\left(x, x^{p h}\right) \in\left(Q, B\left(x, x^{p}\right), \cdots, B\left(x, x^{p h-1}\right)\right)$ and i^{*} is faithfully flat, we have $x_{4}, P_{1} x_{4}, \cdots, P_{h-1} x_{4}$ is a regular sequence and $P_{h} x_{4} \in J^{\prime}=\left(x_{4}, \cdots, P_{h-1} x_{4}\right)$. Thus we have

Theorem 2.3. If p is good for G, then as an algebra, $H^{*}\left(B \widetilde{G} ; \boldsymbol{F}_{p}\right)$ is isomorphic to $H^{*}\left(B G ; \boldsymbol{F}_{p}\right) / J^{\prime} \otimes R_{h}$ where J^{\prime} is the ideal generated by x_{4}, $P_{1} x_{4}, \cdots, P_{h-1} x_{4}$.

Remark 2.4. If p is good for G, then $\bar{\lambda}^{*}$ is surjective and so λ^{*} is also surjective, where $\lambda: G / T \rightarrow B \widetilde{T}$. Therefore the Serre spectral sequence for the fibering $G / T \rightarrow B \widetilde{T} \xrightarrow{i} B \tilde{G}$ with F_{p} coefficient collapses if p is good for G.

§ 3. The number $\boldsymbol{h}(\boldsymbol{G}, \boldsymbol{p})$

In this section we determine the numbers $h(G, p)$. First of all it is well known that two non degenerate quadratic forms over \boldsymbol{F}_{p} (p is an odd prime) are equivalent if and only if they have same rank and same discriminant (see for example Serre [12]). If G is of classical type then Q is given by the following:

Proposition 3.1. (1) If $G=A_{\ell}$, then there exists x_{0}, \cdots, x_{ℓ} such that $Q(x)=\sum_{i<j} x_{i} x_{i} \mid V$ where V is the hyperplane defined by $x_{0}+\cdots+x_{\ell}=0$.
(2) If $G=B_{\ell}, C_{\ell}$ or D_{ℓ}, then there exists x_{1}, \cdots, x_{ℓ} such that $Q(x)=$ $x_{1}^{2}+\cdots+x_{\ell}^{2}$.
(3) $\operatorname{In} \boldsymbol{F}_{p}^{\times} /\left(\boldsymbol{F}_{p}^{\times}\right)^{2}$,

$$
\operatorname{disc}(Q(x))=\left\{\begin{array}{cl}
\left(-\frac{1}{2}\right)(\ell+1) & \text { if } G=A_{\ell}, \\
1 & \text { if } G=B_{\ell}, C_{\ell} \text { or } D_{\ell}
\end{array}\right.
$$

Proof. (1) and (2) are well known since $H^{*}\left(B G ; \boldsymbol{Z}_{(p)}\right)$ is generated by c_{2} (the second Chern class) or P_{1} (the first Pontrjagin class). Therefore we need only show (3). For $G=A_{\ell}$, define a_{j} by $x_{i}\left(a_{j}\right)=\delta_{i j}$ and put $v_{j}=$ $a_{j}-a_{0}$ for $h=1,2, \cdots, \ell$. Then v_{1}, \cdots, v_{ℓ} is a basis of V. Note that $B\left(v_{i}, v_{j}\right)=-\frac{1}{2}$ if $i \neq j$ and $Q\left(v_{i}\right)=-1$. Therefore disc $(Q(x))=\left(-\frac{1}{2}\right)^{\ell}$ $\operatorname{det}\left(E-B^{\prime}(\ell)\right)$ where $B^{\prime}(\ell)=\left(b_{i j}\right)$ is defined by $b_{i j}=-1$ for any i, j and E is the identity matrix. Since $B^{\prime}(\ell)^{2}=-\ell B^{\prime}(\ell)$ and rank $B^{\prime}(\ell)=1$, $\operatorname{det}\left(t E-B^{\prime}(\ell)\right)=t^{\ell}+\ell t^{\ell-1}$ and therefore $\operatorname{det}\left(E-B^{\prime}(\ell)\right)=\ell+1$. For $G=B_{\ell}, C_{\ell}$ or D_{ℓ} the proof is easy.

Remark 3.2. If $\ell+1 \equiv 0 \bmod p$, then $Q(x)$ for $G=A_{\ell}$ is degenerate. But $Q \mid V^{\prime}$ is non degenerate where V^{\prime} is the hyperplane (of V) defined by $x_{\ell}=x_{0} . \quad$ Moreover disc $\left(Q / V^{\prime}\right)=\left(-\frac{1}{2}\right)^{\ell-1}$ in $\boldsymbol{F}_{p}^{\times} /\left(\boldsymbol{F}_{p}^{\times}\right)^{2}$.

Now we can prove the following:
Theorem 3.3. (1) If $\left(\frac{\ell+1}{p}\right)=0$, then $h\left(A_{\ell}, p\right)=h\left(A_{\ell-1}, p\right)$ and if $\left(\frac{\ell+1}{p}\right)= \pm 1$, then $h\left(A_{\ell}, p\right)$ is given by the following table:

	$\ell \equiv 1$	$\ell=0$	$\ell \equiv 2$	
$\left(\frac{\ell+1}{p}\right)=1$	$\frac{\ell+1}{2}$	$\frac{\ell}{2}$	$\frac{\ell}{2}$	$\frac{\ell}{2}+1$
$\left(\frac{\ell+1}{p}\right)=-1$	$\frac{\ell+1}{2}$	$\frac{\ell}{2}+1$	$\frac{\ell}{2}+1$	$\frac{\ell}{2}$

(ii) $h(G, p)$ for $G=B_{\ell}, C_{\ell}$ or D_{ℓ} is given by the following table:

	$\ell \equiv 1$	$\ell \equiv 0$	$\ell \equiv 2$
$p \equiv 1$	$\frac{\ell+1}{2}$	$\frac{\ell}{2}$	$\frac{\ell}{2}$
$p \equiv-1$	$\frac{\ell+1}{2}$	$\frac{\ell}{2}$	$\frac{\ell}{2}+1$

where \equiv means congruence modulo 4 and $\left(\frac{\ell+1}{p}\right)$ is the Legendre"symbol.
The following is Theorem 2.4 and Remark 2.5 of [7]
Theorem 3.4. (1) $h\left(G_{2}, p\right)=h\left(A_{2}, p\right), h\left(F_{4}, p\right)=h\left(B_{4}, p\right)$,
(2) $h\left(E_{6}, p\right)= \begin{cases}3 & \text { if }\left(\frac{-3}{p}\right) \neq-1 \\ 4 & \text { if }\left(\frac{-3}{p}\right)=-1,\end{cases}$
(3) $h\left(E_{7}, p\right)=h\left(E_{8}, p\right)=4$.

§ 4. The module structure of $H^{*}\left(B \tilde{G} ; F_{p}\right)$ for an exceptional prime p

In this section we will prove the following:
Theorem 4.1. For any G and any odd prime p, the Serre spectra, sequence for the fibering $G / T \xrightarrow{\lambda} B \widetilde{T} \xrightarrow{i} B \widetilde{G}$ with F_{p} coefficient collapses.

For a good prime p, Theorem 4.1 was proved in Section 2 (see Remark 2.4). Therefore we assume that (G, p) is one of the five pairs in (2.1).

First recall the following facts on the Poincaré polynomials:
Lemma 4.2 (Bott [3]). $\quad P\left(H^{*}\left(G / T ; \boldsymbol{F}_{p}\right)\right)=\left(1-t^{2}\right)^{-\ell} \prod_{i=1}^{\ell}\left(1-t^{2 m(i)+2}\right)$, where $P\left(H^{*}\left(X ; \boldsymbol{F}_{p}\right)\right)=\sum_{k=0}^{\infty} \operatorname{dim} H^{k}\left(X ; \boldsymbol{F}_{p}\right) t^{k}, \ell=\operatorname{rank} G$ and $m(1)<m(2)$ $\leq \cdots \leq m(\ell)$ is the exponent of $W(G)$.

Lemma 4.3 (Toda). If p is exceptional for G, then as an algebra $H^{*}\left(G / T ; \boldsymbol{F}_{p}\right)$ is generated by $H^{k}\left(G / T ; \boldsymbol{F}_{p}\right)$ for $k \leq 2 g(G, p)$, where

$$
g(G, p)=\left\{\begin{aligned}
4 & \text { if }(G, p)=\left(E_{6}, 3\right),\left(E_{7}, 3\right) \text { or }\left(F_{4}, 3\right) \\
10 & \text { if }(G, p)=\left(E_{8}, 3\right) \\
5 & \text { if }(G, p)=\left(E_{8}, 5\right)
\end{aligned}\right.
$$

See Theorem 3.2 of [14].
On the other hand we can easily show the following:
Lemma 4.4. If p is exceptional for G, then $H^{2 k+1}\left(B \tilde{G} ; F_{p}\right)=0$ for $k \leq g(G, p)$.

Proof. See p. 140 of [10] for $\left(F_{4}, 3\right)$, Theorem V of [4] for $\left(E_{6}, 3\right)$, $\left(E_{7}, 3\right)$ or $\left(E_{8}, 5\right)$ and Proposition 4.4 of [8] for $\left(E_{8}, 3\right)$.

Proof of Theorem 4.1. We need only show λ^{*} is surjective. By Lemma 4.2 and Lemma $4.4 \quad \lambda^{*}$ is surjective for $\operatorname{deg} \leq 2 g(G, p)$. Since $H^{*}\left(G / T ; \boldsymbol{F}_{p}\right)$ is generated by $H^{k}\left(G / T ; \boldsymbol{F}_{p}\right)$ for $k \leq 2 \mathrm{~g}(G, p)$ as an algebra by Lemma 4.3, and λ^{*} is an algebra homomorphism, λ^{*} is surjective.

Corollary 4.5. $P\left(H^{*}\left(B \widetilde{G} ; F_{p}\right)\right)=\left(\prod_{i=2}^{e}\left(1-t^{2 m(i)+2}\right)\right)^{-1} \prod_{j=h}^{\infty} \frac{\left(1+t^{2 p^{j+1}}\right)}{\left(1-t^{2 p^{j+2}}\right)}$
Proof. By Theorem 2.2

$$
P\left(H^{*}\left(B \tilde{T} ; \boldsymbol{F}_{p}\right)\right)=\left(1-t^{2}\right)^{-\ell}\left(1-t^{4}\right) \prod_{j=h}^{\ell} \frac{\left(1+t^{2 p^{j+1}}\right)}{\left(1-t^{2 p^{j+2}}\right)}
$$

On the other hand $P\left(H^{*}\left(B \tilde{T} ; \boldsymbol{F}_{p}\right)\right)=P\left(H^{*}\left(G / T ; \boldsymbol{F}_{p}\right)\right) P\left(H^{*}\left(B \tilde{G} ; \boldsymbol{F}_{p}\right)\right)$ by Theorem 4.1. Note that $m(1)=1$ for any G.

Remark 4.6. The Serre spectral sequence for the fibering $E_{8} / T \rightarrow B \tilde{T}$ $\rightarrow B \widetilde{E}_{8}$ with \boldsymbol{F}_{2} coefficient does not collapse.

\S 5. The algebra structure of $H^{*}\left(B \tilde{G} ; F_{p}\right)$ for an exceptional prime \boldsymbol{p}

In this section we concern mainly the case $(G, p)=\left(E_{8}, 5\right)$. We will say results of other pairs in (2.1) only because these are similar. So $H^{*}()$ means $H^{*}\left(; \boldsymbol{F}_{5}\right)$.

Put $R=F_{5}\left[T_{1}, \cdots, T_{8}, X_{12}\right]$ where $\operatorname{deg} T_{j}=2$ and $\operatorname{deg} X_{12}=12$. Recall that $h\left(E_{8}, 5\right)=4$. Denote the subalgebra of $H^{*}(K(Z, 3))$ generated by $\left\{P_{k} u_{3}, \beta P_{k} u_{3} ; k \geq j\right\}$ by S_{j}. Theorem 2.2 implies

Lemma 5.1. There is a surjective homomorphism

$$
e: R \otimes \boldsymbol{F}_{5}\left[X_{52}, X_{25}\right] \otimes S_{4} \longrightarrow H^{*}(B \tilde{T})
$$

such that Ker $e=\left(r_{4}, r_{12}, r_{52}, r_{252}\right)$, where $\operatorname{deg} r_{j}=j$ and $r_{4}, r_{12}, r_{52}, r_{252}$ is a regular sequence in $F_{5}\left[T_{1}, \cdots, T_{8}\right]$ (and so in R).

Put $J(0)=\{16,24,28,36,40,48\}, J(1)=J(0) \cup\{4,12,60\}$ and $J(2)=$ $J(0) \cup\{52,60,252\}$. The following is Theorem 3.2 of [14]:

Proposition 5.2. There exist $\rho_{j} \in R(j \in J(1))$ such that $H^{*}(G / T)$ is isomorphic to $R /\left(\rho_{j} ; j \in J(1)\right)$, where $\operatorname{deg} \rho_{j}=j$ and $\rho_{j} ; j \in J(1)$ is a regular sequence.

Put $\rho_{j}^{\prime}=e\left(\rho_{j}\right)$. First it is easy to show that as an algebra

$$
\begin{equation*}
H^{*}(B G) \cong \boldsymbol{F}_{5}\left[y_{j} ; j \in J(0)\right] \quad \text { for } * \leq 51 \tag{5.3}
\end{equation*}
$$

where $\operatorname{deg} y_{j}=j$ (see [6]). Since the Serre spectral sequence for $G / T \xrightarrow{\lambda} B \tilde{T}$ $\xrightarrow{i} B \tilde{G}$ collapses, $\rho_{4}=r_{4}, \rho_{12} \equiv r_{12} \bmod \left(\rho_{4}\right)$ and for $j \in J(0)$

$$
\begin{equation*}
i^{*}\left(y_{j}\right) \equiv \rho_{j}^{\prime} \bmod \left(\rho_{k}^{\prime} ; k<j\right) \tag{5.4}
\end{equation*}
$$

Since $H^{52}(G / T)$ is decomposable, we have
Lemma 5.5. There exists $y_{52} \in H^{52}(B \widetilde{G})$ such that $i^{*}\left(y_{52}\right) \equiv x_{52} \bmod$ decomposables where $x_{52}=e\left(X_{52}\right)$. Moreover $i^{*}\left(y_{52}\right)-x_{52} \in\left(\rho_{j}^{\prime} ; j \in J(0)\right)$.

Lemma 5.6. There exists a (weighted) homogeneous polynomial $f_{52} \neq 0$ of degree 52 such that $f_{52}\left(y_{j} ; j \in J(0)\right)=0$ in $H^{*}(B \widetilde{G})$.

Proof. There are no relations in degree less than 52 by (5.3) and there is an indecomposable element in degree 52 by Lemma 5.5. Therefore there must be a relation in degree 52 by Corollary 4.5 .

Also we have
Lemma 5.7. There is $y_{60} \in H^{60}(B \widetilde{G})$ such that $i^{*}\left(y_{60}\right) \equiv \rho_{60}^{\prime} \bmod \left(\rho_{k}^{\prime} ; k\right.$ $\left.\in J(0), x_{52}\right)$.

Summing up these results we can say that
Proposition 5.8. There is an algebra homomorphism $I: \boldsymbol{F}_{5}\left[Y_{j} ; j \in\right.$ $J(0) \cup\{52,60\}] \rightarrow R \otimes \boldsymbol{F}_{5}\left[X_{52}\right]$ such that the following diagram commutes:

where $e_{1}^{\prime \prime}\left(Y_{j}\right)=y_{j}$, and $e_{1}^{\prime}\left(X_{52}\right)=x_{52}$.
Proof. From 5.4, for $j \in J(0)$, there exist $f_{i j} \in H^{*}(B \tilde{T})(i<j)$ such that $i^{*}\left(y_{j}\right)=\rho_{j}^{\prime}+\sum_{i<j} f_{i j} \rho_{i}^{\prime}$. Similarly $i^{*}\left(y_{52}\right)=x_{52}+\sum_{i \in J(0)} g_{i} \rho_{i}^{\prime}$ and $i^{*}\left(y_{60}\right)=\rho_{60}^{\prime}+\sum_{i \in J(0)} h_{i} \rho_{i}^{\prime}+h_{52} x_{52}$ for $g_{i}, h_{i} \in H^{*}(B \widetilde{T})$. Choose $F_{i j}, G_{i}$,
$H_{i} \in R$ such that $e_{1}^{\prime}\left(F_{i j}\right)=f_{i j}, e_{k}^{\prime}\left(G_{i}\right)=g_{i}$ and $e_{1}^{\prime}\left(H_{i}\right)=h_{i}$. Define I by $I\left(Y_{j}\right)=\rho_{j}+\sum_{i<j} F_{i j} \rho_{i}, I\left(Y_{52}\right)=X_{52}+\sum_{i \in J(0)} G_{i} \rho_{i} \quad$ and $\quad I\left(Y_{60}\right)=\rho_{60}+$ $\sum_{i \in J} H_{i} \rho_{i}+H_{52} X_{52}$. It is easy that I satisfies the above commutativity.

Lemma 5.9. Let k be a field and $a_{1}, \cdots, a_{n} \in k\left[b_{1}, \cdots, b_{m}\right]$ be a sequence of homogeneous elements. Then a_{1}, \cdots, a_{n} is a regular sequence if and only if a_{1}, \cdots, a_{n} generates a polynomial subalgebra over which $k\left[b_{1}, \cdots, b_{n}\right]$ is free.

See [11].
Note that $I\left(f_{52}\right) \in\left(r_{4}, r_{12}, r_{52}\right)$ and $I\left(f_{52}\right) \notin\left(r_{4}, r_{12}\right)=\left(\rho_{4}, \rho_{12}\right)$. Therefore
Lemma 5.10. $I\left(f_{52}\right) \equiv r_{52} \bmod \left(r_{4}, r_{12}\right)$.
On the other hand the induced map $\boldsymbol{F}_{5}\left[Y_{j} ; j \in J(0) \cup\{52,60\}\right] /\left(f_{52}\right) \rightarrow$ $H^{*}(B \tilde{T})$ is injective for $\operatorname{deg} \leq 251$ and so we have

Lemma 5.11. $\quad \bar{e}_{1}^{\prime \prime} ; \boldsymbol{F}_{5}[Y ; j \in J(0) \cup\{52,60\}] /\left(f_{52}\right) \rightarrow H^{*}(B \widetilde{G})$ is an isomorphism for $\operatorname{deg} \leq 251$.

Quite similarly we have
Lemma 5.12. (1) There is an element $Y_{252} \in H^{252}(B \widetilde{G})$ such that $i^{*}\left(y_{252}\right)-x_{252} \in\left(\rho_{j}^{\prime} ; j \in J(0) \cup\{60\}, x_{52}\right)$.
(2) There is a homogeneous element $f_{252}{ }^{\text {"I }}$ "f degree 252 such that

$$
f_{252}\left(y_{j} ; j \in J(0) \cup\{52,60\}\right)=0 \quad \text { in } H^{*}(B \widetilde{G})
$$

Moreover we have
Proposition 5.13. (1) There is an algebra homomorphism $I^{\prime}: F_{5}\left[Y_{j} ; j\right.$ $\in J(2)] \rightarrow R \otimes F_{5}\left[X_{52}, X_{252}\right]$ such that the following diagram commutes:

where $e_{2}^{\prime \prime}\left(Y_{j}\right)=y_{j}, e_{2}^{\prime}\left(X_{52}\right)=x_{52}$ and $e_{2}^{\prime}\left(X_{252}\right)=x_{252}$.
(2) $I^{\prime}\left(Y_{j}\right)=I\left(Y_{j}\right)$ for $j \neq 252$ and $I^{\prime}\left(f_{252}\right) \equiv r_{252} \bmod \left(r_{4}, r_{12}, r_{52}\right)$.

Now applying Lemma 5.9, we have
Lemma 5.14. f_{52}, f_{252} is a regular sequence.

On the other hand there are $y_{2.5^{k}+1}, y_{2.5 k^{k}+2} k \geq 4$ such that $\pi^{*}\left(y_{2.55^{k}+1}\right) \equiv P_{k} u_{3}$ and $\pi^{*}\left(y_{2.5 k_{+2}}\right)=\beta P_{k} u_{3} \bmod$ decomp. We have thus an algebra homomorphism $\lambda: F_{5}\left[Y_{j} ; j \in J(2)\right] /\left(f_{52}, f_{25}\right) \otimes S_{4} \rightarrow H^{*}(B \widetilde{G})$.

Obviously $i^{*} \circ \lambda$ is a monomorphism. By the observation of the Poincaré series in Corollary 4.5, we can easily prove λ is an isomorphism. Remaining cases can be determined by a similar method.

Theorem 5.15. Let S_{j} be the subalgebra of $H^{*}\left(K(Z, 3) ; \boldsymbol{F}_{p}\right)$ generated by $\left\{P_{k} u_{3}, \beta P_{k} u_{3} ; k \geq j\right\}$, then as an algebra.

$$
\begin{align*}
& H^{*}\left(B \widetilde{E}_{8} ; \boldsymbol{F}_{5}\right) \cong \boldsymbol{F}_{5}\left[y_{j} ; j=16,24,28,36,40,48,52,60,252\right] /\left(f_{52}, f_{252}\right) \otimes S_{4}, \tag{1}\\
& H^{*}\left(B \widetilde{E}_{8} ; \boldsymbol{F}_{3}\right) \cong \boldsymbol{F}_{3}\left[y_{j} ; j=16,24,28,36,40,48,56,60\right] /\left(f_{56}\right) \otimes S_{4}, \\
& H^{*}\left(B \widetilde{E}_{7} ; \boldsymbol{F}_{3}\right) \cong \boldsymbol{F}_{3}\left[y_{j} ; j=12,16,20,24,28,36,56\right] /\left(f_{56}\right) \otimes S_{4}, \\
& H^{*}\left(B \widetilde{E}_{6} ; \boldsymbol{F}_{3}\right) \cong \boldsymbol{F}_{3}\left[y_{j} ; j=10,12,16,18,20,24\right] /\left(f_{20}\right) \otimes S_{3}, \\
& H^{*}\left(B \widetilde{F}_{4} ; \boldsymbol{F}_{3}\right) \cong \boldsymbol{F}_{3}\left[y_{j} ; j=12,16,24\right] \otimes S_{2} .
\end{align*}
$$

where $\operatorname{deg} y_{j}=j, \operatorname{deg} f_{j}=j$ and in (1) f_{52}, f_{252} is a regular sequence.
Remark 5.16. $H^{*}\left(B \widetilde{G} ; F_{2}\right)$ is known for $G=A_{\ell}, C_{\ell}, E_{6}, E_{7}, E_{8}, F_{4}$ or G_{2} (See [5], [13]). But it seems to be difficult to determine $H^{*}\left(B \tilde{G} ; \boldsymbol{F}_{2}\right)$ for $G=B_{\ell}$ or D_{ℓ}.

References

[1] E. Artin, Geometric algebra. Interscience Publ. (1957).
[2] A. Borel, Sur la cohomologie des espaces fibres principaux et des espaces homogènes de groupes de Lie compacts, Ann. Math., 57 (1953), 115-207.
[3] R. Bott, An application of the Morse theory to the topology of Lie groups, Bull. Soc. Math. France, 84 (1956), 251-282.
[4] R. Bott and H. Samelson, Applications of the Morse theory to symmetric spaces, Amer. J. Math., 80 (1958), 964-1029.
[5] M. Harada and A. Kono, Cohomology mod p of the 4 -connective fibre space of the classifying space of classical Lie groups., Proc. Japan Acad., 60 (1984), 63-65.
[6] A. Kono, Hopf algebra structure of simple Lie groups, J. Math. Kyoto Univ., 17 (1977), 259-298.
[7] - On the cohomology of exceptional Lie groups, Algebraic and Topological Theories, Kinokuniya, Japan (1985), 328-338.
[8] A. Kono and M. Mimura, Cohomology operations and the Hopf algebra structures of the compact, exceptional Lie groups E_{7}, and E_{8}, Proc. London Math. Soc., (3) 35 (1977), 345-358.
[9] W. Krull, Idealtheoree, Chelsea Press (1948).
[10] M. Mimura, Homotopy groups of Lie groups of low rank, J. Math. Kyoto Univ., 6 (1967), 131-176.
[11] D. Quillen, The mod 2 cohomology rings of extra-spectial 2-groups and the spinor groups., Math. Ann., 194 (1971), 197-212.
[12] J.-P. Serre, Cours d'arithmetique, Press Univ. France (1970).
[13] H. Toda, Cohomology of the classifying space of exceptional Lie groups, Manifolds, Tokyo 1973, 265-289.
[14] H. Toda, On the cohomology rings of some homogeneous spaces, J. Math. Kyoto Univ., 15 (1975), 185-199.
[15] O. Zariski and P. Samuel, Commutative algebra, Vol. II, Van Nostrand (1960).
[16] R. Hartshorne, A property of A-sequences., Bull. Math. Soc. France, 94 (1966), 61-66.

Department of Mathematics
Kyoto University
Kyoto, 606 Japan

