Advanced Studies in Pure Mathematics 9, 1986 Homotopy Theory and Related Topics pp. 109–122

Cohomology mod p of the 4-connected Cover of the Classifying Space of Simple Lie Groups

Masana Harada and Akira Kono

§ 0. Introduction

Let G be a compact, connected, simply connected, simple Lie group and BG its classifying space. A prime p is called good (for G) (resp. exceptional (for G)) if $H_*(G; Z)$ is p-torsion free (resp. not p-torsion free). As is well known BG is 3-connected and $\pi_4(BG) = H_4(GB; Z) = H^4(BG; Z)$ = Z (cf. [3]). Represent a generator of $H^4(BG; Z)$ by a map $Q'': BG \rightarrow K(Z, 4)$ and denote its homotopy fibre by $B\tilde{G}$. The purpose of this paper is to determine $H^*(B\tilde{G}; F_p)$ for any odd prime p.

Consider the following pull back diagram:

$$\begin{array}{c} K(\mathbf{Z},3) \xrightarrow{\pi'} B\widetilde{T} \xrightarrow{Q'} BT \\ \| & & \downarrow i \\ K(\mathbf{Z},3) \xrightarrow{\pi} B\widetilde{G} \xrightarrow{Q''} BG \end{array}$$

where T is a maximal torus, *i* and \overline{i} are the maps induced by the inclusion. Note that $\overline{i}^*: H^4(BG; \mathbb{Z}) \to H^4(BT; \mathbb{Z})$ is a monomorphism and $\operatorname{Im} \overline{i}^* = H^4(BT; \mathbb{Z})^{W(G)}$ where W(G) is the Weyl group of G. Therefore $Q' = \overline{i}^* Q''$ is a generator of $H^4(BT; \mathbb{Z})^{W(G)}$. Denote the mod p reduction of \mathbb{Q}' by Q. Since $H^*(BT; F_p) \cong S(H_2(BT, F_p)^*)$, where S denotes the symmetric algebra, we may consider that Q is a quadratic form. Let h = h(G, p) be the codimension of a Q-isotropic subspace of maximum dimension.

As is well known that

$$H^*(K(\mathbb{Z},3);\mathbb{F}_p)\cong S(\beta \mathbb{P}_k u_3;k\geq 1)\otimes E(\mathbb{P}_k u_3;k\geq 0)$$

where *E* denotes the exterior algebra, $P_k = \mathscr{P}^{p^{k-1}} \cdots \mathscr{P}^1$ and u_3 is a generator of $H^3(K(\mathbb{Z}, 3); \mathbb{F}_p)$ $(=\mathbb{Z}/p)$. Denote the subalgebra generated by $\{\beta P_k u_3; k \ge 1\} \cup \{P_k u_3; k \ge j\}$ by R_j . Then the main results of this paper are the following:

Received January 24, 1985.

Theorem 2.2. As an algebra $H^*(B\tilde{T}; F_p)$ is isomorphic to $H^*(BT; F_p)/J \otimes R_h$ where J is the ideal generated by $Q, P_1Q, \dots, P_{h-1}Q$.

Theorem 2.3. For a good prime p, $H^*(B\tilde{G}; F_p)$ is isomorphic to $H^*(BG; F_p)/J' \otimes R_h$ as an algebra where J' is the ideal generated by $x_4, P_1x_4, \dots, P_{h-1}x_4$ $(x_4 = i^*Q)$.

Theorem 4.1. The Serre spectral sequence for the fibering $G/T \rightarrow B\tilde{T} \rightarrow B\tilde{G}$ collapses for any G and any odd prime p.

The paper is organized as follows: In Section 1 we prove certain algebraic results which are used in Section 2. In Section 2 we determine $H^*(B\tilde{G}; F_p)$ for a good prime p. In Section 3 we determine h=h(G, p). For an exceptional prime p, the module structure and the algebra structure of $H^*(B\tilde{G}; F_p)$ are determined in Section 4 and Section 5 respectively.

For a classical type G the result was announced in [5].

Throughout the paper p is an odd prime.

§ 1. A note on a quadratic form over F_p

In this section we prepare some algebraic results. Let V be an ndimensional vector space over F_p . Let $S(V^*)$ be the symmetric algebra over V^* , the dual of V. Consider a quadratic form Q on V and define its associated bilinear form by $B(x, y) = \frac{1}{2}(Q(x+y) - Q(x) - Q(y))$. We consider the following sequence of homogeneous elements in $S(V^*)$:

(1.1)
$$Q(x), B(x, x^{p}), \cdots, B(x, x^{p^{h-1}})$$

where h is the codimension of a Q-isotropic subspace of maximum dimension. Firtst we should do is to prove the following:

Theorem 1.2. The sequence (1.1) is a regular sequence and all maximal Q-isotropic subspaces of V are of same dimension n-h.

Proof. Let J be an ideal of $S(V^*)$ generated by (1.1) and Var J the common zeros of (1.1) in $V_{\mathcal{Q}} = V \otimes \Omega$, where Ω is a universal field of F_p . It is well known that (1.1) is a regular sequence if and only if dim Var J = n-h (see Theorem 2 of p. 397 of [15]). Therefore Theorem 1.2 is an easy consequence of the following Lemma 1.3.

Lemma 1.3. Var $J = \bigcup W_{\rho}$, where W ranges over maximal Q-isotropic subspaces.

Proof of Lemma 1.3. Using the identity

Cohomology mod p

$$Q(\sum t_{i}x^{p^{i}}) = \sum t_{i}^{2}Q(x)^{p^{i}} + 2\sum_{i < j} t_{i}t_{j}B(x, x^{p^{j-i}})^{p^{i}}$$

we see easily that $x \in \text{Var } J$ if and only if the Ω -subspace

$$M_x = \Omega x + \cdots + \Omega x^{p^{h-1}}$$

is Q-isotropic in V_{g} (Q is extended to V_{g} naturally). It is also seen that Var $J = \bigcup_{x \in \operatorname{Var} J} M_x$. Clearly $W_g \subset \operatorname{Var} J$. We need only show $M_x \subset W_g$ for some maximal Q-isotropic subspace W. Since a space which is stable under the Frobenius map F should have a form W'_g for some subspace W' in V, $W' \subset W$ and so $M_x = W'_g$ is a subspace of W_g for some maximal Q-isotropic subspace W.

Therefore we will show that M_x is stable under F. Recall the classification of quadratic forms over F_p . First $V = V' \perp V_0$, where \perp denotes the orthogonal decomposition, B is nondegenerate on V' and V_0 is the radical of V. V' can be decomposed as follows:

$$V' = P_1 \perp P_2 \perp \cdots \perp P_m \perp S$$

where P_i is a hyperbolic plane (dim $P_i=2$ and $Q=x_1x_2$ on P_i) and S is one of the following four types:

(1.4)

$$type 0: \dim S=0$$

$$type I_{+}: \dim S=1 \quad Q=x^{2} \text{ on } S$$

$$type I_{-}: \dim S=1 \quad Q=gx^{2} \text{ on } S$$

$$type II: \dim S=2 \quad Q=x_{1}^{2}-gx_{2}^{2} \text{ on } S$$

where g is one of non-square elements of F_p , fixed once for all (see for example Ch. IV. 3 of [1]). We check that M_x is stable under F in each form of four types in (1.4). It is enough to prove the lemma when $V_0=0$.

If dim $M_x \leq h-1$, there is a linear relation

$$x^{p^{h-1}} = \sum_{i=0}^{h-2} \lambda_i x^{p^i} \quad (\lambda_i \in \Omega).$$

Hence M_x is stable under F. Now we explain in each form of four types: type I_{\pm} : dim V=2m+1 and h=m+1. M_x is Q-isotropic. Therefore dim $M_x=\dim V-h=m=h-1$ and so Lemma 1.3 holds.

type II: dim V=2m+2 and h=m+2. S_a is a hyperbolic plane. Therefore dim $M_x=\frac{1}{2}$ dim V=m+1=h-1 and so Lemma 1.3 holds.

type 0: dim V=2m and h=m. If dim $M_x \le m-1=h-1$, Lemma 1.3 holds as above. Assume dim $M_x=m$. In this case we can write $V=U\oplus U^*$ with $Q(u+v)=\langle u, v \rangle$, where U is a subspace of dimension

m, U^* its dual and \langle , \rangle is the pairing of U and U^* . By the assumption $\pi_1: M_x \rightarrow U_g$ may be surjective. Then there is a unique linear transformation $T: U \rightarrow U^*$ such that

$$M_x = \{z + Tz; z \in U_{\varrho}\}.$$

The fact that M_x is Q-isotropic can be rewritten as

$$\langle z, Tz \rangle = 0$$
 and $\langle z, Tz' \rangle = \langle z', Tz \rangle$

for any $z, z' \in U_{\mathcal{Q}}$. Let x = u + v for $u \in U$ and $v \in U^*$. As $x^{p^i} \in M_x$ for $0 \le i < m$, we have $T(u^{p^i}) = v^{p^i}$ for $0 \le i < m$. So for $1 \le i < m$

$$\langle u^{p^{i}}, Tu^{p^{m}} \rangle = \langle u^{p^{m}}, Tu^{p^{i}} \rangle = \langle u^{p^{m}}, v^{p^{i}} \rangle = \langle u^{p^{m-1}}, v^{p^{i-1}} \rangle^{p}$$
$$= \langle u^{p^{m-1}}, Tu^{p^{i-1}} \rangle^{p} = \langle u^{p^{i-1}}, Tu^{p^{m-1}} \rangle^{p} = \langle u^{p^{i-1}}, v^{p^{m-1}} \rangle^{p}$$
$$= \langle u^{p^{i}}, v^{p^{m}} \rangle.$$

And also $\langle u^{p^m}, Tu^{p^m} \rangle = 0 = \langle u, v \rangle^{p^m} = \langle u^{p^m}, v^{p^m} \rangle$. In $U_0, u, \dots, u^{p^{m-1}}$ form a basis and also $u^p = F(u), \dots, u^{p^m} = F(u^{p^{m-1}})$ form a basis since F is a semi-linear automorphism. Therefore $Tu^{p^m} = v^{p^m}$ in U^* and so M_x is stable under F. This completes the proof of Lemma 1.3 and so Theorem 1.2 is proved.

Next we examine primary components of the ideal J. J has a primary decomposition

$$(1.5) J = \cap q_i$$

where q_i is a primary ideal associated to a prime ideal p_i . The irreducible components of Var J are in 1-1 correspondence with minimal primes p_i (cf. p. 163 of [15]). The theorem of Macauley says that there is no embedded component in J for it is generated by the regular sequence (1.1) (cf. p. 203 of [15]). Therefore all p_i 's are distinct and minimal. Now we have the following:

Proposition 1.6. $J = \bigcap_{W} q_{W}$ where W ranges all maximal Q-isotropic subspaces of V and q_{W} is a primary ideal whose associated prime ideal p_{W} is functions in $S(V^{*})$ vanishing on W_{Q} .

We now assume that $V_0=0$ until Remark 1.12 for some technical reasons.

We determine $e(q_w)$, multiplicity of q_w . Because Var $p_w = W_a$, deg $p_w = 1$. Thus the generalized Bezout's theorem implies (cf. § 27 of [9])

(1.7)
$$\prod_{j=0}^{h-1} (1+p^j) = \sum_{W} e(q_W).$$

To determine $e(q_w)$ and q_w , we need to count the number of maximal Q-isotropic subspaces of V in each form of four types in (1.4).

type 0: Let $W_m \supset \cdots \supset W_1 \supset 0$ be a *Q*-isotropic flag where W_m is a maximal *Q*-isotropic subspace. The number of isotropic vectors is $(p^m-1)(p^{m-1}+1)$ (see p. 146 of [1]). Once W_1 is chosen the rest of the flag are the same as an isotropic flag in the space W_1^{\perp}/W_1 which has dimension 2m-2 and still type 0. Therefore the number of maximal *Q*-isotropic subspaces is

(1.8)
$$\prod_{j=1}^{m} (p^{j-1}+1)$$

(see [11]).

type I_{\pm} : Using the method as above. Note that the number of isotropic vectors is $p^{2m}-1$ (see p. 146 of [1]). Hence the number of maximal Q-isotropic subspaces is

(1.9)
$$\prod_{j=1}^{m} (p^{j}+1).$$

type II: In this case the number of isotropic vectors is $(p^m-1)(p^{m+1}+1)$ (see p. 146 of [1]). As before the number of maximal *Q*-isotropic subspaces is

(1.10)
$$\prod_{j=1}^{m} (p^{j+1}+1).$$

Using the above computation we can now determine $e(q_w)$ and the ideal q_w .

Theorem 1.11. If W is a maximal Q-isotropic subspace of V, then

$$q_W = \operatorname{Ker} \{ r_W \colon S(V^*) \to S((W^{\perp})^*) / J(W^{\perp}) \}$$

where W^{\perp} is the annihilator subspace of W, $J(W^{\perp})$ is the ideal generated by Q'(x), $B'(x, x^p)$, \cdots , $B'(x, x^{p^{h'-1}})$ (Q' or B' is the restriction of Q or B to W^{\perp} and $h' = \dim W^{\perp} - \dim W$.) and r_W is the natural map induced by the inclusion. Moreover $e(q_W) = 1$, 2, or 2(p+1) if Q is of type 0, I_{\pm} , or II respectively.

Remark 1.12. We have assumed that $V_0=0$ (i.e. *B* is nondegenerate) since Proposition 1.6. But it is obvious that Theorem 1.11 holds for all non-degenerate cases, it is also valid in degenerate cases. Therefore we still assume in the proof that $V_0=0$. Theorem 1.11 holds unless $V_0=0$.

Proof of Theorem 1.11. We prove in each form of four types in (1.4).

type 0: Compare (1.7) and (1.8). These are equal and so $e(q_w)=1$ for all W. $W^{\perp} = W$ and $J(W^{\perp})=0$ and so the theorem holds.

type I₊: $W^{\perp} = W \oplus S$ then

(1.13)
$$S((W^{\perp})^*)/J(W^{\perp}) \cong S(W^*) \otimes F_p[x]/(x^2)$$

and the zero ideal of this ring is a primary ideal of multiplicity 2. Let $q'_{w} = \operatorname{Ker} \{S(V^{*}) \rightarrow S((W^{\perp})^{*})/J(W^{\perp})\}$. Then q'_{w} is a primary ideal of multiplicity 2 associated with $p_{w} = \operatorname{Ker} \{S(V^{*}) \rightarrow S(W^{*})\}$. Because $J \subset q'_{w}$, $q_{w} \subset q'_{w}$ and so $e(q_{w}) \ge e(q'_{w}) = 2$. Compare now (1.7) and (1.9), $e(q_{w}) \ge 2$ implies $e(q_{w}) = 2$ and so $q_{w} = q'_{w}$.

type II: $W^{\perp} = W \oplus S$ then

$$(1.14) \quad S((W^{\perp})^*)/J(W^{\perp}) = S(W^*) \otimes S(S^*)/J(S) \cong S(W^*) \otimes F_p[x_1, x_2]/J(S)$$

where J(S) is the ideal generated by $x_1^2 - gx_2^2$ and $x_1^{p+1} - gx_2^{p+1}$. The multiplicity of J(S) in $F_p[x_1, x_2]$ is a special case of this theorem. Set W=0 and V=S. By (1.7) e(J(S))=2(p+1). As before we can prove the theorem by (1.7) and (1.10).

Finally we show the following:

Theorem 1.15. For all m, $B(x, x^{p^m}) \in J$.

Proof. From the proof of Theorem 1.11, only type II case is non trivial. Here dim S=2 and $Q=x_1^2-gx_2^2$ and so J=J(S) in the proof of Theorem 1.11. $x_1^2\equiv gx_2^2 \mod J$ and so $g^{(p+1)/2}x_2^{p+1}\equiv x_1^{p+1}\equiv gx_2^{p+1} \mod J$. Thus we have

$$x_1^{p^{2n+1+1}} \equiv g^{(p^{2n+1+1})/2} x_2^{p^{2n+1+1}} \equiv g^{(p+1)p(1)/2} x_2^{(p+1)p(1)}$$
$$\equiv g^{p(1)} x_2^{p^{2n+1+1}} \equiv g x_2^{p^{2n+1+1}}$$

and

$$x_1^{p^{2n+1}} \equiv x_1^{p^{2n-1}} x_2^2 \equiv g^{(p^{2n-1})/2} x_2^{p^{2n-1}} \times g x_2^2 \equiv g^{(p+1)p(2)} x_2^{(p+1)p(2)} \times g x_2^2$$
$$\equiv g^{p(2)} \cdot g x_2^{p^{2n+1}} \equiv g x_2^{p^{2n+1}}$$

mod J where $(p+1)p(1) = p^{2n+1} + 1$ and $(p+1)p(2) = p^{2n} - 1$. Thus $B(x, x^{p^m}) \in J$ for $m \ge 2$.

§ 2. $H^*(B\tilde{G}; F_p)$ for a good prime p

In this section we determine the algebra structure of $H^*(B\tilde{G}; F_p)$ for a good prime p. Note that an odd prime p is exceptional if and only if (G, p) is one of the following:

$$(2.1) (E_6, 3), (E_7, 3), (E_8, 3), (F_4, 3), (E_8, 5).$$

First we determine $H^*(B\tilde{T}; F_p)$. Consider the Serre spectral sequence for the fibering $K(Z, 3) \xrightarrow{j'} B\tilde{T} \xrightarrow{\pi'} BT$ with F_p coefficient

$$E_2 = H^*(BT; F_p) \otimes H^*(K(Z, 3); F_p) \Longrightarrow E_{\infty} = \operatorname{Gr}(H^*(B\widetilde{T}; F_p)).$$

The element u_3 is transgressive with $\tau(u_3) = Q$. Therefore $P_k u_3$ and $\beta P_k u_3$ are transgressive with $\tau(P_k u_3) = P_k Q = 2^k B(x, x^k)$ and $\tau(\beta P_k u_3) = \beta P_k Q = 0$. Theorem 1.2 says $\tau(u_3)$, $\tau(P_1 u_3)$, \cdots , $\tau(P_{k-1} u_3)$ is a regular sequence. On the other hand $\tau(P_h u_3) \in J = (\tau(u_3), \cdots, \tau(P_{h-1} u_3))$ by Theorem 1.15 and so $P_h u_3 \in \text{Im } j'^*$. Thus we have $E_{\infty} = H^*(BT; F_p)/J \otimes R_h$. Since $H^*(BT; F_p)/J$ is Im π'^* and R_h is a free commutative algebra we have the following:

Theorem 2.2. As an algebra $H^*(B\tilde{T}; F_p)$ is isomorphic to $H^*(BT; F_p)/J \otimes R_h$ where J is the ideal generated by $Q, P_1Q, \dots, P_{h-1}Q$.

From now on we assume that p is good for G. In this case $H^{2j-1}(BG;$ F_p) and $H^{2j-1}(G/T; F_p)=0$ for any j (see Borel [2] and Bott [3]), and the Serre spectral sequence for the fibering $G/T \xrightarrow{\overline{\lambda}} BT \xrightarrow{\overline{i}} BG$ with F_p coefficient collapses. Hence $H^*(BT; F_p)$ is a free module over $H^*(BG; F_p)$ and so i^* is faithfully flat. Put $x_4 = i^*Q$, then in the Serre spectral sequence for the fibering u_3 is transgressive with $\tau(u_3) = x_4$, $\tau(P_k u_3) = P_k x_4 = i^*2^k(x, x^{p^k})$ and $\tau(\beta P_k u_3) = 0$. Since $Q, B(x, x^p), \dots, B(x, x^{p^{h-1}})$ is a regular sequence, $B(x, x^{p^h}) \in (Q, B(x, x^p), \dots, B(x, x^{p^{h-1}}))$ and i^* is faithfully flat, we have $x_4, P_1 x_4, \dots, P_{h-1} x_4$ is a regular sequence and $P_h x_4 \in J' = (x_4, \dots, P_{h-1} x_4)$. Thus we have

Theorem 2.3. If p is good for G, then as an algebra, $H^*(B\tilde{G}; F_p)$ is isomorphic to $H^*(BG; F_p)/J' \otimes R_h$ where J' is the ideal generated by x_4 , $P_1x_4, \dots, P_{h-1}x_4$.

Remark 2.4. If p is good for G, then $\bar{\lambda}^*$ is surjective and so λ^* is also surjective, where $\lambda: G/T \to B\tilde{T}$. Therefore the Serre spectral sequence for the fibering $G/T \to B\tilde{T} \xrightarrow{i} B\tilde{G}$ with F_p coefficient collapses if p is good for G.

§ 3. The number h(G, p)

In this section we determine the numbers h(G, p). First of all it is well known that two non degenerate quadratic forms over F_p (p is an odd prime) are equivalent if and only if they have same rank and same discriminant (see for example Serre [12]). If G is of classical type then Q is given by the following:

Proposition 3.1. (1) If $G = A_i$, then there exists x_0, \dots, x_i such that $Q(x) = \sum_{i < j} x_i x_i | V$ where V is the hyperplane defined by $x_0 + \dots + x_i = 0$. (2) If $G = B_i$, C_i or D_i , then there exists x_1, \dots, x_i such that $Q(x) = x_1^2 + \dots + x_i^2$. (3) In $F_n^{\times}/(F_n^{\times})^2$,

disc
$$(Q(x)) = \begin{cases} (-\frac{1}{2})(\ell+1) & \text{if } G = A_{\ell}, \\ 1 & \text{if } G = B_{\ell}, \ C_{\ell} \text{ or } D_{\ell}. \end{cases}$$

Proof. (1) and (2) are well known since $H^*(BG; Z_{(p)})$ is generated by c_2 (the second Chern class) or P_1 (the first Pontrjagin class). Therefore we need only show (3). For $G = A_\ell$, define a_j by $x_i(a_j) = \delta_{ij}$ and put $v_j = a_j - a_0$ for $h = 1, 2, \dots, \ell$. Then v_1, \dots, v_ℓ is a basis of V. Note that $B(v_i, v_j) = -\frac{1}{2}$ if $i \neq j$ and $Q(v_i) = -1$. Therefore disc $(Q(x)) = (-\frac{1}{2})^\ell$ det $(E - B'(\ell))$ where $B'(\ell) = (b_{ij})$ is defined by $b_{ij} = -1$ for any i, j and E is the identity matrix. Since $B'(\ell)^2 = -\ell B'(\ell)$ and rank $B'(\ell) = 1$, det $(tE - B'(\ell)) = t^\ell + \ell t^{\ell-1}$ and therefore det $(E - B'(\ell)) = \ell + 1$. For $G = B_\ell$, C_ℓ or D_ℓ the proof is easy.

Remark 3.2. If $\ell + 1 \equiv 0 \mod p$, then Q(x) for $G = A_{\ell}$ is degenerate. But $Q \mid V'$ is non degenerate where V' is the hyperplane (of V) defined by $x_{\ell} = x_0$. Moreover disc $(Q/V') = (-\frac{1}{2})^{\ell-1}$ in $F_p^{\times}/(F_p^{\times})^2$.

Now we can prove the following:

Theorem 3.3. (1) If $\left(\frac{\ell+1}{p}\right) = 0$, then $h(A_{\ell}, p) = h(A_{\ell-1}, p)$ and if $\left(\frac{\ell+1}{p}\right) = \pm 1$, then $h(A_{\ell}, p)$ is given by the following table:

	$\ell \equiv 1$	$\ell = 0$	$\ell{\equiv}2$	
			$p \equiv 1$	$p \equiv -1$
$\left(\frac{\ell+1}{p}\right) = 1$	$\frac{\ell+1}{2}$	$\frac{\ell}{2}$	$\frac{\ell}{2}$	$\frac{\ell}{2}$ +1
$\left(\frac{\ell+1}{p}\right) = -1$	$\frac{\ell+1}{2}$	$\frac{\ell}{2}$ +1	$\frac{\ell}{2}$ +1	$\frac{\ell}{2}$

116

(ii) h(G, p) for $G = B_{\ell}$, C_{ℓ} or D_{ℓ} is given by the following table:

	$\ell \equiv 1$	$\ell \equiv 0$	$\ell \equiv 2$
$p \equiv 1$	$\frac{\ell+1}{2}$	$\frac{\ell}{2}$	$\frac{\ell}{2}$
$p \equiv -1$	$\frac{\ell+1}{2}$	$\frac{\ell}{2}$	$\frac{\ell}{2}$ +1

where \equiv means congruence modulo 4 and $\left(\frac{\ell+1}{p}\right)$ is the Legendre symbol.

The following is Theorem 2.4 and Remark 2.5 of [7]

Theorem 3.4. (1)
$$h(G_2, p) = h(A_2, p), h(F_4, p) = h(B_4, p),$$

(2) $h(E_6, p) = \begin{cases} 3 & \text{if } \left(\frac{-3}{p}\right) \neq -1 \\ 4 & \text{if } \left(\frac{-3}{p}\right) = -1, \end{cases}$

(3) $h(E_7, p) = h(E_8, p) = 4.$

§ 4. The module structure of $H^*(B\tilde{G}; F_p)$ for an exceptional prime p

In this section we will prove the following:

Theorem 4.1. For any G and any odd prime p, the Serre spectra. sequence for the fibering $G/T \xrightarrow{\lambda} B\tilde{T} \xrightarrow{i} B\tilde{G}$ with F_v coefficient collapses.

For a good prime p, Theorem 4.1 was proved in Section 2 (see Remark 2.4). Therefore we assume that (G, p) is one of the five pairs in (2.1).

First recall the following facts on the Poincaré polynomials:

Lemma 4.2 (Bott [3]). $P(H^*(G/T; F_p)) = (1-t^2)^{-\ell} \prod_{i=1}^{\ell} (1-t^{2m(i)+2}),$ where $P(H^*(X; F_p)) = \sum_{k=0}^{\infty} \dim H^k(X; F_p)t^k, \ \ell = \operatorname{rank} G \text{ and } m(1) < m(2)$ $\leq \cdots \leq m(\ell) \text{ is the exponent of } W(G).$

Lemma 4.3 (Toda). If p is exceptional for G, then as an algebra $H^*(G/T; \mathbf{F}_p)$ is generated by $H^k(G/T; \mathbf{F}_p)$ for $k \leq 2g(G, p)$, where

$$g(G, p) = \begin{cases} 4 & \text{if } (G, p) = (E_6, 3), (E_7, 3) \text{ or } (F_4, 3), \\ 10 & \text{if } (G, p) = (E_8, 3), \\ 5 & \text{if } (G, p) = (E_8, 5). \end{cases}$$

See Theorem 3.2 of [14].

On the other hand we can easily show the following:

Lemma 4.4. If p is exceptional for G, then $H^{2k+1}(B\tilde{G}; F_p)=0$ for $k \leq g(G, p)$.

Proof. See p. 140 of [10] for $(F_4, 3)$, Theorem V of [4] for $(E_6, 3)$, $(E_7, 3)$ or $(E_8, 5)$ and Proposition 4.4 of [8] for $(E_8, 3)$.

Proof of Theorem 4.1. We need only show λ^* is surjective. By Lemma 4.2 and Lemma 4.4 λ^* is surjective for deg $\leq 2g(G, p)$. Since $H^*(G/T; F_p)$ is generated by $H^k(G/T; F_p)$ for $k \leq 2g(G, p)$ as an algebra by Lemma 4.3, and λ^* is an algebra homomorphism, λ^* is surjective.

Corollary 4.5.
$$P(H^*(B\widetilde{G}; F_p)) = \left(\prod_{i=2}^{\ell} (1-t^{2m(i)+2})\right)^{-1} \prod_{j=h}^{\infty} \frac{(1+t^{2p^{j+1}})}{(1-t^{2p^{j+2}})}$$

Proof. By Theorem 2.2

$$P(H^*(B\tilde{T}; F_p)) = (1 - t^2)^{-\ell} (1 - t^4) \prod_{j=h}^{\ell} \frac{(1 + t^{2pj+1})}{(1 - t^{2pj+2})}$$

On the other hand $P(H^*(B\tilde{T}; F_p)) = P(H^*(G/T; F_p))P(H^*(B\tilde{G}; F_p))$ by Theorem 4.1. Note that m(1)=1 for any G.

Remark 4.6. The Serre spectral sequence for the fibering $E_8/T \rightarrow B\tilde{T}$ $\rightarrow B\tilde{E}_8$ with F_2 coefficient does not collapse.

§ 5. The algebra structure of $H^*(B\tilde{G}; F_p)$ for an exceptional prime p

In this section we concern mainly the case $(G, p) = (E_8, 5)$. We will say results of other pairs in (2.1) only because these are similar. So $H^*()$ means $H^*(; F_5)$.

Put $R = F_5[T_1, \dots, T_8, X_{12}]$ where deg $T_j = 2$ and deg $X_{12} = 12$. Recall that $h(E_8, 5) = 4$. Denote the subalgebra of $H^*(K(Z, 3))$ generated by $\{P_k u_3, \beta P_k u_3; k \ge j\}$ by S_j . Theorem 2.2 implies

Lemma 5.1. There is a surjective homomorphism

 $e: R \otimes F_{5}[X_{52}, X_{252}] \otimes S_{4} \longrightarrow H^{*}(B\tilde{T})$

such that Ker $e = (r_4, r_{12}, r_{52}, r_{252})$, where deg $r_j = j$ and $r_4, r_{12}, r_{52}, r_{252}$ is a regular sequence in $F_5[T_1, \dots, T_8]$ (and so in R).

Put $J(0) = \{16, 24, 28, 36, 40, 48\}$, $J(1) = J(0) \cup \{4, 12, 60\}$ and $J(2) = J(0) \cup \{52, 60, 252\}$. The following is Theorem 3.2 of [14]:

Proposition 5.2. There exist $\rho_j \in R$ $(j \in J(1))$ such that $H^*(G/T)$ is isomorphic to $R/(\rho_j; j \in J(1))$, where deg $\rho_j = j$ and $\rho_j; j \in J(1)$ is a regular sequence.

Put $\rho'_i = e(\rho_i)$. First it is easy to show that as an algebra

(5.3)
$$H^*(BG) \cong F_5[y_i; j \in J(0)]$$
 for $* \le 51$

where deg $y_j = j$ (see [6]). Since the Serre spectral sequence for $G/T \xrightarrow{\lambda} B\tilde{T}$ $\stackrel{i}{\to} B\tilde{G}$ collapses, $\rho_4 = r_4$, $\rho_{12} \equiv r_{12} \mod (\rho_4)$ and for $j \in J(0)$

(5.4)
$$i^*(y_i) \equiv \rho'_i \mod (\rho'_k; k < j).$$

Since $H^{52}(G/T)$ is decomposable, we have

Lemma 5.5. There exists $y_{52} \in H^{52}(B\widetilde{G})$ such that $i^*(y_{52}) \equiv x_{52} \mod decomposables$ where $x_{52} = e(X_{52})$. Moreover $i^*(y_{52}) - x_{52} \in (\rho'_j; j \in J(0))$.

Lemma 5.6. There exists a (weighted) homogeneous polynomial $f_{52} \neq 0$ of degree 52 such that $f_{52}(y_j; j \in J(0)) = 0$ in $H^*(B\tilde{G})$.

Proof. There are no relations in degree less than 52 by (5.3) and there is an indecomposable element in degree 52 by Lemma 5.5. Therefore there must be a relation in degree 52 by Corollary 4.5.

Also we have

Lemma 5.7. There is $y_{60} \in H^{60}(B\tilde{G})$ such that $i^*(y_{60}) \equiv \rho'_{60} \mod (\rho'_k; k \in J(0), x_{52})$.

Summing up these results we can say that

Proposition 5.8. There is an algebra homomorphism $I: F_5[Y_j; j \in J(0) \cup \{52, 60\}] \rightarrow R \otimes F_5[X_{52}]$ such that the following diagram commutes:

$$F_{5}[Y_{j}; j \in J(0) \cup \{52, 60\}] \xrightarrow{I} R \otimes F_{5}[X_{52}]$$

$$\downarrow e_{1}^{\prime\prime} \qquad \qquad \qquad \downarrow e_{1}^{\prime}$$

$$H^{*}(B\tilde{G}) \xrightarrow{i^{*}} H^{*}(B\tilde{T})$$

where $e_1''(Y_j) = y_j$, and $e_1'(X_{52}) = x_{52}$.

Proof. From 5.4, for $j \in J(0)$, there exist $f_{ij} \in H^*(B\tilde{T})$ (i < j) such that $i^*(y_j) = \rho'_j + \sum_{i < j} f_{ij} \rho'_i$. Similarly $i^*(y_{52}) = x_{52} + \sum_{i \in J(0)} g_i \rho'_i$ and $i^*(y_{60}) = \rho'_{60} + \sum_{i \in J(0)} h_i \rho'_i + h_{52} x_{52}$ for g_i , $h_i \in H^*(B\tilde{T})$. Choose F_{ij} , G_i ,

 $H_i \in R$ such that $e'_1(F_{ij}) = f_{ij}$, $e'_k(G_i) = g_i$ and $e'_1(H_i) = h_i$. Define I by $I(Y_j) = \rho_j + \sum_{i < j} F_{ij}\rho_i$, $I(Y_{52}) = X_{52} + \sum_{i \in J(0)} G_i\rho_i$ and $I(Y_{60}) = \rho_{60} + \sum_{i \in J} H_i\rho_i + H_{52}X_{52}$. It is easy that I satisfies the above commutativity.

Lemma 5.9. Let k be a field and $a_1, \dots, a_n \in k[b_1, \dots, b_m]$ be a sequence of homogeneous elements. Then a_1, \dots, a_n is a regular sequence if and only if a_1, \dots, a_n generates a polynomial subalgebra over which $k[b_1, \dots, b_n]$ is free.

See [11].

Note that $I(f_{52}) \in (r_4, r_{12}, r_{52})$ and $I(f_{52}) \notin (r_4, r_{12}) = (\rho_4, \rho_{12})$. Therefore

Lemma 5.10. $I(f_{52}) \equiv r_{52} \mod (r_4, r_{12}).$

On the other hand the induced map $F_5[Y_j; j \in J(0) \cup \{52, 60\}]/(f_{52}) \rightarrow H^*(B\tilde{T})$ is injective for deg ≤ 251 and so we have

Lemma 5.11. \bar{e}_1'' ; $F_5[Y; j \in J(0) \cup \{52, 60\}]/(f_{52}) \rightarrow H^*(B\tilde{G})$ is an isomorphism for deg ≤ 251 .

Quite similarly we have

Lemma 5.12. (1) There is an element $Y_{252} \in H^{252}(B\tilde{G})$ such that $i^*(y_{252}) - x_{252} \in (\rho'_j; j \in J(0) \cup \{60\}, x_{52}).$

(2) There is a homogeneous element f_{252} of degree 252 such that

 $f_{252}(y_j; j \in J(0) \cup \{52, 60\}) = 0$ in $H^*(B\tilde{G})$.

Moreover we have

Proposition 5.13. (1) There is an algebra homomorphism $I': F_5[Y_j; j \in J(2)] \rightarrow R \otimes F_5[X_{52}, X_{252}]$ such that the following diagram commutes:

$$F_{5}[Y_{j}; j \in J(2)] \xrightarrow{I'} R \otimes F_{5}[X_{52}, X_{252}]$$

$$\downarrow e_{2'}' \qquad \qquad \downarrow e_{2'}'$$

$$H^{*}(B\tilde{G}) \xrightarrow{i^{*}} H^{*}(B\tilde{T}),$$

where $e_2''(Y_j) = y_j$, $e_2'(X_{52}) = x_{52}$ and $e_2'(X_{252}) = x_{252}$. (2) $I'(Y_j) = I(Y_j)$ for $j \neq 252$ and $I'(f_{252}) \equiv r_{252} \mod (r_4, r_{12}, r_{52})$.

Now applying Lemma 5.9, we have

Lemma 5.14. f_{52}, f_{252} is a regular sequence.

On the other hand there are $y_{2.5^{k+1}}$, $y_{2.5^{k+2}} k \ge 4$ such that $\pi^*(y_{2.5^{k+1}}) \equiv P_k u_3$ and $\pi^*(y_{2.5^{k+2}}) = \beta P_k u_3$ mod decomp. We have thus an algebra homomorphism λ : $F_5[Y_i; j \in J(2)]/(f_{52}, f_{252}) \otimes S_4 \rightarrow H^*(B\tilde{G})$.

Obviously $i^* \circ \lambda$ is a monomorphism. By the observation of the Poincaré series in Corollary 4.5, we can easily prove λ is an isomorphism. Remaining cases can be determined by a similar method.

Theorem 5.15. Let S_j be the subalgebra of $H^*(K(\mathbb{Z}, 3); \mathbb{F}_p)$ generated by $\{P_k u_3, \beta P_k u_3; k \ge j\}$, then as an algebra.

(1) $H^*(B\tilde{E}_8; F_5) \cong F_5[y_i; j=16, 24, 28, 36, 40, 48, 52, 60, 252]/(f_{52}, f_{252}) \otimes S_4$

(2) $H^*(B\widetilde{E}_{\mathfrak{s}}; F_{\mathfrak{s}}) \cong F_{\mathfrak{s}}[y_{\mathfrak{s}}; j=16, 24, 28, 36, 40, 48, 56, 60]/(f_{\mathfrak{s}}) \otimes S_{\mathfrak{s}},$

- (3) $H^*(B\tilde{E}_7; F_3) \cong F_3[y_i; j=12, 16, 20, 24, 28, 36, 56]/(f_{56}) \otimes S_4$,
- (4) $H^*(B\widetilde{E}_6; F_3) \cong F_3[y_i; j=10, 12, 16, 18, 20, 24]/(f_{20}) \otimes S_3,$
- (5) $H^*(B\tilde{F}_4; F_3) \cong F_3[y_i; j=12, 16, 24] \otimes S_2.$

where deg $y_i = j$, deg $f_i = j$ and in (1) f_{52} , f_{252} is a regular sequence.

Remark 5.16. $H^*(B\tilde{G}; F_2)$ is known for $G = A_\ell$, C_ℓ , E_0 , E_7 , E_8 , F_4 or G_2 (See [5], [13]). But it seems to be difficult to determine $H^*(B\tilde{G}; F_2)$ for $G = B_\ell$ or D_ℓ .

References

- [1] E. Artin, Geometric algebra. Interscience Publ. (1957).
- [2] A. Borel, Sur la cohomologie des espaces fibres principaux et des espaces homogènes de groupes de Lie compacts, Ann. Math., 57 (1953), 115-207.
- [3] R. Bott, An application of the Morse theory to the topology of Lie groups, Bull. Soc. Math. France, 84 (1956), 251-282.
- [4] R. Bott and H. Samelson, Applications of the Morse theory to symmetric spaces, Amer. J. Math., 80 (1958), 964–1029.
- [5] M. Harada and A. Kono, Cohomology mod p of the 4-connective fibre space of the classifying space of classical Lie groups., Proc. Japan Acad., 60 (1984), 63-65.
- [6] A. Kono, Hopf algebra structure of simple Lie groups, J. Math. Kyoto Univ., 17 (1977), 259-298.
- [7] —, On the cohomology of exceptional Lie groups, Algebraic and Topological Theories, Kinokuniya, Japan (1985), 328–338.
- [8] A. Kono and M. Mimura, Cohomology operations and the Hopf algebra structures of the compact, exceptional Lie groups E_{τ} , and $E_{\rm s}$, Proc. London Math. Soc., (3) **35** (1977), 345–358.
- [9] W. Krull, Idealtheoree, Chelsea Press (1948).
- [10] M. Mimura, Homotopy groups of Lie groups of low rank, J. Math. Kyoto Univ., 6 (1967), 131-176.
- [11] D. Quillen, The mod 2 cohomology rings of extra-spectial 2-groups and the spinor groups., Math. Ann., **194** (1971), 197–212.
- [12] J.-P. Serre, Cours d'arithmetique, Press Univ. France (1970).
- [13] H. Toda, Cohomology of the classifying space of exceptional Lie groups, Manifolds, Tokyo 1973, 265-289.

M. Harada and A. Kono

- [14] H. Toda, On the cohomology rings of some homogeneous spaces, J. Math. Kyoto Univ., 15 (1975), 185-199.
 [15] O. Zariski and P. Samuel, Commutative algebra, Vol. II, Van Nostrand
- [15] O. Zariski and P. Samuel, Commutative algebra, Vol. II, Van Nostrand (1960).
- [16] R. Hartshorne, A property of A-sequences., Bull. Math. Soc. France, 94 (1966), 61-66.

Department of Mathematics Kyoto University Kyoto, 606 Japan