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On the Maximal Connected Algebraic Subgroups
of the Cremona Group II

Hiroshi Umemura

In preceding papers [Ul1], [U2], we classified certain types of maximal
connected algebraic subgroups of the Cremona group of 3 variables;
primitive groups and imprimitive groups which are not of de Jonquiéres
type. The aim of this paper is to accomplish the classification of the
maximal connected algebraic subgroups of the Cremona group of 3 varia-~
bles as promised in [U2]. For this purpose we have to classify de
Jonquiéres type subgroups (Theorem (2.1)). We explained our method of
approach in [U3] for the Cremona group of 2 variables. Therefore it is
preferable to understand [U3] before reading this paper. The main theo-
rem (2.1) is essentially due to Enriques and Fano [E.F] and Fano [F]
written almost 100 years ago but it does not seem that their proofs are
considered to be rigorous. We believe that despite of its group theoretic
form, Theorem (2.1) is a quite substantial result on the rational threefolds
and should have applications. An analysis of the Theorem from the view
point of minimal models is done in [M.U] and to be completed in [U4].
As in the preceding papers we work over the complex number field k=C.

§ 1. Review of preceding papers, [U1], [U2], [U3]

(1.1) Cremona group Cr, of n variables is the automorphism group
of the rational function field of » variables. It seems that the most
natural interpretation is to regard Cr, as the group functor Autbirat P".
Let G be an algebraic group. Then a morphism G—Cr,, is, by definition,
a morphism of group functors. The following are in 1:1 correspondence:

(1) Morphisms G—Cr,,
(2) Pseudo-operations (G, P™).

Since any pseudo-operation is equivalent to an algebraic operation, the
following is in 1:1 correspondence with (1) and (2):
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350 H. Umemura

3 {G,X) and f|(G, X) is an algebraic operation, f is a birational
map f+ X —>P"}.

We want to study algebraic subgroups of Cr, or effective pseudo-opera-
tions (G, P*). In (3) if we ignore f, then a subgroup G is determined up
to a birational automorphism of P*.- Namely an effective operation (G, X)
with X rational and n-dimensional determines a conjugacy class in Cr,. The
converse also holds. Hence, fo give a conjugacy class of an algebraic sub-
group G of Cr, is equivalent fo giving an effective algebraic operation (G, X)
with X rational and n-dimensional. We say that (G, X) is a birational
realization of the conjugacy class of G. If (¢,f): (G', X)—(G, X) is a
morphism of algebraic operations with f birational and ¢ finite, then we say
(G, X') is an almost effective realization of the conjugacy class of G. Let
Gy, G, be algebraic subgroups of Cr,. We say that the conjugacy class of
G, is contained in that of G, (or G, is contained in G, up to conjugacy) if
there exists an algebraic subgroup G, cowmjugate to G, in Cr, such that
GCG,. The conjugacy class of G, is contained in G, if and only if there
exist effective realizations (G,, X,) and (G,, X,) of G, and G, and a morphism
{0, ): (G}, X)—(G,, X,) with f birational. We refer, for the definitions of
primitive, imprimitive or de Jonquiéres type operations, to [U1], [U2].
An algebraic subgroup of Cr, is said to be primitive, imprimitive or de
Jonquiéres type if it is realized by an algebraic operation with the respective
property.

(1.2.1) Let X be a non-singular variety. We denote by T the
tangent bundle or the sheaf of its sections.

(1.2.2) For an algebraic group G, G° denotes its connected component
of the unity 1. If U (resp. R) is the unipotent radical (resp. radical) of a
connected algebraic group G, by the reductive (resp. semi-simple) part of G
we mean the quotient group G/U (resp. G/R). But by abuse of language,
any group isogeneous to G/U (resp. G/R) and also its Lie algebra are called
a reductive (resp. semi-simple) part of G.

(1.2.3) When we treat SL,, B denotes the Borel subgroup of upper
{(or lower) triangular matrices of SL,.

(1.2.4) An irreducible SL,-module of dimension n is denoted by U, or
V., without any explanation but the notation U, is not reserved for irreducible
SL,-module and when we use U,, for other purposes, its meaning is explained
so that there is no danger of confusion.

(1.2.5) Let f: X—Y be a surjective morphism of algebraic varieties.
We denote by Aut,X the Y-automorphism group of X and Aut(X; Y)
denotes the set of the automorphisms g: X —X such that there exists an
automorphism g': Y — Y depending on g with fog=g’of.

(1.2.6) We denote by h'(X, F) the dimension of the cohomology
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group Hi(X, F).
(1.2.7) For an integer m=>0, we define F/, to be

Spec (é Opy(— km)),
k=0
which is the total space of the line bundle of degree m over P!, Let
E=0p®0p(—m) and F, =Proj (é S’°(E)>.
k=0

Then F},=F,,—(a section of F,,/P). Pic F,, ~Pic P! by projection p: F,,—
P, p*0py(]) is sometimes denoted by O, (/) or simply O(!).

(1.3) Let X—Y be an A'-bundle and G an algebraic group operating
effectively on X/Y. Then the rank of G is at most 1 by Lemma (1.2.1)
[U3], G is solvable and the unipotent radical of G is abelian because
AutA'~G,-G,,.

§2. Main Theorem

We state the main theorem. The varieties appearing in the theorem
such as F}, ;, J;, etc. will be defined in Section 3 after the statement of the
theorem. The theorem consists of two parts. The first part says that, in
the Cremona group Cr, of three variables, any algebraic subgroup is con-
tained, up to inner automorphisms of Cr,, in one of the algebraic sub-
groups found in the list. - The second part asserts that the algebraic sub-
groups in the list are maximal.

Theorem (2.1). (I) Let G be a connected algebraic group in Cr,.
Then G is contained in the conjugacy class of one of the following algebraic
operations:

(P1) (PGL, Py,

(P2) (PSO,, quadric CP,).

(El) (PGL,, PGL,/I"), I' is an octahedral subgroup of PGL,.
(B2) (PGL,, PGL,/I"), I' is an icosahedral subgroup of PGL,.
(31) (PGL,XPGL,, P*XP").

(J2) (PGL,xPGL,xPGL,, P'XP'XP").

J3) (PGL,x Aut’F,,, P' X F,) where m is an integer =2.
(J4) (PGL,, PGL,/B) where B is a Borel subgroup of PGL,.
35 (PGL,, PGL,/D,,) where n is an integer =4.
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(96) (G, G/H,, ) where G=G,, X SL,X SL,,

z,
Hm,n:‘{(t;ntg’ ((t)l ;i—l)s (02 ;;—1))

€ G, XSL,XSL,|1,, e k¥, x, y € k},

and m, n are integers with m>2, —2>n.

A7 (Aut’d,, J.) where m is an integer m=2.

@d8)  (Aut’Ly, ., L. ) where m, n are integers with m=nz=1.
39  (Aut’F,, ,, F,, ) where m, n are integers with m>n=2.
(J10) (Aut’F}, ., F, ) where m is an integer =2.

(J11) (Aut’EZ, E)Y) where I, m are integers with m=2, [=2 or m=1,
1=3.

(12)  Generically intransitive operation (PGL,, X,) with general orbits
isomorphic to (PGL,, PGL,/G,), where n: C;—C, is an étale 2-covering of
a rational curve C, with genus (C)=1. We shall see that these operations -
are effectively parametrized by the moduli space of nonsingular elliptic or
hyperelliptic curves of genus =1 (Corollary (4.27)).

(1) The (conjugacy classes of) algebraic subgroups of Cr, determined
by the above operations (P1), (P2), (E1), (E2), J1), - - -, (J12) are maximal
(conjugacy classes of ) algebraic subgroups of Cr,.

We prove in fact a seemingly stronger assertion.

Theorem (2.2). If we replace in Theorem (2.1), the operations in (J11)
by (J'11) (Aut™(E}L; F.), (EX) the conclusions of Theorem (2.1) hold.

Corollary (2.3). Aut’E;!=Aut’(E}; F.).

§ 3. Definitions of the algebraic operations

(3.1) The algebraic operations (P1), (P2), (El), (E2) are studied in
our preceding papers [Ul], [U2]. The algebraic operations (J1), (J2), (J4)
and (J6) are lucidly understood.

(3.2) As in [U3], F,, is the total space of the line bundle over P! of
degree m. More precisely F,, =Spec (P, Op.(—km)).

(3.3) The algebraic group Aut’X is the group of the connected
component of 1 of the automorphism group of X. Since in our list the
variety X is open, Aut’X is not a representable functor but still we can
speak of Aut’X because the dimension of H(X, Ty) is finite (see Section
4).
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(3.4) D,, denotes the dihedral group of order 2n.

(3.5) 1., is the total space of the line bundle over P* of degree m.
Namely J,, =Spec (Do Ops( — km)).

(3.6) 1., , is the total space of the line bundle over P* X P* of bidegree
(m, n). Precisely speaking, L/, ,=Spec(Ps-oOpixp:(—km, —kn)) where
Opispr(@, D)=pF0p ()R pF0p.(b), p; being the projection of P'XP* onto
the #-th factor.

(3.7 ¥, , is the total space of the vector bundle Op(mM)DUp.(n) over
P!. Therefore, F,, , =Spec(S(Op:(—m)DOp.(—n))).

(3.8) Letm, [ be integers with m>1, Im=>2 and k=2—Im. Con-
sider an extension of coherent sheaves on F,,,

(3.8.1) 0——> 05, —>E—>0, (k)—>0.

It is easy to show Pic F;, is isomorphic to Z and Op, (1)=n*0p.(1) is a
generator, where z:F,—P' is the projection. 0, (k) is by definition
7*0pk). F,, is a homogeneous space (Umemura [U3]). Let us look for
a condition for the extension (3.8.1) to be homogeneous. The extension
(3.8.1) is parametrized by H'(F},, Oy, (—k)) which is Aut’ F-module (to
be precise, we have to replace Aut’F,, by its 2-covering if m is even so
that the operation is linearized (cf. [D], [U3])). Since the projection =z is
a morphism of homogeneous spaces and = is affine, we have Aut’F/-
isomorphism,

HYF,, O, (—K) = H'(P", (708, )®0p:(—k))
=H'(P, (j@ Ops(— jm)@0(—k))

= HY(P", j;@) @Pl(—kv—jm)):j@0 H'®P', Op(—k—jm)).

For j=0, H'P!, Op.(—k—jm)) is an irreducible SL, hence Aut’F/-
module. The extension E in (3.8.1) is homogeneous if and only if it cor-
responds to an Aut’F,-eigen-vector of H'(F,,, Og,(—k)). Therefore, there
is only one homogeneous E corresponding to H'(P', Op,(—2)). The homo-
geneous extension determines a homogeneous A'-bundle over F,, which is
denoted by E;'. Aut’(E}, F,) is the connected component of 1 of the
closed subgroup of Aut’E}! respecting the fibration E!—F,. We recall
the reader not to confuse Aut’(E;, F;) with Auty, E;, which is the F-
automorphism group of E/,

(3.9) Let z: C,—C, be an étale 2-covering of a non-singular rational
curve C,.. When we speak of a covering, we always assume C, to be
irreducible. Let ¢ be the involution of C, so that C,/{)=C,. LetTbea
Cartan subgroup of PGL, consisting of diagonal matrices. Let us deter-
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mine the automorphisms of PGL,/T compatible with the operation of
PGL,.

Lemma (3.9.1). The PGL,-automorphism group of PGL,/T is a cyclic
group of order 2.

Proof. Let f: PGL,/T—PGL,/T be a PGL,-automorphism. Let
f(I=aT, ae PGL,. Then as for any b e PGL,, baT=bf(T)=f(bT), f
is determined by f(aT) e PGL,/T. Butfor any e T, aT = f(T)=f(tT)=
taT. Namely TaT =aT or Ta=aT. a is in the normalizer of T.

Therefore a=1, or (_1 1) mod 7.

Consider now the product operation (1 X PGL,, C, X PGL,/T). Let
f be the non-trivial PGL,-automorphism of PGL,/T, fi (aT)=a(_1 1)T.

An automorphism ¢X f defines an involution on C, X PGL,/T hence a
descent datum on C; X PGL,/T and an operation (PGL,, X,). It follows
from Lemma (3.9.1), (PGL,, X,) is not isomorphic to the product
{1 xXPGL,, C,xPGL,/T) as algebraic operations.

Lemma (3.9.2). The variety X, is rational.

Proof. (PGL,, PGL,/T) is a suboperation of (PGL, X PGL,, PGL,/B
X PGL,/B) by a—(a, a), at aT '——><aB, a(_ 1 1)B), where B denotes the
upper triangular Borel subgroup of PGL, Then the involution f(aT)=
a(_l 1)T on PGL,/T is induced by the automorphism of interchanging

factors of PGL,/BXPGL,/B. Let y, z denote the coordinate on the
product SL,/BX SL,/B hence they are independent variables over k. Let
k(C), k(C,) be the fields of rational functions on C, and C,. Then there
exist a variable x over k, @ € k(C,) and an a(x) € k(x) such that &*—a(x)
=0. The descent datum operates on the rational function field

k(C, X PGL,/T)~k(C, X PGL,/BX PGL,/B)=k(x, y, z)

by y—sz, 2y, a—>—a, x—>x. Let us denote this involution by 4. Itis
sufficient to show that the invariant field 4(C,)(y, z)*=K is rational. In
fact k(C)(y+z, yz)CK and [k(C)(y, z): K]=2. On the other hand
[K(C)(», 2): K(C)(y+2, y2)]=4. Thus [K(CH(, 2)": KY)(y+2z, y2)]=2.
‘We notice a(y—z) ¢ k(x, y+z, yz) since the elements of k(x, y+z, yz) is
invariant under a— —a, 2>y, y—>z. But a(y—2z) € k(«, x, y, z)*. There-
fore k(x, y+z,yz, a(y—2))=k(a, x, y, z)*. Now we show k(x, y+z, yz,
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a(y—2)=k(x, y+z, a(y—z)) which implies k(e, x,y, 2)"=k(x, y+z,
a(y—2z)) is rational since tr(k(e, x,y, z)*: h)=3. In fact, a’(y—z)'=
a(x)(y+2)’—4yz) hence yz=(a’(y—z)'—a(x)(y+:z))/4a(x) € k(x, y+z,
a(y—2)).

§4. Automorphism groups

It is known for a complete variety X the automorphism group functor
Aut X is representable (Murre [M], Matsumura-Oort [M. O]). Let Now
X be a non-singular variety. We denote by T the tangent bundle of X.
If X is not complete, the group functor Aut X is not always representable.
But if the dimension of H(X, Ty) is finite, the group functor Aut X is
close to be representable. We recall a result of Matsumura-Oort [M. O].
Let (Sch/k) be the category of schemes over k and (Sch/k),.q be the full
subcategory of (Sch/k) consisting of reduced schemes.

Theorem (4.1) (Matsumura-Oort [M. O)). Let X be an algebraic variety
over k such that h°(X, Ty) is finite. Then the restriction Aut X|(Sch/k)..
to the category of reduced schemes is representable by a reduced group
scheme which is locally of finite type over k.

Notice in the original theorem in [M. O], k is assumed to be perfect
and this assumption is satisfied as we work over C.

If we recall that a group scheme over a field of characteristic 0 is
reduced, we get

Corollary (4.2). Let X be as in Theorem (4.1) and G a connected
algebraic group. If G operates on X, then we get a morphism of algebraic
operations (p, Id): (G, X)—(Aut X, X).

This corollary is quite useful for our purpose. To be able to apply
this theorem, we want to show that the dimension of H°(X, Ty) is finite
for the open varieties X in (J3), (J7), (J8), (J9), (J10), (J11) of Theorem

Q@.0).

Lemma (4.3). Using the notation of Section 2, we have the following
estimations.

m+8 if m>3,
(1) AEP'XF, <11 if m=2,
12 if m=1.

@ h°(J;n,T)si’f’.i2)2(iﬂ+9 for m>1.
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@) KLy, D<(@m+D@+1)+7 for m,n>0.

@) W, ., T) is finite if mn>1 and < (’”+’+22)(q+ D tnt6

if m>n>2, where m=qn-+tr, q,re Z, 0<r<n.
& ABE, .., D<2m+9 for m>1.
(6) K(E;,T) finiteif m>1,Im>2 and

Lml_+;1_—21+m+6 if m=2,1=1,
< ,
(m_l“w.;_m-w if m=1,1>3.

Proof. To prove (1) for m>3 it is sufficient to show A%F,, T)=
m+5 since A°(PY, T)=3 and A°(P' X F,,, T)=~rP', T)+ 1 (F,,T). F, is
the line bundle over P' of degree m hence obtained by gluing two
A¥s; (x, ) e A*and (x', ') € A® are identified if x£0, L —x, 3/ = (-—1—>my.

x
Therefore we have an exact sequence X

0 O, (2) Ty, Oy,,(m)——>0,
where = is the projection 7 : F,,—P, O, ()=n*0p.(). 1t follows from the
exact sequence
W(F7, T) <W(F, Og, (2)) + (O, (m)).

Since the spectral sequence for 7 degenerates, the inequality (1) follows
from

H(F,,, 05, (1)) =@ H'®, 0(—km)).

The other inequalities are proved similarly and hence we omit their proofs.

Corollary (4.3.1). For a variety X in Lemma (4.3), Aut’X is an
algebraic group. :

Proof. Corollary follows from Theorem (4.1) and Lemma (4.3). ‘

Lemma (4.4). Let X be a variety and L a line bundle over X. We
denote by L the total space Spec(@Di,L~%) of L. If the automorphism
group Aut L is representable in the category of the reduced schemes, Aut%L
is solvable, of rank 1 and the unipotent radical of Aut%L coincides with
H(X, L). ' ‘
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Proof. Since no semi-simple group operates on the fibre A® of L/X,
Aut%L is solvable. By Demazure [D] or by Lemma (1.21), [U3], Aut}L
is of rank <1 but it is of rank 1 because G,, operates on the line bundle
through scalar multiplication. Let U be a unipotent group operating
effectively on L/X. The operation of U on each fibre lies in Aut A* hence
in the translations. Therefore the operation of U on each fibre is abelian.
Thus U itself is abelian. It is easy to see, writing the operation in terms
of local coordinates, that to give an effective operation of G, on L/X is
equivalent to giving a non-zero element of H°(X, L).

We want to give some remarks on the automorphism groups of the
transformation spaces in the main theorem.

Lemma (4.5). Let (G, X) be an effective algebraic operation. If X is
rational, 3-dimensional and open, then the Lie algebra of G is not isomorphic
to any of the following Lie algebras; 8o, 81,, 80, % 8[,, 8, X 8l, X 8(,.

Proof. Assume that the Lie algebra of G is isomorphic to 3o;, 30,
8l, X 8l, or 8, x 8l,x8l,. If G does not operate transitively even generi-
cally, then by a Theorem of Rosenlicht [R] there exists a non-empty G-
invariant open set U such that the quotient U—G\U exists. The fibres of
U—G\U are G-orbits hence unirational. By a Theorem of Zariski [Z] or
Liiroth’s Theorem, the fibres are rational since their dimension <2. Now
by Enriques’ Theorem, Umemura [U3], the Lie algebra of a semi-simple
algebraic subgroup of the 2 variable Cremona group is 8l,X 3{,, 3(, or 3[,.
In particular G does not operate effectively on each fibre of U—G\U.
Hence by Lemma (1.21) Umemura [U3], the operation of G on U is not
effective. Thus the operation of G on X should have an open orbit V.
Let H be the stabilizer group at a point of V so that G/H~V. Then H
is a closed subgroup of codimension 3 in G and H does not contain a
proper normal subgroup of G since the operation of G on X is faithful.

We show that H is parabolic hence V' ~G/H is projective which
contradicts the openness of X. This would be a consequence of a direct
calculation but here we argue differently. If the Lie algebra of G is
isomorphic to 3[, X 8[, or 8(,%X 3l, X 8l,, we show in (5.6) and (5.12) H is
parabolic. If the Lie algebra of G is isomorphic to 3, or 3o,, then the
operation (G, V) is primitive. For otherwise by Umemura [U3], (G, V)
is of de Jonquiéres type and G operates transitively on a variety W of
dimension <C2. Since W is unirational, it is rational. But by a Theorem
of Enriques an algebraic group whose Lie algebra is isomorphic to 3[, or
8o, is neither contained in Cr, nor Cr, (See [U3]). By Umemura [Ul], we
conclude H is parabolic in this case. :
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Remark (4.6). In Lemma (4.5), the assumption X to be rational is
unnecessary. But we proved the lemma under the rationality assumption
because for our purpose this weak assertion is sufficient.

Lemma (4.7). Let (G, X) be an effective algebraic operation. If G is
semi-simple and if X is rational, 3-dimensional and open, then the Lie
algebra of G is isomorphic to one of the following; 8, 8l, X 8l,, 8l,.

Proof. 1If a torus T operates effectively on X, then dim 7<dim X by
1.6. Corollaire 1, Demazure [D]. Therefore the rank G<3 and G must
have a closed proper subgroup of codimension <3. The following are
all the simple Lie algebras of rank <3: (1) rank 1 3(,: (2) rank 2 5[,
805, G,; (3) rank 3 3l,, 30, 8p,. Since G,, 30,, 3p, have no Lie subalgebra
of codimension <3, an algebraic group with one of those Lie algebra can
not effectively act on X. We can also exclude 3[,X 8l,, 8[, X 8l, X 8l,, 8l,
and 30, by Lemma (4.5). Now if we consider all the possible products g
of simple Lie algebras such that rank g<(3, the Lemma follows.

Proposition (4.8). For m>1, Aut'Y,, respects the fibration of the line
bundle J,, over P, i.e. there exists an exact sequence;

4.9 1—-Aut}.J,, —Aut’), —Aut’P?>—1.
The semi-simple part of Aut’Y,, is 3l,.

Proof. Let V be the natural irreducible representation of degree 3 of
SL,. As in Section 2, Umemura [U3], the semi-direct product S™(V)_SL,
operates transitively on J,,. By Lemma (4.7), the semi-simple part of
Aut’J, is 3[, and S™(V) is in the unipotent radical U of Aut’J/,. Let U, be
the center of U. U, S™(V) is a vector group and SL,-invariant. J isa
homogeneous space under the operation of U,S™(V) SL,. U, S™V)
has not an open orbit on J/,. For, otherwise by Lemma (1.12) Umemura
[U3], J;, would be isomorphic to A® in particular affine but this is absurd
since the line bundle J;, over P? contains P* as the O-section. U, S™(V)
has not a 2-dimensional orbit. In fact, otherwise since U,S™(V) is
normal in U, S™V)SL, which operates transitively on J/, all the
U,S™V)-orbits on J,, would be 2-dimensional. Let H be an stabilizer of
U,S™(V) SL, at a point of J, so that U,S™(V) SL,/H ~J,. We proved
U,S™V).SLy/U, S™(V).H would be 1-dimensional hence U,S™(V)_SL,
therefore SL, would operate transitively on 1-dimensional variety

US™(V) SLJU,S™(V) H

which is a contradiction. We have thus proved the U, S™(V) has only 1-
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dimensional orbits on J,,, Namely U,-orbits coincide with S™(¥)-orbits.
Hence the quotient by U, is the quotients by S™(¥) which is the fibration
J,—P% Since U, is normal in Aut’J,, Aut’J,, respects this fibration.

Corollary (4.10). For m>1, Aut’J,, consists of the following birational
automorphisms

s ax+by+c o dx+ey-4f 2 Az4f(x, »)

x ’ b >
gx+hy+i gx+hy+i (gx+hy+i)™

a b ¢
where (d e f ) e SL,, 1€ G,, and f(x, y) e klx, y] with (degree of f(x, y))
g h i

<m.

Proof. As in Section 2, Umemura [U3], the above birational auto-
morphisms operate biregularly on J,,. By Lemma (4.4), the rank of
Aut}.J;, is 1 and the unipotent radical of Aut}.J,, is H(P% Op.(m)) which
is given by {z—z+f(x, ¥)| f(x, y) € k[x, y], deg f(x, y)<m}. Therefore by
the exact sequence (4.9), Aut’J,, is exhausted by the birational auto-
morphisms in Corollary (4.10).

Remark (4.10.1). We can prove Proposition (4.8) by another method
as follows. The algebraic group G of operations in Corollary (4.10)
operates regularly on J,,. The dimension of the group G coincides with
R°@J,,T) by Lemma (4.3). Thus G=Aut’J, hence Aut’J,, keeps the
fibration.

Proposition (4.11). If m,n>1, Aut’L;, , respects the fibration of the
line bundle L, , over P' X P, i.e. there exists an exact sequence;

@.11.1) 1At ps L7, ,—>AUCL,, —>Aut?P! X Pis1.

The semi-simple part of Aut’L;, , is 8[, X 3(,.

myn

Proof. LetU,,,, U,., beirreducible 8{,-modules of dimension m—+1,
n+1 respectively. Then as in Proposition (4.8) (see also Section 2, [U3)),
(Ui ®U,.,) (SL, X SL,) operates transitively on L7, ,. Thus the semi-
simple part of Aut’L;, , contains 8[,X8l,. Since U,,,,®U,,, is abelian,
unipotent and of dimension (m-+1)(n+4-1)>4, the 3, X 8(,-module
U,..U,., can not be a Lie subalgebra of the Lie algebras of Lemma (4.7).
Therefore, U,,,,®U,., is in the unipotent radical U of Aut’L;, ,. Let U,
be the center of U. If U,,,QU,,, is not contained in the center U,,
then (U,,,,®U,,)U;, is an SL, X SL,-invariant vector subgroup of U since
U, is a normal subgroup of Aut’L;, ,. Since
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Um+l® Un+1 ;(Um+l® Un+1)UZ:

U,..QU, . )U, is not an irreducible SL, X SL,-module. Let
(Um+1®Un+1)®W=(Um+1®Un+l). Uz-

Let ve U,,,®U,,, be a highest weight vector and w a highest weight
vector of one of the irreducible factors of W. Then

V:{(av, bw)((l) ?)(é J1’)|a, b,x,ye k}

is an algebraic subgroup of (U, ., ®U, . )U,(SL,XSL,) and V is abelian.
As in Section 2, [U3], a subgroup

(o ols e anoes

has an open orbit on L/, ,. Therefore 7 has an open orbit on L;, , which
is absurd since V is abelian and of dimension >4 (see Lemma (1.8), [U3]).
Thus U, .,,QU,.,, should coincide with U,. Thus letting H be a closed
subgroup of Aut’L;, , such that (Aut’L;, ,)/H ~L/, ,, we get a morphism

(p./): (Aut’Ly, ,, Ly, ) =(Aut’L;, ,, (Aut’L7, ,)/H)
—(Aut’L;,, ., (Aut’Ly, )(U,..®QU, . )H).
Aut’L}, M (UpesQU, ) H = (U 1 @U, 1 )\Li, =P X P
(cf. Section 2, [U3]). We have an exact sequence

1-Autpp.L, ,—AUut’L,,  —Aut’P' X P'—1.
PixP s my

Autyiyp: L, , consists of A'-bundle automorphisms over P* XP'. Hence
the unipotent radical of Autp,,p.L;, , is abelian and coincides with

H®' X P, pfO(m@pfom) = U,,.,QU, ...

The reductive part of Autp:,p.L;, , is G, (see Umemura [U3]). This
completes the proof of the Proposition.

Corollary (4.12). Aut’L;, , consists of the following birational auto-
morphisms:

_, ax+b L, dx+b z+f(x, )

Z—

x 3 >
axrd T ot d (xtd)y"(c'x+dy

b
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7 4
Where (g 3), (?, Z,) e SL,, 2¢ G, f(x, ) € klx, y] such that deg, f(x, y)
<m, deg, f(x, y)<n (deg, g denotes the degree of the polynomial g in a).

Proof. As in [U3], we see the above automorphisms are regular
automorphisms of L7, ,. By Lemma (1.21), [U3] the rank of Aut’p:yp. L7, ,
is]1, solvable and it is easy to see the unipotent radical of Autp.yp:L7, ,
is H'(P' X P, p}0p(m)Q p¥Op.(n)) which is given by

{z=z4f(x, y)| f(x, ¥) € k[x, y]| deg. f(x, »)<m, deg, f(x, y)<n}.

Therefore exact sequence (4.11.1) shows the automorphisms given in the
Corollary exhaust Aut"L/, .

We defined F;, , as the total space of the vector bundle @p.(m)P Op.(r)
over P'. Thus F}, , is considered as a line bundle over @p.(#) which is
nothing but F;,. Hence we have fibrations F}, ,—F,—P".

Proposition (4.13). If m>n>1, Aut’F,, , respects the fibration F,, ,
—F,—P!, i.e. there exist exact sequences;

1->Autl, F,, . —Aut'F,, . —Aut’F/—1,
1—>Auty,F'—Aut’F/—Aut'P' 1.

The semi-simple part of Aut°F},  is 3l,.

Proof. Let U,,,, U,,, be the irreducible SL,-modules of dimension
m+1, n+1. Then (U,.,®U,,,) SL, operates transitively on Fj, , (cf.
Section 2, [U3]). Fy, , is the total space of the vector bundle Op.(m)POp.(n)
hence obtained by gluing two A¥s: Let #,=A% #,=A® and (x,, y,, z),
(x5, Y2 25) be coordinate systems on %, and %, We identify x,=x",
Vo=X7 ™V, Z,=X7 "z;. As in Umemura [U3], the operation of (U, .,®
U,.)SL, on F,, , is given by:

'_)axl_i_b n+f(x) 7 = z,+g(xy)

4.14 , , 5= ,
19 N td D enrdy T (entd)

where (Z z) e SL,, f(x), g(x,) € k[x,] with deg f(x,)<m and deg g(x,)

<n. In particular the operation of U, ., DU, ., is given by x;—x,, y;—),
+ f(x), z;—>2z;+g(x,) where f(x)), g(x,) € k[x,] and satisfy the condition
above on the degree and the projection F;, ,—P' is the quotient by the

operation of U,, ., ®U,,,.
The semi-simple part of Aut’(F,, ,) is one of the Lie algebras of
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Lemma (4.7). Since U, ,,®U,,, is abelian and of dimension (m-+1)-+
n+1)>5, U,.®DU,,, can not be contained in the semi-simple part of
Aut®(F,, ) and Aut’(F;, ,) has the non-trivial unipotent radical U. Let
U, be the center of U. Now we need lemmas.

Lemma (4.15). U, has not dn open orbit on F,, ..

Proof. 1If U, had an open orbit, by Corollary (1.13), Umemura [U3],
F/, . would be isomorphic to A® which is absurd since F;, , contains P* as
the O-section of the vector bundle F, , over P'.

Lemma (4.16). The semi-simple part of Aut'(F;, ,) is not 3.

Proof. By Lemma (4.15) the dimension of the Uz-orbits is 2 or 1.
Notice that all the U,-orbits have the same dimension since U, is normal.
Assume SL, acts on F}, .. Let us put G=Aut’(F,, ,) and denote by H
the stabilizer group at a point of F;, , so that G/H ~F, ,. Wehavea
morphism (¢, f): (G, G/H)->(G, G/U,H) of algebraic operations. If the
dimension of the U ,-orbits is 2, the dimension of G/U,H is 1 and we have
an exact sequence:

1> N—>Aut*G/H —>Aut*G/U,H
n
Cr,=PGL,

where N denotes the kernel which consists of the automorphisms of the
fibre bundle f: G/H—G/U,H. Since the fibre of fis U,H/H which is a
homogeneous space under the vector group U, thus is isomorphic to A?
SL, does not operate on the fibre. Therefore SL, is not contained in N.
But SL, is not contained in Aut’G/U,H CCr,=PGL, either. If the
dimension of U -orbits is 1, the dimension of G/U,H is 2 and we have an
exact sequence:

1—->N—>Aut'G/H —-Aut"G/U , H,
N
Cr,

where N denotes the kernel which consists of the automorphisms of the
fibre bundle f: G/H—G/U,H. Since the fibre of f is A’, SL; is not con-
tained in N and hence SL, operates non-trivially on G/U,H. Since
G/U,H is rational by a Theorem of Zariski, it follows from Umemura
[U3] (SL,, G/U,H) is isomorphic to (SL,, P¥) and G/H is an A'-bundle
over P%.  Since H'(P?, L)=0 for any line bundle L, an A'-bundle over P*
is a line bundle and hence G/H =F,, , contains P*>. But F}, , is a vector
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bundle over P'. Let z: F, ,—P' be the projection. Since there is no
non-trivial morphism of P? to P!, P? should be contained in a fibre which
is isomorphic to A%. This is a contradiction and the Lemma is proved.

In view of Lemma (4.7) and Lemma (4.16) we may assume the semi-
simple part of Aut’F,, , is 3[, or 8[,X8l,. Neither U,,, 3(, nor U,,, 3,
can be embedded in the semi-simple part of Aut’F;, , which is isomorphic
to 8!, or 8(,x3l,. Hence U,. @U,., is in the unipotent radical U of
Aut’(F,, ). When we speak of SL,, it means SL, at the beginning of the

Proof of Proposition (4.13). Namely its operation is given by
x> (ax,+b)/(cx; +d), yi—=>y/(ex,+d)*,  zy—>zi/(ex+d)™

We show one of U,,., and U,,, is in the center U,. For otherwise, let
W C U, be an irreducible factor of SL,-module U, and ue U, ., ve U,,,
and w e W be highest weight vectors. A vector group

{(au, bv, cw)((l) ‘f)

of dimension 4 operates transitively on F; ,. This is impossible by
Lemma (1.8), Umemura [U3]. Now we prove U, ., is not in the center
U, and hence U, ., is in the center. In fact the following vector group
¥ is in Aut’F,, .  x;p—x, y—p, 2>z, +a(x)y, where a(x,) € k[x,] and
deg a(x)<<m—n. It follows from the definition, ¥~ is SL,-invariant and
irreducible. The dimension of ¥~ is m—n-+1>2. Therefore #"SL, can
not be embedded in neither SL, X SL, nor SL, and ¥"is in U. It follows
from the definition, U,,, does not commute with ¥~. Thus U,,, does
not lie in the center U,. If the center U, has 2-dimensional orbit, it
contains another SL,-irreducible factor # than U,., such that #®U,,,,
has 2-dimensional orbit. Let ue U,,,,ve U,,, and we % be highest
weight vectors then

ab,c de k}c(UmH@UnH)WSLZ

A= {(au, bv, cw)((l) f) ‘a, b,c, de k}

is a vector group of dimension 4. 9 has an open orbit which contradicts
Lemma (1.8) Umemura [U3]. Therefore all the U,-orbits are 1-dimen-
sional and coincide with U, ,,-orbits. Let us put G=Aut’F,, , and let
H be the stabilizer at a point of F}, , so that G/H ~F,, ,. We have a
morphism of algebraic operations (G, G/H)—(G, G/U,H) and G/U,H =~
U,.\Fn .=F,. Wehave an exact sequence:

1-N—>G—Aut’F/—1.
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The last exact sequence is proved in [U3]. N is the subgroup of G con-
sisting of the automorphisms of the A'-bundle G/H—G/U,H and hence
N is solvable. The semi-simple part of Aut’F,, is 8{, (Umemura [U2]).

Corollary (4.17). For m>n>1, Aut’F,, , consists of the following
birational automorphisms:

ax+b o Ay+f)

s zes HET 225=0Y" " pr s n ()
ex+d (cx+-d)*

x (ex+d)™

2 Ed

where (¢ 1) € SLy 2, e Gy 09 € Kt 9,0 () € kI, deg S0 <,

deg ¢, (X)<r+n, (0<Li<]), m=In+r(,re Z,1>0, 0<r<n—1).

Proof. Notice that the unipotent radical of Auty. F, , is H'(F;, Oz (m))
which is isomorphic to, by the degeneracy of the spectral sequence,

H"(P‘, @P,(m)@a(ié:é0 @(—in)))

hence to

1
@® H(P', Opy(m—in)).
i=0
Now argue as in Corollary (4.10).

Proposition (4.‘18). The semi-simple part of Aut°F,, ., is 8(,X 8(, for
m>1.

Proof. Asinthe F}, , case, (U,.,®U,.,)SL, operates on F,, ., and
the operation is given as in Corollary (4.17). Since dim (U, . .®U.,.,)
=2(m+1)>4, as at the beginning of the Proof of Proposition (4.13),
U+ ®@U,., is not contained in the semi-simple part of Aut’F,, ,,. The
same argument as in Lemma (4.16) shows the semi-simple part of Aut°F, ,,
is 8l or 8, X 8l,. Using the same local coordinate system on F/, ,, as in

the Proof of Proposition (4.13), one more SL, operates on F,, ,: x—x,
y—ay+pz, z-7y+ 06z, ((; g) e SL,. Thus SL,XSL, operates on F, .,

and the Lemma is proved.

/4
m,m

Proposition (4.19). The automorphism group Aut’F
Sibration F}, ,.—P* for m>1.

keeps the
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Proof. As in Lemma (4.15), the unipotent radical U of Aut’F,, ,,
has not an open orbit. Since U, .,®U,.,, which is in U by Lemma
(4.18), has 2-dimensional orbits on F,, ,,, the U,,,,®U,, . ,-orbits coincide
with U-orbits. Now the proposition follows.

Corollary (4.20). For m>1, Aut'F}, , consists of the following bira-
tional automorphisms:

_,ax+b o Ay fx) | cly+dz4g(x)

* cx+d’ (cx+dy™ ~ (ex+d)™

b

(i‘l Z) € SL2> (‘cl/’ Z,’) € GL27 f(x)a g(-x) € k[x] With degf(x): deg g(x)ém’

Proof. As in preceding cases, the above birational automorphisms
operate biregularly on F;, .. It is sufficient to show Aut},F,, .. coincides

vith &= {3, 2) > @y-+b'z+£03), 'y+-d'z+¢0)| (4 7)) € OL 1,

g(x) e k[x], deg f(x), deg g(x)gm}. In fact, the last group ¢ induces on

each fibre the group of the affine transformations of 2 variables. We need

Lemma (4.21). Let G be a (connected) algebraic group operating on
A’ If G contains all the affine transformations, then G coincides with the
group of the affine transformations.

Proof of Lemma. Since the affine transformation group is primitive
(G, AY) is primitive (cf. [U1]). It follows from Umemura [U1] (G, A% is a
suboperation of (PGL,, P?). Now the Lemma follows.

It follows from Lemma (4.21) and (1.21), Umemura [U3], the
reductive part of Auty.F/, ., is GL, and hence coincides with that of G.
As for the unipotent radical, argue as in Corollary (4.10).

Here are some properties of Aut’(E;*; F7,) which will be used later.

Lemma (4.22). Let X be a variety and L a line bundle with h%(X, L)
<oo. Let Y—X be A'-bundle defined by a non-trivial extension 0—0x—>
E—L'—>0. Then AutyY is isomorphic to the vector group HY(X, L).

Proof. Aut}Y operates on each fibre as affine transformation group
of 1 variable. Thus Aut%Y is of rank at most 1 by Lemma (1.12)
Umemura [U3] and solvable. But a torus operates on an affine bundle if
and only if the defining extension splits. Hence Aut% Y is unipotent. As
its operation on each fibre is a translation, the unipotent group Aut%Y is
a vector group. Let( J),.; U, =X be acovering, {a,; € I'(U,NU;, OH}i.jer
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a cocycle for L and a4y b b, e (U,NU,, 0 a cocycle for X.
0 1 ! ! 4,1

To give an element of the unipotent radical is equivalent to giving
1 ¢ c,e I'(U,;, Ox) such that
01 ter

a,; b,\(c; O\_(c; O\fa, by
0 1 0 1/)7\W0 1J\0 1 )

ie. a section {¢;};¢; of L.

Corollary (4.23). Auty, E)! is the vector group HYF,, O(lm—2)).

Let U be the unipotent radical of Aut®(E}l; F.). Then we get an exact
sequence:

1—Auty, Eil— U—(unipotent radical of Aut’F;)—1.

|
HO(F;n’ @(lm—2)) Vm+1
J
@© H®', O(lm—2— jm))

720
The semi-simple part of Aut’(E):; F.) is SL, and has an open orbit on E;.
There is no 2-dimensional SL,-orbit on E!! covering the SL,-open orbit on F,,.

Proof. 1t follows from definition we have
1—-Auty, El—Aut'(E;; F,)—Aut’F,—1.

Autg, E7l is solvable and a semi-simple part of Aut’F;, is SL,. Except for
the last assertion, Corollary now follows from Lemma (4.22). As for the
last assertion, assume SL, had not an open orbit on E!. - As SL, has an
open orbit on F,, isomorphic to SL,/U,,, where

Umz{(g z_l) ¢ SL2|am=1},

SL, would have 2-dimensional orbit Y isomorphic to SL,/U, covering
SL,/U,, on E} with n|m,

Un={(g z_l)eSLzla"=I} (cf. [U3]).
Then the pull back of E;! by ¢: SL,/U,—SL,/U,CF,, would have a

section and would be a line bundle. But this is impossible as we have
inclusions,
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%
H'(SL,/U,, O(lm— 2))<—¢;H (SL,/U,,, O(Im—2))

2 2
‘S me, (D(lr.n—2—nk))<——° & H‘G",l@(lm—z—km))

k=—o k=—o0
. U
@ H'®P', 0(Im—2—km))
k=0

!
HY(F,, COI(lm—Z)).

Here for an integer i >0,

SL,/U, (Ut = {(g 2_,) e SLyal= 1})

is F}-(0-section) and =: SL,/U,—SL,/B=P!, B= {(g Z_,) 3 SLZ} is an

affine morphism and hence the spectral sequence for = degenerates. We
know 7,0 =Py _., O(ki).

In Section 3 we defined E/}, F,, , - - - for a wider range of indices than
in Section 2. We show for small indices the operations are contained in one
of the conjugacy classes of Theorem (2.2).

Lemma (4.24). For m>2, (Aut’(E2, F.), F.) is contained in
(AutoF;n—l,m—la F:n-—I,mmi)'

Proof. In view of Corollary (4.2) and Lemma (4.3), it is sufficient
to show E; is isomorphic to F},_, ,,_,. Let V; and V,,_, denote irreducible
SL,-modules of dimension 2 and m. We identify V, with the vector space
of homogeneous polynomials of degree 7 in # and v. The tensor product
ViQV,., is an SL,XSL,-module. Let G = a semi-direct product
Vi ®V,-) . SL,XSL,, G;= the subgroup (V;®V, ). 4(SL,), G,= the
subgroup (V,®V,.)AXSL,) of G, where 4 is the diagonal morphism
4: SL,—SI,XSL,. Let V’ be the vector subspace of V,QV,,_, spanned
by u@u™~ ‘v, v®u"-*v?, 1<i<n. Let B be the lower triangular Borel
subgroup. We finally put H =V’ _(SL,X B)CG, HN G,=H, and HN G,
=H;. We have inclusions G,/H,CG/H, G;/H,CG/H. If we consider
V=V,QV,_;-orbits, we have fibrations G/H—G/V H ~SL,/B, G,/H,—
G,V H,~SL,/B and G,/H;—G;/VH;~SL,/B. They are A’bundles over
SL,/B~P" and hence the inclusions are isomorphism in particular G,/H,
is isomorphic to G;/H;. It follows from the argument of [U3], G,/H, is
isomorphic to F},_, ;. It remains to prove
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Sublemma (4.24.1). G,/H, is isomorphic to E..

Proof of Sublemma. Considering the decomposition V,®V,, _;~
~V, BV, we get G=(V,®V,._).SL,. The explicit decomposition
shows, if we put =V, SL,CG, and s# =%\ H;, then

H ="t um e, -, U™ B
We have an inclusion ¥/ C G;/H;. The same argument as above

shows that &/, G;/H, are A*-bundle over P'. Hence the inclusion is an
isomorphism. Thus we have to show %/5# is isomorphic to E;.. To this

end we describe @/# explicitly. {(é T)(yu"—l—zu""v)lx, A k} is a
closed subgroup of ¢ and its orbit {((1) Jf)(yu”—l—zu"“v)c;'f Ix,v,z¢e k}
is 3-dimensional and isomorphic to A® by mapping (x, y, z)e A® to

<(1) 316) (yu™+zu"'v)s#. The orbit

{(ch, ?)(z’uv”“‘—{—y’v")(__(l) é)lf[x’, v,z e k}

is also isomorphic to A® by
(,y,2)e A3—><)lc, ?)(y’uv”'l-l-z’v")(_? é)&f
By considering the fibration ¢/s#—SL,B, we conclude %/ is covered by
the 2 affine orbits
{((1) T)(yu“—{—zu”“‘v)%[x, y,zZ¢€ k}

and :
{(1 ?)(z’uv"‘l—f—y’v")(_(l) é)%’[x, y,Z€ k}.

xl

Let now examine how the 2 open sets are glued to get the whole space
@/#. For this purpose it is sufficient to solve the following equation:

@) (3 owtar-vr=(, New-rre(_9 )

under the hypothesis x, x’£0. (4.24.2) is equivalent to

(4.24.3) (é T)(yu"—{—zu"‘lv):()lc, ?)(z/uv"“1+y’v")<_(1) é)(g 2_,).

-(a homogeneous polynomial of degree n in u, v and of degree
<n—2inu).
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The right side of (4.24.3) is equal to

(4"24'4) (31c’ (1)>(—ccz (a)*‘){(g _?_l)(z’uv"“+y’v")<2 _z—l>"l

-(a polynomial of degree <n—2 in u)}.

Hence by (4.24.3), ((1) ’l‘)z(i, ‘1))(_2 g“l). Therefore, x=1/x,

c=1,a=x". (4.24.4) is thus equal to

(4.24.5) <(1) ’lc)(z’x’v(—x"lu—i— )"+ Y (—x""utv)").
-(a polynomial of degree <n—2 in u).
By (4.24.3), we conclude

"+ zur v =2x'v(—x""u+v)" '+ y'(—x""'ut+v)"
~+terms of degree <n—2 in u.

Therefore, y=)(—x'""", z=—2/x'®""4+n(—x)"*-" v. If we replace
x, X’ by —x and —x’, we identify A¥s with coordinates (x, y, z), (x, y’, z’)
by

x=1/x',  y=y'(/x)",

4.24.6
( ) Z= _Z’(l/x')("‘z)—!—ny’(l/x’)(”“).

(4.24.6) shows the fibration p is an A'-bundle defined by the exact sequence
(which is evidently SL,-equivariant because SL, operates on W SL,/s#"
keeping the fibration p);

0—0p,~>E—0r,(2—n)—0,

where O, (2—n)=p*0p.(2—n), p: F,—P" is the projection. We show the
A'-bundle over F,, defined by (4.24.6) is not isomorphic to the line bundle
O,(2—n) over F;. In fact if it were isomorphic to @, (n—2), then there
would exist polynomials a(x,y), &'(x, y), b(x, y), b'(x’, y) such that
a(x, y) and a’(x’, y’) never vanish over A* and such that

(_ (;cl—’)(n " 0) _ (a(’@ ) b(x, J’))(_ (%)m_z) ny(%)ul_n)
(4.24.7) 0 . . 1 : :
.(a’(x(; ) b’(xl’, y/))
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where x=1/x, y=y'(1/x")".
The condition on a(x, y), @(x’, y') implies they are constants a and
a@’. Thus we get from (4.24.7) a=d’~! and

1

4.248)  —ab(x, y’)(_)%)("'z) +any’<_x_,)(n_l) 4 b(x, ) =0.

Since we have relations x=1/x', y=3'(1/x")*, (4.24.8) for polynomials
(X', y), b(x, y) is impossible. Now the Sublemma follows from (3.8).

Lemma (4.25). (Aut},E?, E)) is contained in (PSO,, quadric CP*).

Proof. As in Corollary (4.23), we have an SL,-exact sequence for
the unipotent radical U:

0@ HAFL, O(— j))—U—U,—0.
7=0
I
U,

If U were abelian, as we shall see in Proposition (5.30.7) the transforma-
tion space would be isomorphic to F{,. Hence U is not abelian. Using
the notation of Bourbaki [BK] let us consider a Lie subalgebra

4 0 0

y 0 0 LgosMeMZ,yeCZ,cec of 30,
0

6 e 2sty —s‘As]

Let G be the corresponding subgroup which is algebraic. Letting p=
{(b,;) € B0y byy=by, =b,;=by;=0 (this implies b,,=b,,=Db;,=b,,=0)} and
P be the corresponding parabolic subgroup. The quadric in P* of the
Lemma is isomorphic to SO,/P. G has an open orbit on SO,/P and the
unipotent radical of G is the non-abelian 3-dimensional unipotent group.
Let Z = the center of the unipotent radical & of G. Then we have a
morphism (G, G/P N G)—(G, G/(PN G)Z). The latter defines (Aut’F;, F))
and the SL, exact sequence 0—Z—U—U/Z ~U,—0. This Al-bundle
G/PN G—Fj is not a line bundle. For otherwise the unipotent radical U
of Aut’(G/PN G, FY) is abelian. Consequently (G, G/P N G) is isomorphic
to (Aut’Ef, EP).

Let z: C;—C, be an étale 2-covering of a non-singular (open) rational
curve C,. We always assume C, irreducible. We defined the algebraic
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operation (PGL,, X,) when genus C;>1. But we can define the operation
(PGL,, X,) even if genus C,=0.

Proposition (4.26). Let n: C,—C, and n’: C,—C; be two étale 2-
coverings of non-singular rational curves C, and C;. Then (PGL,, X,) and
(PGL,, X,.) are isomorphic as law chunks of algebraic operation if = and =’
are birationally equivalent, i.e. there exist birational maps g: C,+ . - —C|
and h: Cy- - - —Chwithhor=n"og.

Proof. The “if” part is trivial. We prove the “only if”” part. Let
{, /) (PGL,, X,)—>(PGL,, X)) be an isomorphism of law chunks of
algebraic operation. Since f is birational, there exist open subsets Uc C,
and U’ C} such that fgives a PGL,-equivariant biregular isomorphism
between p-*(U) and p’~(U’) where p: X,~—C,, p’: X,~—C} are projections
{Rosenlicht [R]). f induces an isomorphism f”: U= U’ since U, U’ are
PGL,-quotients. Thus we may assume C,=Cj} and (¢, f): (PGL,, X,)—
(PGL,, X,)) is an isomorphism of algebraic operations. We:show that p
has local sections. In fact, let BCCPGL, be a Borel subgroup. Then B
has 2-dimensional orbits on X,. Let W be the union of 2-dimensional
B-orbits on X,. W is an open set of X,. Since p is flat, p(W) is open.
W—p(W) is the quotient with B-operation and hence W—p(W) has
local section because B is solvable [R]. In particular p has a local section.
Let us put s’=fos. ' 1s a local section of p’. Replacing C,=C; by a
smaller open set, we may assume s and s’ are sections. Let j: C,—
PGL,/D., ={subgroup conjugate to the diagonal torus T}, x € C,—stabi-
lizer at s(x). PGL,/D., has an étale 2-covering PGL,/T—PGL,/D_. As
we assume that (PGL,, X,) is not trivially fibred over C,, the fibre product
Cy X parn PGL,/T is irreducible and an étale 2-covering of C,. Since
X, X 0,Ci=(PGL,/T) X C, by definition, the section s defines a section
§: Ci—X, X ¢,C;=(PGL,/T) X C,. Thus we get a morphism j: C;—PGL,/T
by putting j(x)=p, o §(x) e PGL,/T for x e C,, where p, is the projection
(PGL,/T) X C,—PGL,/T. Obviously the diagram

C,—1>PGL,T

b4

C,—>PGL,/D..

is commutative hence we get a C,-morphism C,—C, X pgr,/n. PGL,/T.
Since they are étale 2-coverings of C,, C, is C,-isomorphic to

Co X oo, PGL/T.

‘Using s’ for s, we conclude C7 is Cj-isomorphic to
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C; X PGLz/DmPGLZ/T= Cz X PGLg/DwPGLZ/T'
Hence C, is isomorphic to C; over C,=C} as desired.
It follows from Proposition (4.26)

Corollary (4.27). Let n: C,—C, be an étale 2-covering of a curve C,
(with C, irreducible and C, non-singular rational). Let g be the genus of C,.
Assume g >1. Then the operation (PGL,, X,) is effectively and completely
parametrized by the moduli space of hyperelliptic (or elliptic if g=1) curves

of genus g.

Lemma (4.28). Let n: C,—C, be an étale 2-covering with C, rational
and C, non-singular. Then the conjugacy class of (PGL,, X,) is contained
in that of (PGL,, P?).

Proof. Let V, be an irreducible SL,-module of dimension 3. We
identify ¥, with the vector space of homogeneous polynomials of degree 2
in x,y. (SL,, V) is almost effective and defines by (PGL,, V;). This
operation is linear hence contained in (PGL,, P¥). We show (PGL,, V)
is isomorphic to (PGL,, X) as law chunks of algebraic operation. The
discriminant D(f)=>5b*—4ac for f(x, y)=ax*+bxy-+cy* is SL,-invariant.
(SL,, V;-{D=0}) consists of 2-dimensional orbits isomorphic to SL,/T and
the quotient is given by D: (SL,, V-{D=0D)—(1, C*), f(x, »)—>D(f). We
show (PGL,, V,-{D=0}) is isomorphic to (PGL,, X,) as law chunk of
algebraic operations. If we take

T— {(g O>}CSL2, T—{g e SL,|g(x)) = x}.

*

Therefore SL,/T ={f(x,y)e V,|D(f)=1}. Letting PGL, operate on
C* X PGL,/T through the second factor, consider a PGL,-equivariant map
4 C*XPGL,/T = C*X{f € ¥,| D(f)=1} - Vir{ D=0}, v((c. ) = of for
(e, /) e C¥*Xx{fe V,|D(f)=1}. We thus get a commutative diagram:

C* X PGL,/T— >V {D=0}
I l D
C*¥ ———> C*,
¢ ——> ¢?
We notice that for (c, f), (¢/, f) e C*X{f e V;| D(f)=1}, ¥((c, f))

=((c’, f)) if and only if c=c¢’, f=f" or c=—¢’,f=—f". Leta’: C*
—C*, 7/(c)=c®. (PGL, X,) is defined by the descent datum on C* X
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PGL,/T in (3.9). We identify PGL,/T with {f e V,|D(f)=1} by gT—
g-xy. By this identification the descent data in (3.9) is (¢, /)—(—c¢, — f).
Therefore (PGL,, V,-{D=0}) is isomorphic to (PGL,, X,,) as algebraic
operations. The Lemma follows from Proposition (4.26).

Lemma (4.29). (Aut’F],, F{)) is contained in (PGL,, P*),

Proof. It follows from Proposition (4.19) and Corollary (4.20),
Aut’F] , is isogeneous to the semi-direct product (U,QU,)(G,, X SL, X SL,),
where U, is the irreducible SL,-module of dimension 2 and U,QU, is
regarded as a G,-module of weight 1. Let us consider a subgroup %=
{@a;;) e GL,|a,=a,=a,=a, =0} of GL,. Letusput P={(a;;) ¢ GL,|ay
=a,=a,=0}.- Then let us prove the open %-orbit #PCGL,/P~P* is

isomorphic to Ff . In fact, ¥’ = {(’é (1’2) € GL,|deSL, Ce Mm} has

the same open orbit as P on P®. %'P=%’'/%' P is isomorphic to F; , as

in Section 2 [U3]. The image of ¢ in PGL, operates on 4P as (Aut’F; ,
F7,) and Lemma is proved.

Lemma (4.30). The conjugacy classes of the operations (G, XSL,
XSL,, G, XSL,XSL,/H,,, _,) and (G, XSL,XSL,, G, XSL,XSL,/H, _,)
(n=1) are contained in that of (Aut’F; ., F; ). In particular they are
contained in one of the conjugacy classes of Theorem (2.1).

Proof. Letus put G=G,, XSL,XSL,. The rational map G X A*—

/ /
A’ sending (t, (‘cl Z), (?, Z,); X, ), z) e G, XSL,XSL, X A® to

< ax-+b tldy+b'z) tc'y+d'z) )
ex+d’ (ex+d)’ (cx+d)”

defines a law chunk of algebraic operation (G, X,). The stabilizer at

/

©,0, 1) is KF{(:, (‘j 2_1), (‘c‘, 2,_1)) e G[t:a“"a’}. By Corollary
(4.20), we thus obtained a morphism of law chunks of algebraic operations
(0./): (G, G/IK,)—~>(Aut’F_, _,, F_, _,) with f birational, which is neces-
sarily a morphism of algebraic operations since (G, G/K,,) is a homogeneous
space. The homogeneous spaces (G, G/H,,_,) and (G, G/H,,_,) are both
isomorphic to (G, G/H,). The last assertion follows from the definition
and Lemma (4.29).

§ 5. Proof of the first assertion of main Theorem (2.2)

- Theorem (2.2) has been proved either if G is primitive [U1] or if G is
not of de Jonquiéres type but imprimitive [U2]. Therefore it is sufficient
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to prove the first assertion of the main theorem under the assumption that
G is of de Jonquiéres type. Hence throughout this section, we assume
that G is of de Jonquiéres type. We verify the theorem by dividing into
two cases i.e., the generically transitive case and the generically intransitive
case. Moreover each case is divided into several subcases.

Classification of generically transitive algebraic groups in Cr,.
This case is divided into two subcases; (i) the group is reductive. (ii) the
group is not reductive.

Case (). G is reductive.

Let G be a reductive group in Cr,. Then by 1.6, Corollaire 1,
Demazure [D], the rank of G is at most 3. Let (G, G/H ) be a realization
of G. Then there exists an isogeny R G—G such that G is isomorphic to
the direct product G7, X G,,, where G,, is semi-simple and simply connected
and such that the restriction of ¢ onto G7, X 1 is an isomorphism. Hence
if we put H=¢"(H), then (G, G/H) satisfies the following conditions.

G.1) (1) G=Gi,xG,, where G,, is semi-simple and simply connectec{,
) (G, G/A) is almost effective, of de Jonquiéres type and dim G/H
=3.
(3) Gr,x1 operates effectively on G/H.

Let us determine all the algebraic operations (G, G/H) satisfying the
conditions (5.1).

(5.2) Here is the list ~of all the reductive groups G satisfying the
condition (5.1) (1) and rank G<3:
(i) rank3
T~/ ~/
SL,, SO, Sps, SO,
~—
SL,XSL,, SL,xS0,, SL,XG,,
G, XSL, G, x50, G,XG,
SL,xSL,XSL,, G, XSL,xSL,, G, XG,, XSL,,
G, XG,XG,
(ii) rank2
~/
SL,, SO,, G,, SL,xSL,, G, XSL,, G, XG,,
(iii) rank 1
SL,, G,
where G denotes the universal covering group of G.

Since G,, X G,, and G,, can not be transitive, we can erase them from
the list.
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Lemma (5.3). Let G be a simple algebraic groups with rank G=n.
If G is contained in the Cremona group Cr,, of n-variables, then G is not of
de Jonguiéres type.

Proof. As rank G=n, an operation of a maximal torus of G on a
variety of dimension <<n—1 is not almost effective (Demazure [D])) and
hence an operation of G is not almost effective either. Since G is simple,
it follows that any operation of G on a variety of dim <m—1 is trivial.
Let (G, X) be a realization of G. Since rank G=n, by Demazure [D] the
operation of maximal torus of G on X is generically transitive and hence
the operation (G, X) is generically transitive. Hence we may assume
(G, X) is a homogeneous space (G, G/H). Since, as we have seen, G acts
only trivially on any variety of dimension <r—1, (G, G/H) is not of de
Jonquiéres type (Proposition 2.2, [U2]).

~ —~/
By Lemma (5.3), we can erase SL,, SO,, Sp,, SO, in the list (5.2).
~ r—~/ Y~ ~
Lemma (5.4). If G is isomorphic to SL,XS0O,, G, XSO, or SO,
there is no closed subgroup H satisfying the conditions (5.1).

Proof. Let us first assume G =fS\C')/5. If there were a closed subgroup
Hof G satisf;ying the conditions (5.1), then there would be a closed sub-
group K of G such that dim G/K =2 or 1. By a theorem of Enriques (cf.

Umemura [U3]), §(\)z never operates non-trivially on any two dimensional
variety. Hence we may assume dim G/K =1. But this is impossible,

because there is no non-trivial morphism of algebraic groups /S?):—->
Aut(G/R)C AutP'. Since the cases G=SL,xSO, G=G,xSO, are

treated similarly, the proof is gi\ien only when G~=SL2></S?)J5. If there
were a closed subgroups H, K of G satisfying the conditions (5.1). Since

gbjs operates trivially on any variety of dimension <2, we get (¢, f): (SL, X
r~7 o~ A~ ~~ o~ o~ ~ T~

SO,, G/H)—(SL, x SO, G/K)—(SL,, G/K) and SO, operates on the fibre
of f.  But since the dimension of the fibres of f< 2,'§(\); operates trivially

also on the fibres and hence /S\OQ operates trivially on G/H which con-
tradicts the almost effectivity of the operation (G, G/H).

Lemma (5.5). If G is isomorphic to SL,XG,, G, XG,, or GZ, there
is no closed subgroup H satisfying the conditions (5.1).

Proof is the same as for Lemma (5.4). N
Now, we determine all the closed subgroups H satisfying the condi-
tions (5.1) of the remaining groups of the list (5.2).
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(5.6) G=SL,xSL,.

Our first aim is to show H is parabolic. Since (G, G/H) is of de
Jonquiéres type, there exists a morphism of homogeneous spaces (Id, f):
(G, G/A—(G, G/K). 1f dim G/K=1, necessarily we have a morphism
{(p:,f): (SL,xSL,, SL,x SL,/H)—(SL,, SL,/B) where B is a Borel sub-
group of SL,. Hence we get an extension:

G.7) 1>1xSL, N A—-A-"5B.

SL, %1 operates on the fibre of p, which is 2-dimensional. By a
Theorem of Enriques [U3], a 2-dimensional operation of SL, is necessarily
(SL,, P?) hence the fibre of fis isomorphic to P? and 1X SL,/1xSL,N A
=P  Therefore 1XSL,N H is of dimension 6 and contains a solvable
group of dimension 5. Hence the dimension of the image p,(H) is equal
to dim A —dim 1xXSL,N A =2. Thus we get an exact sequence

(.8) 1>1xSL,N A—>A-5B 1.

H contains a solvable group of dimension 5+2=7 which is an
extension of B by a maximal solvable group in 1XSL,N H. A solvable
subgroup of SL,xSL, of dimension 7 is a Borel subgroup of SL, X SL,.
Hence H is parabolic.

If dim G/K=2, we have either (SL,X SL,, SL, X SL,/H)—(SL,, P?) or
(SL,XSL,, SL,XSL,/H)—(SL,, SL,/H’) where H’ is a closed subgroup of
dimension 1. In the last case, 1 X SL, operates non-trivially on the fibre
which is a curve but this is impossible and hence the last case never occurs.
Let us now examine the morphism (SL, X SL,, SL, X SL,/H)—>(SL,, P? and
show H is solvable. As in the (SL,, P") case, we get an exact sequence

1-SL,x1N A—A->p

where P is a parabolic subgroup of SL, such that SL,/P~P> SL,X1
operates non-trivially on the fibre of SL, X SL,/A—P2 Hence SL, X 1/SL,
X 1N HC the fibre of SL, X SL,/H and consequently dim SL,x 1N H=2.
The dimension of the image p,(H)=6 and hence p, is surjective and we
get an exact sequence:

1-SL,x1NHA—-H—>P—1.

For t1~16 same reason as in the case dim G/K =1, A is parabolic. Suppose
that HCSL, X SL, satisfies the conditions (5.1). The H is parabolic and
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of dimension 8. It follows H is BX PCSL, X SL, where B is a Borel sub-
group of SL, and P is a parabolic subgroup of SL, such that SL,/P ~P%,
We have thus proved.

Proposition (5.9). Let (SL, X SL,, SL,x SL,/H) be an almost effective
realization of a de Jonquiéres type group G of Cr,. Then G is realized by
(PGL, x PGL,, P' X P?).

(5.10) G=G, xSL,.

Let H be a closed subgroup of G satisfying the conditions (5.1).
Since (G, G/H) is almost effective, contains no normal subgroup of positive
dimension. In particular G,, X1 is not contained in H. Letus put K=
G,x1.H We get a morphism (G, G/H)—(G, G/K). Since G,x1
operates trivially on G/K, we get a morphism

(92 f): (G, XSL,, G, X SL3/ﬁ)——>(SL3, G, X SLs/K~)-

By a Theorem of Enriques [U3], G,, X SL,/K is isomorphic to SL,/P~P=
Hence, we have a morphism

(1, f): (G, XSL;, G, X SL3/ﬁ)'_>(SL3: SL,/P).

The existence of the morphism (p., f) implies p(H)cCP. Since G, ><1
operates on G,, X SL,/H effectively by our assumption, GmxlﬂH =
Hence by counting the dimension, p,(H)=P. Namely p, maps H isomor-
phically onto P. We have thus proved

Proposition (5.11). Let (G,, X SL,, G,, X SL,/H) be an almost effective
realization of an algebraic group G of de Jonquiéres type contained in Cr,.
Then, there exists an integer | such that H is, up to inner automorphism,

t x y
{t‘x(O 4 )eGmXSLgltek*,x,yek,AeGLZ(k)}.
0

G is contained in (Aut®}],, J1,) for any le Z. If |l|=1, G is contained in
(PGL,, P9).

Proof. Except for the last two assertions, Proposition (5.11) is proved
above. G, XSL,/H is a principal G,,-bundle of degree / over P* and G,, X
SL, is in the automorphism group of J{,,. The last assertion follows from
the inclusion (Aut’J;, J))C (PGL,, P*) because J; is (a blowing-up of P* at
a point P)—(the inverse image of P)=P°'—{P}.

(5.12) G=SL,XSL,xSL,
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Let A and K be closed subgroups of G satisfying the conditions (5.1).
We shall show H is solvable. If dim G/K=1, then we have a morphism
(o, f): (G, G/A)—(SL,, SL,/B). We may assume ¢ is the projection p
onto the first factor. 1XSL,X SL, operates non-trivially on the fibres of
f which are isomorphic to BXSL,XSL,/H. By a Theorem of Enriques
[U3], the operation of 1XSL,XxSL, onto the fibres of f is (SL,XSL,,
SL./BXSL,/B) where B is a Borel subgroup of SL,. Therefore, we may
assume 1XSL,XSL,NA=1xBxB. It now follows from the exact
sequence

1—1xSL,XSL,N A—A-">B,

1XBXB

H is solvable. Let us now assume dim G/K=2. By a Theorem of
Enriques [U3], we have either (1) a morphism (o, f): (G, G/H)—(SL, X SL,,
SL,/BxSL,/B), where B is a Borel subgroup of SL, or (2) a morphism
(0, f): (G, GIH)—(SL,, SL,/H") where H’ is a l-dimensional subgroup of
SL,. We notice the second case never happens. For, if it happened,
Ker ¢=~SL, X SL, cannot operate almost effectively on a fibre of f which
is isomorphic to P* hence (G, G/H) would not be almost effective. In the
first case, we may assume ¢ is the projection p,, onto the first two factors.
Then the similar argument as above shows the existence of exact sequence:

11X 1XSL,N A—HA-L5>BxX BX 11,

1X1XB

and H is solvable. Since dim A =6, A is, up to an inner automorphism,
BX BX B where B is a Borel subgroup.

Proposition (5.12). Let (SL,XSL,XSL,, SL,XSL,XSL,/H) be an
almost effective realization of an algebraic group G of de Jonquiéres type
contained in Cr,. Then G is effectively realized by (PGL, X PGL, X PGL,,
P!XP'xPY)

(5.13) G=G, X SL,xSL,.

Let~ H: be a closed subgroup of G satisfying the conditions (5.1).

Since (G, G/H) is almost effective, A does not contain any normal sub-

group of positiye dimension. In particular, G, X1X1 is not contained in
H. If weput K=G,, X1X1-H, then dim G/K=2. We have a morphism
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(G, G/A)—(G, G/R) and G, x1x1 operates trivially on G/K and con-
sequently by a Theorem of Enriques, we get a morphism ( p,, £): (G, G/H)
—(SL, X SL,, SL,/BX SL,/B), where B is a Borel subgroup of SL, and p,,
is the projection onto the second and third factor of G. Since > G, X1X1
operates effectively on G/H and is contained in the center of G, G, X1x
1INH=1.

Thus we get an exact sequence;

1-G, X1x1NA—-AL5>BxB.

1

By counting the dimension, we know that p,, induces an isomorphism of
H onto BX B.

Proposition (5.14). Let (G, XSL,XSL,, G, XSL,XSL,/H) be an
almost effective realization of an algebraic group G of de Jonquiéres ype
contained in Cr, as in (5.1). Then, there exist integers I, I, such that H is,
up to an inner automorphism,

thrlax (B X V(%2 7 ) e G, xXSL,XSL, |1, t, € k¥, x, y € k\.

0 ¢ 0 ¢
Interchanging the order of SL,-factors and replacing the parameter of G,, by
its inverse if necessary, we may assume that I,<<0<l, or 0<I,<l,. Then
G is contained in;

(5.14.1)  the operation (J6) of Theorem (2.2) for m=1L, n=1, if ,>2,
—‘2211’

(5.14.2) the operation (J8) of Theorem (2.2) for m=1,, n=1, if ,>>1,
>0,

(5.14.3)  the operation (J3) for m=1, if [,>>2, ,=0,

(5.14.4) the operation (J1) if =0, [,=1,

(5.14.5)  the operation (32) if I, =1,=0,

(5.14.6)  the operation (J10) if ,>>0>1, and if only one of |I,| and |1,

=1,

(5.14.7)  the operation (P1) if [,=1, |=—1.

Proof. We proved above H is written in the form of Proposition.
As we saw above, G/H is a principal G,,-bundle of bidegree (/,, /,) over SL,
X SL,/BX B=P'XP*and G is a group of G,-bundle isomorphisms which
can be extended to a group of line bundle of bidegree (I, 7). Thus
(5.14.1), (5.14.2), (5.14.6) and (5.14.7) follow from Lemma (4.29) and
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(4.30). (5.14.3), (5.14.4) and (5.14.5) follow from [U3] because in these
cases the operations are products.

(5.15) G=G, XG,xSL,

Let H be a closed subgroup of G satisfying the conditions (5.1).
Since a normal subgroup G,XG, X1, contained in the center of G,
operates effectively on G/H, G,, X G, xX1xH=1. Thus, we get an exact
sequence

1-G, X G, X1 H—-HA-"%5sL,.

|

Hence p, induces an isomorphism of A onto a closed subgroup of dimen-
sion 2 hence onto a Borel subgroup of SL,. Thus we have shown

Proposition (5.16). Let (G,,XG, XSL,, G,,XG, XSL,/H) be an
almost effective realization of an algebraic group G of de Jonquiéres type
contained in Cr, as in (5.1). Then, there exist integers I, I, such that H is,
up to an inner automorphism,

{tll><t’2><<6 ;‘1> € G, X G, XSL,|r¢ k¥ xe k}.
Interchanging the order of G, factors and replacing the parameters of G,, by
their inverses, we may assume 0<1,<l,. G is contained in

(5.16.1)  the operation (J9) of Theorem (2.2) for L,=m, [,=n if 2<1,
<l

(5.16.2) the operation (J10) of Theorem (2.2) for L=m=I1=n if 2<
]1: 25

(5.16.3) the operation (J7) of Theorem (2.2) for m=1,, if [,>2, =1,

(5.16.4) the operation (P1) of Theorem (2.2) for [,=1,=1,

(5.16.5)  the operation (J3) of Theorem (2.2) for m=1, if [,>>2,1, >0,

(5.16.6) the operation (J1) of Theorem (2.2) if I,=1, [,==0,

(5.16.7) the operation (J2) of Theorem (2.2) if I,=1,=0.

Proof. The first assertion was proved above. G/H is a principal
GZ%-bundle over SL,/B=P" of degree (/,,1,). G is a group of automor-
phisms of the principal G?-bundle hence can be extended to a group of
automorphisms of FJ, ;. For some small values of [, /,, F}, ,, is isomor-
phic to other varieties (cf. [U3] and Lemma (4.29)).

.17 G=6G,xG,XG,.
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There is nothing to prove in this case. G?, is always contained in
(PGL,, Py).

(5.18) G=SL,.

Let A be closed subgroup of G satisfying the conditions (5.1). Since
(G, G/H) is of de Jonquiéres type, there exists a closed subgroup K such
that A K, dim G/K =1, 2 (cf. Corollary 2.8, [U2]). Since SL, does not
operate on a 1-dimensional variety, dim G/K=2. By a Theorem of
Enriques, K is a parabolic subgroup of SL, such that SL,/K=P%. We may

* % *
assume K = {(0 ® *) € SL3}. H is contained in K and of dimension 5.
0 % =

Lemma (5.19). H is one of the following:

) B={(6 : :)eSLg}.
0 0 =

. a, x Yy
(2) n>1lisaninteger. g 4 € SL,|x,yek,ay=1¢.

This group is denoted by W.,,.

Proposition (5.20). Let (SL,, SL,/H) be an almost effective realization
of an algebraic subgroup G of de Jonquiéres type contained in Cr,. Then,
H is, up to an inner automorphism, B or W, in Lemma (5.19). G is con-
tained in (J7) of Theorem (2.2) for m=n when H=W, and n>2. G is
contained in (P1) when H =W,.

Proof. SL,/W,—SL,/R=P* is a principal G,-bundle of degree n.
The proof is similar to the preceding cases and omitted.

(5.21) G =SL,XSL,.

Let A be a closed subgroup of G satisfying the conditions (5.1). We
shall show that H° is solvable. Let & be a Lie algebra of H. If 4 is not
solvable, & must contain 8(,. Since the dimension of % is 3, A coincides
with 8(, and we get an inclusion 8l,—8[, X 8l,. Up to automorphism of
gl,, there are only 3 inclusions.

@D plx)=(x,x) x e gl,

@ ex)=x0  xeslh.

3 e(x)=(0, %) x € 3l
In the first case (G, G/H) is primitive and as studied in Umemura [U3].
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In particular, H does not satisfy the conditions (5.1). In cases (2) and (3),
h is an ideal in 80, 8l,. Hence the operation (SL,X SL,, SL,XSL,/H) is
not almost effective. Thus 4 should be solvable. We may assume that
H° is contained in BX B where

B:{(g z_1>]ae k%, be k}.

Since dim H°=3, H® can not be reductive. If the dimension of the uni-
potent part U of H° is equal to 1, then U is a 1-dimensional subgroup of
{((1) ch)x ((1) )lj)lx, ye k} and the dimension of the maximal torus of
H°is2. But since there is no 1-dimensional subgroup of

{0 Dxlo Drere]

invariant under the inner automorphisms of a maximal torus, the dimen-
sion of U can not be 1. Therefore the dimension of U is equal to 2.
Then there exist mutually coprime integers /, m such that

~ L m
H°={((t) ;c_l)x((t) J;_m)|te k*, x,ye k}.

Let us consider an exact sequence

1-G,—>G, X G,—>G,—1,

where i(¢)=(t', t™), n((x, y))=x"p~%. Let L be a closed subgroup of
G, X G, with L°=G,,. Then there exists an integer s such that L=
z7'({¢e G,|¢*=1}). Thus

1={(s 2)x(s )=

Therefore (G, G/H) is a suboperation of

<Gm % SL,XSL,, G, X SL,XSL,

/{ti“t;“ X (6‘ ’tcz_l) X ((tf Jt’z_l) PNASSEST })

Proposition (5.22). Let (SL,XSL,, SL,X SL,/H) be an almost effec-
tive realization of an algebraic group G of de Jonquiéres type contained in
Cr,. Then, for appropriate I, I,, G is contained in the conjugacy class
realized by the operation in Proposition (5.14). In particular, G is contained
in one of the operations of Theorem (2.2).



Cremona Group 383

(5.23) G=G,,%xSL,.

Let H be a closed subgroup of G satisfying the conditions (5.1). Since
the operation of G,, X1 on G/H is effective by (5.1), if we consider the
projection p,: G,, X SL,—SL,, the image p,(H) is a closed subgroup of SL,
isomorphic to . Hence p,(H) is a 1-dimensional closed subgroup of
SL, and we may assume that p,(H) is one of the following:

) {(é (t)_l)eSLzlte k*}.

2 {(g g—-l) eSL,|¢"=1, xe k}. This group is denoted by U,.

Proposition (5.24). Let (G,, X SL,, G,,XSL,/H) be an almost effec-
tive realization of an algebraic group contained in Cr,. Then, H is, up to
an inner automorphism, one of the following:

(1) Let m be an integer.

{t”‘x(é 2_1) € G, XSL,|te k*}.

(2) Let d be a divisor of a positive integer n.

{t"x(é ’;1) € G, XSL,|t"=1, x e k}.

In the first case G is contained in (G,, X SL, X SL,, G,, X SL, X SL,/H")
in*Proposition (5.13), where

ﬁ’:(;;ﬂx(él f_l) x(é“‘ 3;_1) € G, XSL,XSL,|t, t,e k*, x, y e k}.
1 2

The inclusion is given by
(t, A——>(, A,'A"") where te G,, AeSL,.

In the second case, we may assume d >0. G/H—G/G,,.

rese /(1))

is a principal G,-bundle and as in preceding cases we conclude

Proposition (5.24.1). Let (G,,XSL,, G, XSL,/H) be a realization of
an algebraic group G of de Jonquiéres type in Cr,, then G is contained in
one of the operations of Theorem (2.2).
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(5.25) G=SL,.

In this case & is a finite subgroup of SL,. It is well known that a
finite subgroup of SL, is conjugate to one of the following (Blichfeld [B1]).

(A) Cyclic group.
{(gm S_m)|e=emﬂv, m=0, 1, ...,N_l}, N=1,2,3,---.
(B) (binary) Dihedral group D,y. A subgroup generated by

( 2H (S D emerrmenr i
N=2,4,6,8, ---.
(C) Tetrahedral group. '
(D) Octahedral group.
(E) Icosahedral group.

We saw that in the tetrahedral case (SL,, SL,/I") is contained in (P2)
and that the last cases give (E1) and (E2). Thus we have to treat the
cyclic case and the dihedral case.

(5.25.A) H is a cyclic group Cy of order N.

Then the conjugacy class realized by (SL,, SL,/Cy) is contained in
Proposition (5.24.1) (1). In fact, it is sufficient to consider a morphism
¢: SL,—G,, X SL, defined by ¢(x)=(1, x) for x e SL,.

(5.25.B) H is a (binary) dihedral group D, of order 2N.

Proposition (5.26). (1) If N =2, then the conjugacy class realized by
(SL,, SL,/D,y) is nothing but the conjugacy class effectively realized by
(PGL,, PGL,/I") where I' = {1, (“/—0:_1 JOZT)} Thus this case is reduced
to (5.25.A).

(2) If N=4, then the conjugacy class realized by (SL,, SL,/D,y) is
contained in the operation (14) of Theorem (2.2).

(3) If N=6, then the conjugacy class realized by (SL,, SL,/D,,) is
contained in (PGL,, P?).

Proof. The first assertion is trivial. Let ¥V, be an irreducible SL,-
module of degree 3 and hence V; is isomorphic to the vector space of all
the homogeneous polynomials f(x, y) in x, y of degree 2. Let F:0C(xy)
C(x*+)%, xy)CV, be a flag. SL, operates on the flag variety X of V..
The stabilizer at F is D,,, and the flag variety X is isomorphic to SL(V,)
/a Borel subgroup of SL(¥,). Therefore we have a morphism of operation



Cremona Group 385.

(¢, f): (SLy, SLy/D,,)—>(SL;, SL/B) with f birational. Thus the second
assertion is proved. To prove the third, consider the vector space E of
homogeneous polynomials of 2 variables x, y of degree 3 as above. The
vector space E is an irreducible representation of degree 4 of SL,. The
orbit of x*+)* e P(E) is isomorphic to SL,/D,., which is an open subset
of P(E)~P*. Thus the second assertion is proved.

We have shown in Umemura [U3] that, if H is the tetrahedral, octahe-
dral or icosahedral subgroup of SL,, then (SL,, SL,/H) is not of de
Jonquiéres type.

Proposition (5.27). Let (SL,, SL,/I") be an almost effective realization
of an algebraic group G of de Jonquiéres type in Cr,. Then G is contained
in one of the operations of Theorem (2.2).

It now follows from what we have done from (5.1) to (5.27)

Conclusion (5.28). Let (G, G/H) be a realization of a reductive
algebraic G of the Jonquiéres type in Cr,. Then G is contained in one of the
operations of Theorem (2.2).

Case (ii). G is not reductive.
Let (G, G/H) be a realization of G.

Case (5.29). The center U, of the unipotent radical of G has a 2-
dimensional orbit on G/H.

We have a morphism of homogeneous spaces (G, G/H)—(G, G/U,H)
and dim G/U,H=1. Hence we get a morphism of homogeneous spaces
(¢./): (G, G/H)—>(PGL,, P*).

Subcase (5.30.1). ¢ is surjective.

Let N be the kernel of ¢ and N its connected component of 1. We
have an exact sequence

1—-N —G—2>PGL,—~1

)

1->N—-+G—>G/N°® —>1.

The kernel of the morphism G/N°—PGL,is N/N°. Hence |N/N°|<2.
If [N/N°|=2, ¢ factors through the degree 2 covering SL,—~PGL,. Any-
how, by taking an isogeny G—G of degree at most 2, there exists an
almost effective realization (G, G/H) such that the center U, of the uni-
potent radical of G has a 2-dimensional orbit on G/H, there exists a
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morphism of homogeneous spaces (g, 7): (G, G/H)—(SL,, PY) and such
that the kernel gb:ﬁ is connected. By Corollary (1.13), Umemura [U3],
the operation of ¥ on each fibre is through affine transformation of 2
variables. Now, by Lemma (1.21), Umemura [U3], the reductive part of
N is a subgroup of the linear part GL, of the affine transformation group
of 2 variables and U, ="U.

Let us determine the SL,-module U,. Since we have &: G—SL,, by
Levi’s Theorem G contains a semi-direct product U, 2.SL, and the orbit of
U,.SL, coincides with the whole space G/H. For, if we consider the
fibration 7: G/H—G|U,H=P", U,-orbit of H is the fibre /-, H) and
from the definition of the subgroup SL, of G, the morphism (I 2.SL)-H
—P* induced by fis surjective.

Lemma (5.30.2). SL,-module U, has at most 2 irreducible components.

Proof. Letus put s# =HNU 2.SL,. Then we have an exact sequence

1-U,N#—# 2 5sL,,

Since U, has a 2-dimensional orbit, the image ¢(#°) is a 2-dimensional
subgroup of SL, hence a Borel subgroup B of SL,. We may assume B=

{<* 0) € SLZ}. Thus the above exact sequence becomes

x %
(5.30.3) 1-U, N#—H#—B—1.

Let U, =U®@UD---PU, be an irreducible decomposition. Let v, ¢ U,,
1<i<r be a highest weight vector with respect to the upper triangular
Borel subgroup and the diagonal Cartan subgroup. v, does not belong
toU,N#. For, if v,e U,Ns#, then U,CU, N since U,NH# is B
invariant by the exact sequence (5.30.3). On the other hand, since
(U, SL,, U, SL,/3#) is almost effective, U, N 5 contains no normal
subgroup of positive dimension of U, SL,. In particular, U, can not be
a submodule of U, N#. Assume r >3 and let L=1{2,0,+2,0,| ,, 4, € k}.
We shall show L-orbit of H e G/H is 2-dimensional. In fact, assume L-
orbit of A e G/H is not 2-dimensional, then dim LU, Ns#<]1. Namely
v, and v, are not linearly independent mod U, N 2. Since v, ¢ U, N # and
since L and U, N&# are invariant by the Cartan subgroup, if v, and v, have
different weights then v, and v, are linearly independent mod U, N 7. If
v, and v, have the same weight and there exist 4, 4, € k£ such that ,v,+
20,70 and A4,v,+ 4,0, € U, N5, then 4,v,-+ 4,0, is a highest vector of an
irreducible SL,-submodule of U, and U, ¥ contains a normal of
subgroup of positive dimension of U, SL, which contradicts the almost
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effectivity of (U, SL,, U, SLy/#). Let W= {(5 i‘)]xek}. Then r

is the dimension of W-invariant subspace V of U, and LCV. V W is
an abelian closed subgroup. Since L-orbit of A is 2-dimensional and con-
tained in a fibre of f and W-orbit of H is 1-dimensional and horizontal,
L W-orbit of H e G/H is 3-dimensional. Since L WCV.W, V.W has
a 3-dimensional orbit. As V W is abelian, by Lemma (1.8), Umemura
[U3], 3=dim V., W=r+1 hence r=2 which contradicts our assumption
r>3.

Notations being as in the proof of Lemma (5.30.2), let n, be the
highest weight of U, and U,=> ", W{)_,, be the decomposition into the
eigen-spaces of the Cartan subgroup where the weight of W{)_,, is n, —2e.

Lemma (5.30.4). 7 is, up to an automorphism, one of the following:

(@) Fr=1, (3 W2.). BCUSL), (=D

@) Ir=2,
@ {Zwe)+(Ewe.))s azn=0
or

) n—2=n,>0, W_B where W is a vector subspace of UPU,
generated by (Z_lzz W;}l)_za+Zjl Wﬁfz’_z,,> and a vector u,-+u, with
u e W o, uye WP with uy, u,#0.

Proof. The proof is a refinement of the proof of Lemma (2.7),
Umemura [U3]. By (5.30.3), 5# is connected. Therefore it is sufficient
to determine its Lie algebra. We shall treat only the case r=1 because
the case r=2 is proved similarly. The Lie algebra of 5# is a subalgebra
of u,+b where u,, b are the Lie algebras of U, and B. Let

71
u=[:) Wn;—Za
a=

be a direct sum decomposition of C-eigen-spaces where the weight of
W, -2 18 y—2c. Then it is easy to see, (321, W, _,,)+Db is the only b-
invariant Lie subalgebra § of u+Db of codimension 3 in u+ 5[, such that
dim u/uN§=2 (cf. Umemura [U3]).

Remark (5.30.5). In Lemma (5.30.4), the group in (b) is uniquely
determined up to automorphism of U, SL,. In factlet O+«, ek and
replace u,-+u, by au,+ pu,, then we have an automorphism +» of SL,-
module U, =U@U, defined by (x,, x,) =ax, + px,.
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Proposition (5.30.6). Notations being as in Lemma (5.30.4), the con-
jugacy class realized by (G, G/ H) is contained in

(a) the operation (J1) (PGL, X PGL,, P*XP") of Theorem (2.2) for
case (i) and n,=1,

(b) the operation (Aut"F,, _, ., 1, Fr._s ,-1) hence in (P1) or (J10) of
Theorem (2.2) either for case (i), n,>>2 or for case (ii) (b).

Proof. 1If we are in case (i), n,==1, since U, is normal the operation
of G respects the fibration z: U_SL,/B—SL,/B=P' which is the trivial
rank 2 vector bundle over P!, By Corollary (1.13), Umemura [U3], the
Ker ¢ operates on the fibre of z as affine transformations. Therefore
the operation of G is extended to P*XP* and G is contained in the opera-
tion (J1) (see also Lemma (1.21), [U3]). The operation in case (1) is
contained in the operation in case (2) (b) and they both have the same
transformation space. Thus in view of Corollary (4.2) and Lemmas (4.3),
(4.29), it is sufficient to show the transformation space U, SL,/s# is
isomorphic to Fj, _, ,,_,. This is proved as Lemma (4.24).

Propesition (5.30.7). We keep the notation of Lemma (5.30.4) and we
assume that we are in case (ii) (a) with n,>n,>0.

Q) If n,>n,>2, the conjugacy class realized by (G, G|H) is contained
in (19) (AP, Fl, ).

Q) If n,>n,=1, the conjugacy class realized by (G, G|H) is contained
in (J7) (Aut’J;,, I,).

(3) If n,=n,>2, the conjugacy class realized by (G, G|H) is contained
in (710) (AUCF,, ., F, 0.

4) If ny=n,=1, the conjugacy class realized by (G, G/H) is contained
in (P1) (PGL,, P?).

(3) If n,=n,=0, the conjugacy class realized by (G, G/H) is contained
in (J1) (PGL, X PGL,, P* X P").

Proof. The transformation space G/H coincides with U, SL,/s#
and as in the proof of Proposition (5.30.6) (see also Umemura [U3]). We
can prove the homogeneous space U, SL,/s# is isomorphic to F; ...
The assertion (1) follows from Corollary (4.2) and Lemma (4.3). As for
the second assertion, let J,,=P(0p.D0p(—m)), 0y (1) the tautological
line bundle on J, and J/, J,, minus the negative section of J,/P,. Since
F{~P*—(a point)C P* and Pic P°*~>Pic F} is an isomorphism, we have an
open immersion

Frlu,xL»)Jnl

14 D
F| =P
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We want to show that (Aut’F;_,, F ) can be extended to (Aut"F,_,, J,).
If there exists a very ample line bundle .# on J, such that the restriction
induces an isomorphism H°(J,,, &)=~ H(F, ,, Z|F, ), since Aut’F, , is
a linear group (Theorem 3.2, Umemura [U2]), it operates on the linear
system P(H(F,, ,, Z|F,, )=P(H(J,, %)) hence the operation of Aut’F,, ,
on F;,, can be extended to an operation on J,, and the assertion (2) is
proved. Now we look for such a very ample line bundle. In the follow-

ing, it becomes clear that for any line bundle .# on J, , we have
HQ,, )= HYF,,,, M|F,, ).

We look for a very ample line bundle. Since (Op:P0po—1))ROps(n;+ 1)
is ample, it follows from Hartshorne [H] 0;, (1)®p*0p.(n,+1) is ample.
Hence there exists a positive integer & such that

L=0;,,()@p*Op.(n,+ DK)

is very ample. Now it is sufficient to show H°(J,,, )= H'F;, ,, £).
Since the morphism of restriction is injective, we must show the both

vector space have the same dimension. Since the inclusion F) ,CJ,,

factors through F} CJ, CJ,, and the codimension of J,,—F; ,inJ; is

2, HJ,,, £Yy=HF;, , ). Thus we have to show dim H(J}, ¥)=

n1,12
4

dim H°(J,,, #). In fact, since the morphism J; —P* is affine, we have

HQ,,, £)=H(;, p*Op:((n,+ 1)k))
=~ H(P?, Op{(n,+ l)k)®p>k(9J7’11)

:H"(PZ, Ops(ny+ l)k)<>§§j0 @pz(—lnl))
~ fz; HP?, Opo((n;+ Dk — Iny))
~ L}:k(]) HO®, Opa((n,+ Dk —1,).
On the other hand,
HJ,, &)~ H®", S*(Op:D0p:(—n))R0p(n, + 1)k))
~ ﬁ HOP2, Opa((n; -+ Dk — D).

Hence the second assertion is proved. The assertion (3) follows from
Corollary (4.2) and Lemma (4.3). The assertion (4) is proved as (3)
combined with Lemma (4.29). It remains to prove the last assertion. As
we noticed above, the reductive part of N is contained in the linear part
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of the affine transformation group of 2 variables and U,=U (cf. Lemma
(1.21), Umemura [U3]).

Subcase (5.31.1). ¢ of (5.29) is not surjective.

The image of ¢ is isomorphic to the group of affine transformations of
1 variable GTA,, G, or G,,. Let us first assume Im(p)=GTA,. Then, we
have an exact sequence

1>N—>G - >GTA,—1.

U U
K ~ G,

By Sublemma (2.30), Umemura [U3], ¢ splits over the unipotent part of
GTA,: there exists a closed subgroup K of G mapped isomorphically onto
the unipotent part of GTA,. Since G/U,H~A', the orbit of the closed
commutative group U, K coincides with G/H. In particular, the dimen-
sion of U,=2 by Lemma (1.8), Umemura [U3] and U, K~G/H. By
Umemura [U3], U, is the unipotent radical of N°. But since G, has no
non-trivial étale covering, N is connected. Let K U,~G,X G, X G, and
use the coordinate on G, X G, X G,.

The operation of U, K on G/H=G,X G, X G, is given by (x, y, 2)
—(x+a, y+b;, z+c¢). The operation of the unipotent radical of N is, by
Section 2, Umemura [U3], (x, y, 2)—~(x, y+ f(x), z+ g(x)) where f, g are
polynomials in x and their degrees are bounded. By Lemma (1.21),
Umemura [U3], the reductive part of N is GL, or G,, X G,,, G,, and they
operate on U, ~k? naturally, therefore on A'X A’=A® linearly: in GL,
case for example, (x, y, z)—(x, ay+cz, by+dz) for (z 3) eGL, It
remains only a torus mapped injectively by ¢. For this purpose, we write
the operation of maximal torus on the radical K, U, which is linear. Thus
the operation (G, G/H) is a suboperation of (J1) or (J10) of Theorem (2.2)
(cf. Section 2, Umemura [U3]). The cases Im ¢=G, and Im ¢=G,, are
treated similarly.

It follows from (5.30.1) and (5.31.1).

Conclusion (5.32). Let (G, G/H) be a realization of an algebraic group
G of de Jonquiéres type. If G is not reductive and if the center of the
unipotent radical has a 2-dimensional orbit, then G is contained in one of the
operations of Theorem (2.2).

Case (5.33). The center U, of the unipotent radical has only 1-
dimensional orbits on G/H.
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We have a morphism of homogeneous spaces (Id, f): (G, G/H)—
(G, G/U,H). The algebraic operation (G, G/U,H) determines a mor-
phism ¢: G—Aut G/U,H C Autbirat G/U,H. Since G is linear, G is
rational and the algebraic surface G/U,H is unirational. Therefore,
G/U,H is rational and Autbirat G/U,H is non-canonically isomorphic to
the Cremona group Cr, of 2 variables. Hence we can apply the results
of Umemura [U3] to (¢(G), G/UH).

Propeosition (5.34). If G/U,H=P?, the conjugacy class of (G, G/H) is
contained in (J1), (P1) or in (J7) of Theorem (2.2) according as dim U, =1,
dim U,=3, or dim U,=n>3.

Proof. We can prove the proposition as in Section 2, Umemura
[U3]. But we give a different proof. G/H—G/U,H =P* is an A'-bundle
over P2 Since H'(P?, ¥)=0 for any line bundle ¥ over P? the affine
A'-bundle G/H—G/U,H comes from a G,,-bundle, i.e. G/H—G/U,H is a
line bundle. Thus there exists an integer » such that J’gG/H where

3, = Spec (P Op:(—1,)). Since the positive dimensional group U,
operates transitively on each fibre of G/H—G/U,H. n should be non
negative. If n=0, (G, G/H) is a suboperation of (J1). If n>>1, by Corol-
lary (4.2) and Lemma (4.3) (G, G/H) is a suboperation of (Aut’J/, J/) and
(Aut®J;, J)) is contained in (PGL,, P?) in (PGL,, P®) as in the proof of
Proposition (5.30.16) (2).

Proposition (5.35). If G/U,H=P'XP, the conjugacy class of (G,
G/H) is contained in (J1), (32), (J3), or (J8) of Theorem (2.2).

Proof. G/H—G|/U;H=P'xXP!is an A'-bundle over P'XP* hence
defined by an exact sequence:

(5.35.1) 0—>0p1y pr—>E —>ps, pall, m)—0

where Opy,p(l, m) denotes pfF0p(QpF0p.(m). The extension (5.35.1) is
SL,x SL, homogeneous. Let us determine such extensions. The exten-
sions are parametrized by H'(P'XP', O(—I, —m)). Since we have SL,
X SL,-isomorphism

H\P'XPY, O(—1, —m))=H(P', O(—D)QHP', O(—m))
+ H'(P', O(—D)QH(P', O(—m)).
The SL,-modules H*(P!, 0(—m)), H (P, O(— 1)) are dual to H'(P*, O(m—2)),
H'P, 0(1—2)). Since SL,-module H(P', @(n)) is irreducible if non-zero,

H'(P' x P!, ¢(I, m)) contains a non-zero SL, X SL,-invariant element if and
only if either m=2 and /=0 or m=0 and /=2.
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Therefore the extension (5.35.1) is one of the following:
(1) trivial, i.e. A'-bundle G/H—G/U,H=P" is a line bundle.
(2) the non-trivial extension:

0—0—E—0(2, 0)—0,
(3) the non-trivial extension:
0—0—E—0(0, 2)—0.

Using the notation of Section 3, in the first case, G/H ~ Lj,. We may
PixPp1

assume [/ >m. Since the algebraic group U, operates transitively on each
fibre of G/ H—P'XP. I>m>0. If I, m>1, (G, G/H) is a suboperation
of (J8) by Corollary (4.2) and Lemma (4.3). If />2, m=0, (G, G/H) is
contained in (J3) by Corollary (4.2) since G/H~F,xP'. Ifl=1 m=0
(G, G/H) is contained in (J1) since G/H~F;xP' and (Aut’(F;xP"),
F,xPY)C(PGL,XPGL,, P*XP"). If I=m=0, (G, G/H) is contained in
(J2) by Lemm (4.4). Since the second and the third cases are symmetric,
we treat only the second case. The non-trivial extension is explicitly
written

0—0— (1, 0)BO(1, 0)—0(2, 0)—0.

This shows G/H is P(0(1, 0)@d(1, 0))—a section and the operation of G
on G/H can be extended to an operation over P' X P' X P'.

Proposition (5.36). If G/U,H~F,, with m>0, then the conjugacy
class realized by (G, G/H) is contained in one of the conmjugacy classes of
Theorem (2.2).

Proof. 1f G/U,H ~F,, with m>0 and if the A'-bundle G/H—G/HU,
~F/, is not a line bundle, then the transformation space is isomorphic to
E!? for certain integer p. For Pic F,,~Z and a line bundle over F/, is
isomorphic to z*@p.(a) = O, (a) wWhere n: F,—P' is the projection. The
A'-bundle G/H—G/HU , is defined by an exact sequence

(5.36.1) 0—> g, —>E—>0y, (B)—0.

The extensions are parametrized by H'(F;, O (—b)) and the A'-bundle
G/H—G|U,H is hon}ogeneous. It follov~vs from Umemura [U3] there
exists a finite cover G of ¢(G) such that G has a Oy, (1)-linearized action
and hence G acts on H(F), O, (j)) for jeZ. The exact sequence
(5.36.1) or the corresponding A'-bundle defined by e H'(F,,, O, (b)) is
homogeneous if and only if A is a G-eigen vector. Since the spectral
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sequence for = degenerates as r is affine, we have a G-isomorphism
H'P', 7,0, (— b))~ H(F,, Ox,(—D)),

where G acts on HY(P', 7,05, (—b)) through (G, G/U,H)—(G, P)—
(SL,, P).

H'P', 7,0y, (— b)) = H'(P", Op(— )@ 0y, )
=H'P", Op:(—D)D(P Ops(—cm))

= (—BO H'(P', O(—b—cm)).
[

H'(P!, O(—b—cm)) is dual to H(P', O(b+ cm—2)) which is an irreducible
SL,-module of highest weight b+cm—2. Therefore a homogeneous A'-
bundle which is not isomorphic to a line bundle, exists if and only if there
exists an integer p >0 such that b++pm—2=0. In that case by definition
our variety G/H is isomorphic to E/? and it follows from Lemma (4.22)
pm>2 since non-trivial U, operates. The group G is contained in one of
the operations of Theorem (2.2) by Corollary (4.2), Lemma (4.3), Theorem
(4.1) and Lemmas (4.24), (4.25).

If m>0 and G/H—G/U,H is a line bundle F,, , over F,,. If m and
n are not exceptional appear in Theorem (2.2), then Proposition follows
from Corollary (4.2) and Lemma (4.3). When their values are exceptional
argue as in Proposition (5.35) or in Lemma (4.4) and Lemma (1.21) in
[U3].

Subcase (5.37).  Let us study the case where o(G) in (5.33) is reductive
and not solvable.

¢(G) is an algebraic subgroup of the Cremona group of 2 variables.
Then by Umemura [U3] o(G) is almost effectively realized by one of the
Jfollowing :

(1) (PGL,, PY),

2) (PGL,XPGL,, P'XP"),

?3) (G, xXPGL, P'xP"),

4 (G, xSL, G, xSL,/K,), where

Km={(tm, (6 ’;_l> ¢ G, XSL,|t e k¥, be k}

and m is an integer >>1,
(5) (SL,, SLy/U,), where Um={<g
integer > 1,

b

C,1>|C’"=1, be k} and m is an
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(6) (SL2’ SLZ/ Gm)a
(7) (SL,, SL,/D..), where D,, is an algebraic subgroup generated by

(& O verrana (0 D)

Proposition (5.37.1). If ¢(G) is realized by one of the operations (1),
), - -, (D), then G is contained in one of the operations of Theorem (2.2).

Proof. The case (1), (2) are treated in Propositions (5.34) and (5.35).
Now we give a proof for operation (5). Since the projection G/H—
G/U,H is an A'-bundle, (Ker ¢)° is solvable and the dimension of a maxi-
mal torus is at most 1 (cf. Lemma (1.21), Umemura [U3]). The unipotent
part of (Ker ¢)° is abelian (see Umemura [U3]). For the same reason as
in [U3], we may assume (Ker ¢)° is unipotent. Assume now that ¢(G) is
realized by (SL,, SL,/U,). The exact sequence 0—Ker op—G—¢o(G)—1
gives a new exact sequence

0—>U—U SL,2>SL,—1
and the commutative diagram

0> U —»USL-">SL, 51

(5.37.2) l l¢ l
C—>Kerp—> G —>p(G)—1

where p is the projection and 4 is an isogeny. We set G=U SL,. Let
us determine H=+-'(H). (G, G/H) is an almost effective realization of
G. Let U=V,BV,®---PV, be a decomposition of SL,-module U into
the direct sum of irreducible modules V; with highest weight », and n,<
m<---<n,. We may assume p(H)=U,,. In fact p(H)CU,, is obvious
and if p(H) S U,,, o(G) would be realized by (SL,, SL,/U,,,) with 1 <m’ <m.
Let us notice n,<n,< - --<nm, and n,—n;=0mod m for 1<7,j<<m. In
fact since the dimension of any U,-orbit is 1, the dimension of U/UNH
is 1. Moreover UNH is p(H)=U,-invariant. Since the operation
(U.SL,, U SL,/H) is almost effective, H contains no normal subgroup of
positive dimension of U SL,. Therefore for any 1<i<ls, the dimension
of any V,-orbit is 1 and ¥, N H is the unique {((1) T
of codimension 1 of V,. More precisely let B be a Borel subgroup of SL,
consisting of upper triangle matrices and C a Cartan subgroup of diagonal
matrices. Let #n; be the highest weight of ¥,. Hence

V,=CrOBCi @ - - DCFD,

)}-invariant subspace
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where f [V is a C-eigenvector of weight .V NA=CPD - DCFY, s
Thus UN H contains a subspace

V=@ )0 - O U

If there were an 1<i<(s —1 such that n,=n,,,. Since (V,,®V,,,)NH
is of codimension 1 in ¥, @V,,.,, a non-zero linear combination af %), +
bf+t should be in (V,®V,,..)NH. Then an U,-invariant subspace

Ni+1

generated by U,(af %), +bf%>)) should be in (V,,®V,,.)NH. But

—Ni+1

H,(af 4 bf{i*D) is an irreducible SL,-submodule of lowest weight —n, =
—n,4. Thus UN H would contain a normal subgroup of positive
dimension. This contradicts the almost effectiveness of the operation
(USL, U SL,/H). If there were integers 1<j, k<s such that n;==
n, mod m, since V, DV, N H is of codimension 1 in V, @ V:gw a non-zero
linear combination af'Y,, 4+-bf*, should be in (V,,®V, )N H. Operating
(g (C)“‘) € H,,, we conclude af~"if9) +bL-"f® is in (V, @V, )N H.
Therefore £, and %) would be in (V,,,®V,,)N H hence the U, -invariant
subspace gengrated by U,f4Y%, or U,f%,. would be contained in
V., ®V,. )N H. Since these U,-invariant subspaces are SL,-invariant, this
contradicts the almost effectiveness of the operation. Since we have an
isomorphism of the group U SL, by multiplying a scalar a;70 on each

U, (1<i<s), we may assume U H is spanned by
((191 G ®Cf 1D - ~®Cf9'2,i+2), SO, I<Kis—1).

This space uniquely determined when we fix m and (n, n,, <--,n,), is
denoted by U’.

U, being {((1) lf) |be k}, we get
(5.37.3) A=U'U
or

(5.37.4) H° coincides with the inverse image by + of a codimension
1 subgroup of WcC U/U’U, where +,UU—(U/U") U, is the natural
projection. N

If we are in (5.37.3), H=U'U,,. Infact, as (H)=U,, there exists
an element (v, (S 2_1)) e H such that ¢ is a primitive m-th root of unity.
By adding an element of UN H, we may assume v=>_,a,%, . There

ml ~
exists an integer / >1 such that (v, (g 2_1» e H°. Thus,
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06 L) - (e L) ()

ml s ~ ~
(g 2_,,”) - (ml STa 9, Iz) ¢ A°. Therefore mive UNH=U", ve
i=1

UNH=U’ and consequently (0, (g 2_1)) e A

If we are in (5.37.4), considering the weight we conclude n,=n,=- - -
=n,= —2 mod m. Furthermore we may assume

W={(afontafwt o tafa. (5 1)
e UU'U, |ty =a,= - --—a,—bek, C”:l},

since we have automorphisms of SL,-module U of multiplying non-zero
constants ¢, on each factor U, and since A contains no normal subgroup of
positive dimension. By the same argument, in case (5.37.3), we have a
coincides with the inverse image by + of a codimension 1 subgroup W C

U/U’U,, containing ¢ 0_, {m=1} where : U U,—(U/U") U, is the
0 C ‘l/‘ . .

natural projection.

Let us study operation (5) satisfying (5.37.3). As we have seen above
under (5.37.3) H is determined when we fix the representation U and .
As in Corollary (4.17), on F,, , (n>>m>1) operates the following group ¢

e ax+b V= y
cx+d’ i (cx—l—d)m’

/= Z+yk¢l(x)+yk—l¢m+l(x)+ M +§0n(x)
(cx+d)”

z

where ¢,(x) is a polynomial of degree <(i, (‘CZ 3) e SL, and k is an integer
with n=km~+1, 0</<n. The group & contains SL, as

X = ax-+b ’ Y ’ z

B S
cx-+d (ex+d)y™ (ex+-d)*

The unipotent radical % of % consists of the following transformations
and has 1-dimensional orbits;

/

X =X, y/:y’ Z,:Z+yk§0l(x)+yk_l¢m+l(-x)+ et +90n(x)

The SL,-module % is decomposed into the direct sum % =@ o % ym+ 1>
U ;m+; being the irreducible SL,-module of dimension im--/41 consisting
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of the operations x'=x, y'=y, z/=z+y%*-9¢, . ,(x). The stabilizer group

at (x, y, 2)=(0, 1, 1) is {(u, g)e %SL2|g=(§ ‘C’) tr=1, u: x=x', y=V,

=24y 0, () + Y o (X)+ - - - (%) with 1=14¢,(0)+¢,.,(0)+
..‘+¢n(0)}. Namely & satisfies (5.37.3). This shows, if we take /=n,

=n,=- .. =n, mod m and choose n>n,, the conjugacy class of the opera-
tion (G, G/H) is contained in the operation of @ hence in an operation of
Theorem (2.2) if m>2. For m=1, argue as in Proposition (5.35).

Now let us study operation (5) in (5.37) with (5.37.4). We shall
show in this case the conjugacy class of the operation is contained in
(Aut® (E;, F}), F,,) for a big integer /. Tt follows from Corollary (4.23),
the semi-simple part of Aut’(E/, F},) is SL, and the unipotent radical is
SL,-module @7, H'®*, O(lm—2—jm)). Take I/ big enough so that SL,-
module U is contained in @5., H°(P', O(lm—2—jm)). This is possible
as we have m=n,=-..=n,=—2mod m. Consider the operation of
®5. H' (P, O(lm—2—jm) SL, on E;.. Since SL, has no 2-dimensional
orbit on E/! covering the SL,-open orbit on F,,

@ H(P', 0(Im—2—jm)) SL,
=0

satisfies (3.37.4). Hence the conjugacy class of G is contained in the con-
jugacy class of (Aut’E/L, EJY).

Operation (4) is treated similarly hence we omit the proof for opera-
tion (4). We can prove the assertion for operation (3) similarly. Here is
a sketch. As above, U is abelian, we may assume Ker ¢ is unipotent and
we have a diagram,

0—> U —U.(G,XSL)~2>G,xSL,—~1

L

0—Ker p— G —> ¢o(G) -l

Let U=V, @V, D.--®V, be a decomposition of SL,-module U into the
direct sum of irreducible modules ¥, with highest weight n, and n,<n,<
... <n,. By Schur’s Lemma G,, operates on each ¥V, by weight d,. The
argument for operation (5) applied to this case gives n,=n,=.-.=n, and
d, are different each other. And so on to conclude G is contained in
(Auwt’L;, ,, L7 ) where n=n,=n,=-..=n, and m is a sufficiently large
integer.

Let us treat operation (6). Let m>n>0 be integers and V,,, V, the
irreducible SL,-modules with highest weight m, n. V,&V,, is an SL X SL,-
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module. The semi-direct product (V,,®V,) (SL, X SL,) operates on L,, ,
and L, , is a homogeneous space of this algebraic group (cf. Corollary
(4.12)). To see this, we notice that p,: P' X P'>P*! being the projections
(i=1, 2), SL, X SL,-module H°(P' X P, p¥0p,(m)@ p¥Op.(n)) is isomorphic
to H'(P!, Op:(m))QH(P'. Up,()) by the Kiinneth formula. Hence V,,®
V, operates on the fibre space L;, ,—P'XP'. SL,XSL, also operates on
L/, . as we have seen in Corollary (4.12). In terms of local coordinate the
operation is written;

’_ ax-+b, ’__ a,y+b, o z+F(x, y)

X , V= , Z'= —
cx+d, cy+d, (ex+d)"(c,y+d)"

a b, . a b, € SL, %X SL,, F(x,y) ¢ k[x, y] such that the degree of
¢ 4 c; d,

F(x, y) in x<m, the degree of F(x,y)in y<<n. The stabilizer group at
{0, 0,0) is K={D, BX B| F(0,0)=0} where B is a Borel subgroup con-
sisting of the lower triangular matrices and @, is the transformation
sending xw>x, y+>y, ze>z-+F(x,y). The weight of constant term
transformation @,, ce k is (m,n) with respect to a Cartan subgroup

{(’1 ,_l)x(’z rl)}cBXB. Since G/H—G/U,H is an Ab-bundle,
1 2

(Ker ¢)° is solvable and the dimension of a maximal torus is at most 1 (see
Lemma (1.21), Umemura [U3]). The unipotent radical of (Ker ) is
abelian (see Umemura [U3]). For the same reason as above, we may
assume (Ker ¢)° is unipotent. The same argument as above gives us an
isogeny +: U SL,—~G. Let H=+"(H) and modulo finite group we
embed (G, G/H) into the above automorphism group of L/, ,, for suitable
m, n. It follows from our assumption, letting p: U _SL,—SL, be the
projection p(H)=G,,. We may assume G, is the diagonal subgroup of
SL,. Since we have 1—-U N H—H->G,—1, a maximal torus of H is
1-dimensional and we may assume H=(UNH)G,. Let U=V,DV,®
-+ -@V, be a decomposition of SL,-module U into the direct sum of
irreducible modules ¥V, of highest weight n,<m,<.-.<n,. By the same
argument as in the proof for operation (5) n,<n,<---<mn,. Since ANU
is G,-invariant subgroup of codimension 1 of U, all the weight except for
at most 1 appear in A N U. Let [ be the weight such that / appears in U/H N
U. Since (G, G/H) is almost effective, H contains no normal subgroup of
positive dimension hence the weight / appears in ¥, 1<{i<s. Therefore
n;=n;mod 2. Leti:SL,=—>SL,XSL,,i(g)=(g,’g¢™),geG. V,QV,is
considered as an SL,-module by i. - By counting the dimension of eigen-
spaces, we conclude, as SL,-module, V,®V, is isomorphic to the direct
sum Vi, @ Vinin-2®- - - @DVin_n, where Vi, denote the irreducible
SL,-module with highest weight j.
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The weight of constant term transformation, which is (m, n) as SL, X
SL,-module, is m—n. Now we take m, n so that m4-n>n,>n>I=m—n.
Then U=V,®---®V, is an SL,-submodule of V,,®V, hence U SL, is a
subgroup of (V,®V,) (SL,®SL,). The intersection of the stabilizer group
K and U _SL, may not be H but as in the proof for operation (5) by
replacing A by an automorphim of the SL,-module U, we may assume
H=KN U_SL, as desired.

Let us give an outline of the proof of for operation (7) in (3.57). As
above we treat the case where there exists an isogeny +: G=U .SL,—G.
Let H=+"'(H). U is abelian as before and UNH is D,-invariant.
Therefore U=V, ®: - -DV,, with n,<.-.<n, as above. But the weight
appearing in U/U N H is necessarily 0, n,’s are even and n,;=n; mod 4

since (_(1) (1)) e D.,. By the same argument as for operation (6) we may

assume H=(UN H)D~. Letusembed SL, in SL, by the degree 3 irreducible
representation. Let W be the natural irreducible representation of SL, of
degree 3. As in 2 variable case, J, is a homogeneous space of S™(W)_SL,
where S™(W) is the m-th symmetric power of W. In terms of local
coordinate, the operation of S™(W) SL, is written;

o ax+by+tc y= dxtey+f  _ z+F(x)

T ogxdhy+i’ gx+hy+i’ (gx-+hy+i)™

where F(x, y) is a polynomial of degree <<m. We can thus determine the
stabilizer group K of S™(W) SL, at (0,0,0). By the above inclusion
SL,=—SL,, S™(W) is an SL,-module. By counting the dimension of the
G, -eigen-spaces, we get Sublemma (5.37.5). As SL,-module, S™(W) is
isomorphic to V,, @V gn_nD- - -.

By taking as m a sufficiently large even or odd number according as
n,=0 or =2 mod 4, U is an SL,-submodule of S™(W) hence U SL, is a
subgroup of S™(W) SL,XSL,. Then by replacing A by an automorphism
of SL,-module U, we may assume H=KN U SL, q.e.d.

Next case that we want to treat is
Subcase (5.38). The algebraic group o(G)C Aut G/U,H is solvable.

Proposition (5.38.1). If o(G) is solvable, then G is contained in one of
the conjugacy class of Theorem (2.2).

Proof. The proposition is proved by a case by case verification for
¢(G). Since the proofs are similar, we give the proofs for 2 cases: ¢(G)
reductive and ¢(G) unipotent.
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Lemma (5.38.2). If o(G) is solvable and reductive, then o(G)=G, X
G,, and the conjugacy class of (G, G/H) is contained in one of the conjugacy
classes of the operations of Theorem (2.2).

Proof. ¢(G) is a torus in Aut G/U,H which operates generically
transitively hence ¢(G)=G,, X G,,. The morphism (G, G/H)->(G, G/U,H)
induces an exact sequence:

I——)N—)G—SD—>G,,L X G,—1,

where N=Ker¢o. Let T be a maximal torus of G. Then T is mapped
surjectively onto G, X G,, by ¢ and therefore there exists a 2-dimensional
torus 7/ T which is mapped surjectively onto G,, X G,,. Since N° op-
erates on each fibre of f which is isomorphic to A!, N° is solvable hence G
is solvable. Let us first assume rank G=2. The unipotent radical U of
G is contained in NV and G is the semi-direct product U_ T’ (cf. Borel [B]).
Since UCN and the fibre of fis A', U is abelian (cf. Umemura [U3)).
Let WCU be a 1-dimensional 7’-invariant subspace. Thus the group
W T’ operates transitively on G/H because the orbit WH is a fibre of f
and 7”H is 2-dimensional in the horizontal direction. Since dim W T/ =
3, W.T'NH=H’is a finite group. By Borel [B], we may assume H’'C
T’. Then G/H=W T'|H’ =W X(I'/H’). Taking an appropriate iso-
morphism 7/ ~G,, X G,,, we may assume

H'={(&,%) e G, X G,|&r=1, &r=1}.

Let (z, x’, »’) be the natural coordinate system on W .T'~W G,XG,,
then (z, x, Y)=(z, x¥’™, ') is a coordinate system on W T’/H’. The
operation of T” is (z, x, y)—(tftiz, t™x, t7y) for (¢, t,) € G,, X G, =T". Let
us describe the operation of U. Then, U is a unipotent algebraic subgroup
of Al-bundle automorphism of G/H over G/U,H. We get a commutative
diagram:

or — s qu,mH

| |
WX T'|H T'/|H’
2 o !
ALY AL AN prOJectlon; AV AN

where A”'=A'-a point. U is abelian hence isomorphic to a product of
copies of G,. Now it is easy to see changing the fibre coordinate if
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necessary, an operation of a product of copies of G, on A'-bundle A'X
A" X A"— A" A’ is contained in the following group for a sufficiently
big integer N:

(z, x, )—>(z+f(x, »), x, )

where f(x,y) € k[x, y] and deg f(x, y)<N (see Section 2, Umemura [U3].
The remaining case is rank G=3. In the proof for rank G=2, when we
take eigen-space W, we choose W so that W is a T-eigen-space. Then
the above proof works similarly.

Lemma (5.38.3). If ¢(G) is unipotent, then the comjugacy class of G
is contained in one of the conjugacy classes of the operations of Theorem
2.2).

Proof. Let us put G=U, U,=¢(G) and N=U,. As in the proof
of Proposition (5.37.1), we may assume U, to be unipotent. We have an
exact sequence:

(5.38.4) 1-U—U-25U,—1.

Let W, be a 1-dimensional subgroup of U, contained in the center of
U,. By Umemura [U3], there exists a 1-dimensional subgroup W, of U,
such that the semi-direct product W, W, operates transitively on G/U,H
which is isomorphic to A’. By Umemura [U3], the extension (5.38.4)

splits over W, and W,. Lets,; be a section of go“‘(Wi)ﬂ W, Let U’'=
U, s;(W).s(W,). Then U’ is a closed subgroup of U and operates tran-
sitively on G/H. Let H’=U’(NH. Then the exact sequence (5.38.4)
gives

1-U —> U —> G, xXG,—0
(5.38.5) l

@
U,.s:{(W), s Wo)——> W, W,—0.

Since W, W, operates effectively on G/U,H~A*?, H'C U,. The map
A'XAXAT = A XA X (U/H)— (s(W) (W) U)/H' = U'|H’ = U/H
given by (x, ¥, u,H )—s,(x)s,(y)u,H, is an isomorphism of A'-bundle over
A? (see the diagram

A*}XA'—U/H
(5.38.6)
A* = U/U,H).
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Thus it defines a coordinate system on U/H. By the Proof of Lemma
{4.4) there exists an integer N such that the operation of U, on U/H is
contained in (x, y, 2)—(x, ¥, z-+f(x, ¥)) where f(x, ) € k[x, y], deg f<N.
To show Lemma (5.38.3), it is sufficient to prove that there exists an
algebraic group L contained in Cr, such that for any G, contained in U,
it is contained in L. It is sufficient to check this for those G,’s generating
U. Let M~G, be a subgroup of U. If M is not contained in U, then
©: M—¢(M) is an isomorphism because we are in characteristic 0. Hence
by the isomorphism (5.38.6), the operation of M on U/H is given by
&, 3,2~ (@, x,), M x,y,2) with g, x,») e A% b, x, y, z) e AL
Therefore by the Proof of Proposition (2.26), Umemura [U3], there exists
an integer N’ independent of the algebraic group M U such that the
operation of ¢(M) on U/U,H =A’ (x, y)—g(4, x, y) is contained in the
following group:

(x, Y)—>(x, y+i(») i(y) e k[y], degi(y)<N".

As h(2, x,y,z) is an affine bundle morphism, A(2, x, y, z)=a(x, y, H)z+
b(z, y, 2) where (x,y)e A, 2e M =G, and a(x, y, A) € k[x, , 4, b(x, y, 2)

€ k[x, y, 1. Since A4, x, y, z) is an automorphism for any 1e M ~G,,
a(x, y, A) is invertible. Hence a(x, y, 1) is a constant independent of x, y, .
It follows now from A(A4-A,x,y,2)=h(,x, y,z)o WX, x,y,z) that
a(x, y; A)=1. Hence for a sufficiently large integer N/, M is contained in
the algebraic group generated by:

%, ¥, 2)—>(x, y+ f(x), 2)

(x, ¥, 2)——>(x, ¥, 2+ b(x, ¥))
where f(x) € k[x], b(x, y) € k[x, y] such that

deg f(x),  degb(x, )<N".

Since we have to check for finitely many M’s, combining what we have
done for U, with the above result, for a sufficiently large integer N, U is
contained in an algebraic group generated by:

(x, 3, 2)—>(%, Y +£(x), 2)
(x, 7, D—>(x, 3, 2+b(x, )

where f(x) € k[x], b(x, y) € k[x, y]
deg f(x), deg b(x, y)<N.

Lemma now follows from Corollary (4.17).
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(5.39) @(G) is neither solvable nor reductive.

Since the unipotent radical U’; of ¢(G) is normal, we have on G/U,H
either the orbits of U’ are 1-dimensional or U’, operates transitively on
G|U,H.

Sublemma (5.39.1). If the orbits of U’ on G/U,H are 1-dimensional,
then G|U,H is isomorphic to ¥,, (im=0,1,2--.). The conjugacy class of
G is contained in one of the conjugacy classes of the operations of Theorem
2.2).

Proof. The first assertion is-proved in Umemura [U3]. Let us
briefly review it. Let '=¢(G) and G'/H’=G/U,H. Then we get a
morphism f’: G'/H'—G’|U,H’ and the fibre of f” is Al. f’ defines an
morphism of algebraic operations (¢’, f*): (G’, G'/H")—(PSL,, P*). Since
S’ is an A'-bundle, (Ker ¢")’ is solvable. Therefore, as we assume G’ is
not solvable, ¢’ is surjective (cf. [U3]). Now it is easy to see the affine
bundle f’: G’/H’—P* is isomorphic to F,,—P! for a certain m>0. The
second assertion is proved by Proposition (5.36).

Sublemma (5.39.2). If U/, operates transitively on G|/U H, (¢(G),
G|U,H) is the special affine transformation group or the affine transforma-
tion group of 2 variables and the group G is contained in one of the conjugacy
classes of the operations of Theorem (2.2).

Proof. In fact by Corollary (1.13), Umemura [U3]. (¢(G), G/U,H)
is contained in the affine transformation group of 2 variables, U, =G?
and putting G'=¢(G) and G'/H'=G|U,H, we get H’ is the reductive
part of G’ and the representation H’—GL(U%) is faithful. Hence, H' =
SL, or GL, because we assume G’ is not solvable and the first assertion is
proved. Let us limit ourselves to the case where G’ is the special affine
transformation group of 2 variables. The affine transformation group
case is treated similarly. Then, we are given an exact sequence:

(5.39.3) 1>N—G—25U% SL,—1

‘where N is the kernel of ¢. Since U, SL, is simply connected, N is con-
nected. N is solvable, the unipotent radical of N is abelian and the rank
of N is at most equal to 1 (Lemma (1.21), Umemura [U3]). We assume
for simplicity N is unipotent. The case rank N=1 is treated similarly.
Since dim N/NNH=1, ¢(H) is of dimension 3 and contained in the
stabilizer of a point of the operation (U, SL,, U’ SL,/SL,) and hence we
may asssume o(H)CSL, and hence o(H)=SL,. Therefore we have an
exact sequence: '
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1-NN H——>H——¢—>SLZ—>1.

In particular H is connected, N N H is an SL,-invariant subspace of codi-
mension 1 of N and we may assume H=(NNH) SL,. Let N=F_.,V,
be a decomposition into a direct sum of irreducible modules of SL,-module
N. Then as we have secen above, there exists an 0<i<{r such that
dim V,=1. When we define a coordinate system on N/NN H, we use a
coordinate system z on V,. Let U,=G,®G, and take sections s; on
G,®0 and s, on 0DG,, of ¢.

AP A5 (NN HYX G, X G5V, X (G, X G )—=>G/H

((x, ), 2) (z, x, Y) >(z, X, Y)—>z8s,(X)sx( V) H

By using this coordinate system, as in the Proof of Lemma (5.38.3), the
unipotent radical U of G is contained in the following algebraic group %,,:

(x, y, 2)—>(x+a, y+b, z+ f(x, )

where a, b ¢ G, f(x, y) € k[x, y] and deg f(x, y)<<n. Let us describe the
operation of semi-simple part of G which is isomorphic to SL,. We may
assume, by the definition of the coordinate system on G/H, that SL,
operation on G/H is given by: (x,y, z)—(ax+by, cx+dy, Mg, z, x, y))

for g= (? 3) € SL, where 4 is a regular function on SL, X A®. Since SL,

operation is an automorphism group of trivial A'-bundle G/H—G/U,H,
(g, z, x,y) is an affine transformation: there exist regular functions
a(g, x, ¥), b(g, x, ) on SL,XA* such that a(g, x, y) is invertible (i.e.
a(g, x,y)~* is also regular) and such that (g, z, x, y)=a(g, x, Y)z+
b(g, x,y). The regularity of a(g, x, y)~* shows a(g, x, ¥) does not depend
on x, y hence we write a(g) =a(g, x, y). Since (x, y, z)—(ax-+by, cx+dy,
h(g, z, x, y)) for g e SL, is an operation, {(agg) b(g,lx, Y )>} is a co-

gESLy
cycle. In particular g—a(g) is a representation of SL, and hence a(g)=1.
Now we have show SL, operation is written as follows:

(x, y, 2——>(ax+by, cx+dy, z+ 3,  a, (&xy).

finite sum

Hence taking N sufficiently big, G is contained in the algebraic group %,
generated by the following:

(x, y, D—>(ax+by, cx+dy, z)
x, 3, 2—>(x+E&, y+n, z4 f(x, ¥))
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where (g 3) € SL,, &, 9e G, f(x, y) € k[x, y]. Sublemma now follows

from Corollary (4.10).

Conclusion (5.40). Let (G, G/H) be a realization of an algebraic
group G of de Jonguiéres type in Cr,. If G is not reductive and if an (or
equivalently any) orbit of the center of the umipotent radical of G is 1-
dimensional, then G is contained in one of the conjugacy classes of the
operation of Theorem (2.2).

In fact this is a result of Subcases (5.37), (5.38) and (5.39).
It follows from Conclusions (5.28), (5.32) and (5.40).

Conclusion (5.41). Let G be an algebraic group of de Jonquiéres type
in Cr,. If G is generically transitive, then G is contained in one of the
conjugacy classes of the operations of Theorem (2.2).

Classification of even generically intransitive algebraic groups in Cr,.

We examine the generically intransitive case. Let (G, X) be a
realization of an algebraic group G e Cr,.

Case (5.42). G has a 2-dimensional orbit on X.

If G has a 2-dimensional orbit on X, then there exists a G-invariant
non-empty open subset X’ of X such that all the G-orbits on X’ are 2-
dimensional (see Borel [B]). As also (G, X’) realizes G, we may assume
that all the G-orbits on X are 2-dimensional. Let U, denote the center
of the unipotent radical U of G.

Subcase (5.42.1). U, has a 2-dimensional orbit.

Replacing X by a suitable open set, we may assume by a Theorem of
Rosenlicht [R] that the quotient f: X—G\X exists. As we assume the
existence of a 2-dimensional U,-orbit, there exists a non-empty open set
W of G\X such that on each fibre f~'(w), U, has a 2-dimensional orbit
for we W. Replacing X by f~'(W), we may assume that on any G-orbit
on X, U, has a 2-dimensional orbit. We can now apply Corollary (1.13),
Umemura [U3], to the operations of G on G-orbits on X. Here are some
conclusions: (1) The G-orbits coincide with the U-orbits, (2) G\X=U,\X,
(3) The fibre f*(w) is isomorphic to A? for w e G\X, (4) Since the unipotent
radical U operates on each fibre A’ of f through translation, U is abelian
and U=U,. Let us show that A>-bundle f: X—G\X is locally trivial (of
course for the Zariski topology). In fact, let w be a point of G\X which
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we fix. We can find a 2-dimensional subgroup U’C U, such that U’
operates transitively on f~'(w). Then, there exists a non-empty open set
WC G\X such that U’ operates on each fibre f~'(w) transitively for w e W.
Therefore on W the affine bundle fis a principal U’-bundle. Since U’ is
abelian, the principal U’-bundle f: f'(W)—W is locally trivial. Now we
may assume f: X —G\X is trivial; X =A?X (G\X) and f: A*X (G\X)—G\X
is a projection. Let G=U G, where G, is a reductive part of G. It
follows from Lemma (1.13) and Lemma (1.21) [U3] that G, operates
effectively on each fibre and G, is a subgroup of the affine transformation
group of 2 variables and hence G, is isomorphic to G,,, G,, X G,,, SL,, GL,.
We shall show there exists a section s of f'such that s(w) is a fixed point of G,.
Let z be a point of A>. Then §(w)=(z, w) e A’X(G\X)=X is a section
of f.  The section § does not satisfy our requirement. Hence we modify
§ to obtain 5. Let N(G,) be the normalizer of G, in G and @: G\X—
G/N(G,) be a morphism defined by @(w)=((stabilizer at §(w)) for w e G\X.
It is easy to see that there exists a normal subgroup U” contained in U
such that G is a semi-direct product G=U" N(G,) because G, is reductive.
Therefore n: G—G/N(G,) has a section and we can find a morphism
@: G/X—G such that the diagram
]
GO\ X——G

G/N(G,)

commutes. Let us now define a section s of f by s(w)=®(w)5(w).
Then it is evident that s is a section of f and s(w) is a fixed point of G,.
Let we G\X. There exists a subgroup U’C U such that U’ is 2-dimen-
sional, U’ is G,-invariant and such that f~!(w) is a U’-orbit. The opera-
tion of U’ on f~'(w) is necessarily effective since U’ has no subgroup of
dimension O as we are in characteristic 0. As we have seen above, there
exists a non-empty open set W of G\X such that for any w’ e W, f~'(w)
is a U’-orbit. Replacing X by f~'(w), we may assume f~'(w) is a U’-orbit
for w e G\X. Then we determine a coordinate system on X:

U’ X (G\X)—=>X

v, X)—>v_s(x)

In terms of this coordinate system, the operation of G, is expressed as
follows; for g e G,, g(vs(x)) = gu(g~'g)s(x) = (gvg~")(gs(x)) = (gvg~")s(x)
since G, Cstabilizer at s(x). Namely, the operation of g € G, sends (v, x)
to (gug', x). If we choose an appropriate coordinate system on U’
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(a base of the vector group U’) the operation of G, is given:
(i) If G, is isomorphic to G, (¥, z, X)—(ty, z, x), t € G,,;
(i) if G, is isomorphic to G,, X G,,, (¥, z, x)—(tty, t7z, x) for (¢,, t,)
e G,,, where [, m are mutually prime natural numbers;
(iii) if G, is isomorphic to SL,, (¥, z, x)~(ay+bz, cy+dz, x) for

<z Z) e SL,;

(iv) if G, is isomorphic to GL,, (¥, z, x)—(ay+bz, cy+dz, x) for

(Z 3) ¢ GL,

As in the Proof of Proposition (5.38.1), there exist finite dimensional
k-vector subspaces L, M of the vector space H(G\X, 0) of regular func-
tions on G\X such that the operation of the unipotent radical U on X is
contained in the algebraic group:

7z, Y—>(y+f(x), z+g(x), x), felL geM

If G\X=P, the operation (G, X) is a suboperation of (J1) of Theorem
(2.2). If G\X is not complete, then G\X is considered as an open subset
of Al. Let us fix an immersion G\X=—>A'. There exists a regular
function ¢ on G\X such that ¢! is also regular and such that pL=1,
@M =M’ are regular on A'. Then, let us take a new coordinate system
(p(x)y, ¢(x)z, x) instead of (¥, z, x) and we take as x a coordinate on A'.
The new coordinate system is denoted by (y,z x) again. Then the
operation of G, is expressed as in the old coordinate and the operation of
U is contained in the algebraic group:

0, 2, )p—>(r+f(x), z+8(x), ),  fel, geM’
Hence U is contained in the algebraic group:

O, z, x)—>(y+ f(x), z+g(x), x) where f, g are polynomial
in x with their degrees bounded.

Therefore (G, X) is contained in (J9) by Corollary (4.17).

Subcase (5.42.2). The dimension of any U ,-orbit is 1.

Let (G, X) be a realization. As in (5.42.1), we may assume there
exists an effective algebraic operation (G’, Y) and a morphism of algebraic
operations (¢, f): (G, X)—(G’, Y) such that f: X—7Y is an A'-bundle and
the fibres f~'(») are U,-orbits for y ¢ ¥. Since (G, X) is generically
intransitive, (G’, Y) is also generically intransitive. As Y is dominated by
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X, Y is rational. It follows from Subcase (C-intr-1), Umemura [U3],
either (1) (G, Y) is isomorphic to (PSL,, P' X W) where W is a rational
curve and PSL, operates on the first factor or (2) G’ is solvable. Let us
treat first the case G’ is solvable. Then G’ is isomorphic to one of the
following: G,, G’ G,, G, where r is a positive integer (cf. Umemura
[U3]). Since the other cases are handled similarly, we assume G’ ~G} G,,.
Replacing Y by a G’-invariant Zariski open set, we may assume that the
quotient of Y by G’ exists: There exists a morphism of algebraic opera-
tions (v, g): (G’, Y)—(1, Z) such that g: Y—Z is an A'-bundle. By the
Liiroth theorem, Z is a rational curve. If we replace Z by a Zariski open
set, we may assume Y =A'XZ, Z is non-singular and not complete.
There exists a finite dimensional k-vector subspace ¥ C k[Z] such that the
operation of G’ on A' X Z is contained in the algebraic subgroup generated
by the following:

O, Xp—>(y+f(x), x)  for (y,x) e A'XZ,
(y, x)—>(Ay, x) for (y, x) e A' X Z, where t(x) € k[Z], 1€ G,,.

To describe the operation (G, X) we need

Lemma (5.42.2.1). Any A'-bundle over Y=A'XZ is trivial. In
particular X ~A' X Y.

Proof. Let us first show that Pic Y=0. In fact since Z is open
rational curve, there exists an open immersion i: ZCA' hence an open
immersion ¢: Y=A'XZCA'XA'. Since Y is non-singular, a line bundle
over Y is defined by a Weil divisor. Therefore, the map ¢*: Pic (A' X A")
—Pic (A' X Z) is surjective. Since Pic (A’ X A")=0, Pic (A'XZ)=0. An
A'-bundle over Y is now defined by an exact sequence: 0—0,—E—0,
—0. Since Y is affine, the extension splits and the lemma is proved.

We have shown X=A'XY=A'"XA'XZ. As in the Proof of Pro-
position (5.38.1), there exist k-vector subspaces V' Ck(A'X Z) such that
the algebraic group G is contained in the algebraic group:

5, X)—>(z+ f(y, x), y+8(x), %),
2, ¥, X)—>(4z, py, X) for (x,7,2)e A'XA'XZ=X,
where (2, ) € G2, f(3, x) € V', gx) € V.

There exists a regular function (x) on Z such that y»(x)~! is also regular
on Z and such that {(x)V’' Ck[A' X A" and (x)V Ck[A']. Applying the
coordinate change,
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(2, y, )——>(P(x)z, Y(x)y, X).

There exists an integer n such that the operation (G, X) is contained in
the following algebraic subgroup of the automorphism group of A'x A’
XA

(2, ¥, )——>(z+ f(y, x), y+8(x), x)
(2, y, X)—>(2z, py, z) for (z,y, x) € A’ where f(y, x) e K[y, x],
g(x) e k[x], (4, p) € G}, such that deg f(y, x), deg g(x)<n.

Therefore (G, X) is contained in (J9) by Corollary (4.17). If (G', Y)=
(PSL,, P*x W), X is an A’-bundle over P*X W. Since Pic (P'X W)~
Pic P!, a line bundle on P*X W is the pull-back of a line bundle on P
Let #~ p*0(n) be a line bundle on P'xX W where p: P'X W—P! is the
projection. H'(P'X W, )=HYW, O)YQH' (P!, O(n)). Therefore an affine
bundle 4 over P*X W is a line bundle if and only if its restriction A4|P*
X wis a line bundle over. P' X w~P* for any point we W. By Proposi-
tion (2.10), [U3], X|P'Xw is a line bundle on P* for any point w e W.
Thus X is a line bundle L over P'X W. By the same proposition the
operation of SL, on each X|P* X w is linear.

Sublemma (5.42.2.2). Let A be a line bundle over a variety Z. We
assume SL, operates on Z. (SL,-linearization of A is by definition an SL,-
operation on a line bundle A covering the SL,-operation on Z.) Z has at
most 2 SL,-linearizations.

Proof. For g e SL,, we denote by T, the automorphism x—gx of X.
To give an SL,-linearization is equivalent to give an isomorphism ,: A=
T} A of line bundles satisfying =T F, o, for any g, g’ € SL,. Let
Yrig> Yo D 2 linearizations. Then consider the map

Q): XX SLZ_)%OmoX(As A):—‘@;ﬁk's (x’ g)'—>(x= \lf'lg(x)‘lfzg(x)—l)'

On each fibre @ is 2 homomorphism. @(x) should be +1 on each fibre
hence @ is +1. 1t follows from the Proof of the Sublemma.

Corollary (5.42.2.3). The notations being as in the Sublemma, let
{¥}, g € SL, be a linearization then the other linearization is {—+,}, g €
SL,.

Let us now continue the study of (G, X). The semi-simple part of
G is SL, and it operates on X linearly as we saw above. Thus it follows
from Corollary (5.42.2.3) and Proposition (2.11), [U3], choosing a suitable
local coordinate on X, SL, operation on X is given by
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ax-+b +z
I—-—)———, -,
cx+d (cz+d)™

f>t,

By the argument in the Proof of Proposition (5.38.1) shows the operation
of U on X is given by t—t, y—y, z=>z+f(2, ), where f(¢, y) ¢ a finite
dimensional vector subspace M of HYT, 0,)[y]. Then by a suitable
W(t) e HXT, 0,) we change the coordinate (¢, y, z2)—(¢, ¥, ¥(#)z) so that
M C k[t, ] (see Proof of Proposition (5.38.1)). Notice in this new coor-
dinate, SL,-operation on X has same expression. Thus G is contained in
(J3) by Proposition (2.11), [U3].

Subcase (5.42.3). G is reductive (and G has a 2-dimensional orbit).

Let (G, X) be a realization and we may assume X consists of 2-
dimensional orbits. It follows from Lemma (1.21), [U3] that G can be
embedded in Cr,. Hence it follows from [U3], G is finitely covered by
one of the following algebraic group: (i) SL,, (ii) SL, X SL,, (iii) G,, X SL,,
@iv) G, X G,, (v) SL,. We know, a torus in Cr, is, up to conjugacy,
contained in (G, G%) hence in (PGL,, P?). Therefore, we may assume G
is not a torus. Let us first assume G is covered by SL,. Under this
assumption, we can argue as in Subcase (C-intr-1), [U3]. We shall deter-
mine almost effective operation (SL,, X) such that X is a union of the 2-
dimensional orbit of SL,. Replacing X by a smaller Zariski open set if
necessary, we may assume there exists a morphism of algebraic operations
(¢, f): (SL;, X)—(1, Y) such that fis dominant and Y is a rational curve.
Since 2-dimensional SL,-orbit is'isomorphic to P%, fis a P>-bundle. Since
the Brauer group of a curve Y is trivial, the P2-bundle f is locally trivial.
Replacing ¥ by a Zariski open set, we may assume f is trivial, namely
X~Y XP% Lets: Y—X be a section and P is a parabolic subgroup of
SL, consisting of the matrices (@,;) such that a,;, =0 for i=2, 3. Therefore
SL,/P~P*% Let us recall the following.

Lemma (5.42.4). (i) Let P’ be a parabolic subgroup of SL, such
that SL,/P’~P*. There exists an automorphism ¢ of SL, such that ¢(P)
=P’

(ii) Let & be the automorphism group of SL,. We have an exact
sequence

1—Inner automorphism group—%—17Z./2Z—0.,
(i) {pe @ |pP)=P}={Int(g)|g e P where Int(g)(x)=gxg™", x e
SL.}.

(iv) @/Int (P)={Parabolic subgroups P’|SL,/P’' ~P%}.
(v) The fibration 4—%[Int (P) is locally trivial.
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Proof. I SL,/P’~P* hence we have an isomorphism #A: SL,/P’~
SL,/P, then there exists an automorphism f: SL,—SL, making the diagram

sL, 1> s,

SLyP'—">SL./P

commutative, since Aut P*=PSL,. This proves (i). The assertion (iii) is
a linear algebra. The assertions (ii) is well-known (cf. Bourbaki and
Borel [B]). Assertion (iv) is a consequence of (i). ¢ (hence laso ¢/Int P)
has 2 connected components isomorphic to SL, (resp. SL,/P). We have
to show the fibration SL,—SL,/P is locally trivial. This is quite elemen-
tary. As SL;—SL,/P ~P*is given by (a,,)—(ay, a4y, a;;) € P?, for example
on A’=={(x,, X, X,) € P*| x,=1} a section is given by

1 00
(17 X1 xz)*‘_‘“) X1 1 0l q.e.d.
x, 0 1

Let us now consider the map F: Y —{parabolic subgroups P’|SL,/P"
~P*=¢/Int (P) defined as follows: for y ¢ ¥, y+—>~* (stabilizer at s(y),
where s: Y X is the section (cf. Lemma (5.42.4))). Itis a linear algebra
% [Int (P)={Parabolic subgroups conjugate to P} || (Parabolic subgroup
conjugate to ‘P}. Since Y is connected, F(Y') is contained in one of the
connected component. From now on we assume F(Y)C{Parabolic sub-
groups conjugate to P}, since the other case is treated similarly. Then we
have a factorization F: Y—SL,/PC%/Int(P). It follows from Lemma
(5.42.4) (v), by replacing a smaller open set if necessary, we may assume
there exists a morphism F: Y —SL, such that the diagram

F 5 SLs
7 P
Ye—SL,/P

is commutative. For g e SL,, we denote by L,: X—X the translation by
g; for x e X, L, (x)=gx. Let A XSL,, YXSL,/P)=(SL,, Y XSL,/P) be
the product operation. Let f”: V' X SL,/P—X be a morphism defined by
f((», gp))=gF(y)'s(y). The morphism f’ is well-defined and is an
isomorphism. Then (Id, f*): (SL,, Y X SL,;/P)—(SL;, X) is an isomor-
phism of algebraic operations. Hence we have proved

Lemma (5.42.5). In Subcase (5.42.3), if we assume G is finitely covered
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by SL,, G is contained in the conjugacy class of (PGL, X PGL,, P' X P?).
In a similar way, we can prove

Lemma (5.42.6). In Subcase (5.42.3), if we assume G is finitely
covered by SL, X SL,, G is contained in the conjugacy class of (PGL, X PGL,
X PGL,, P'XP' < P").

Tet us now study the case G is finitely covered by G, XSL,. G, X
SL, operates on X. In view of Lemma (1.21), [U3] and Lemma (2.22),
[U3], we may assume the stabilizer at a point of X is conjugate to the
subgroup K, = {(t", C; (t)_l>> e G, XSL,|tek* xe k} for an integer n.
We see below the morphism f: X—Y has a rational section. In fact we
may assume as before X consists of only 2-dimensional orbits of G. The
group G, X SL, operates on S and we may assume a 2-dimensional sub-

group K— {(t ((1) {)) € G, XSL,|t ¢ k*, pe k} has a 2-dimensional orbit

since the stabilizer of a point is conjugate to K,. Let X’ be the union of
the 2-dimensional orbits of K on X. Then X’ is a non-empty Zariski
open set of X. Since fis flat, f(X’) is an open set of Y which we denote
by Y’. Y’is the quotient of X’ with respect to the action of K. Since K
is solvable, the restriction of f to X’ (hence fitself ) has a section locally
on Y’. Therefore replacing Y by an open subset U and X by f~'(U), we
may assume f: X—Y has a section 5. Let

Z={(g, Y) € (G,, X SLy) X Y| gs(») =5(»)}.

Then Z is a group scheme on Y parametrizing the stabilizer at s(y), y € Y.
Letusput Z’=ZN(1XSL,)X Y. Z, is conjugate to K, ,, for an integer
z(y) depending on y € Y. We want to show that the number n(y) is con-
stant on an open set of Y hence we may assume on Y by replacing by the
open set of Y. Since the absolute value |n(»)| is the number of the con-
nected components of Z;,,, |#(»)| is upper semi-continuous and constant
on a non-empty Zariski open set of Y. For an integer n+£0, K, and K_,
are images one another of an outer automorphism i of G,, X SL,; i(f, y)=
(t ', g) for (t,8) € G, XSL,. Hence the quotient variety G,, X SL,/K,, is
isomorphic to G,, X SL,/K_,. But it is easy to see they are not conjugate.
Let y, e Y'and Z,,,, be conjugate to K, 7,70, Let us put ¥=(Z/2Z) X
PSL,=Aut G,, X Inner Aut SL,C Aut(G,, XSL,). An element of G, X
SL, defines an inner automorphism and hence we have a morphism +: G,,
XSL,—%. Lets,,={pe % |pK,)K,} Let#,={pe%| oK, )T
K,}. Then s, =+(K,). We have an isomorphism {subgroups of G,
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X SL, conjugate to K, or K_, }~%s#,.. Since 5 ,, is connected %/,
has two connected components {subgroups conjugate to K,} and {sub-
groups conjugate to K_,}. 9—%/#,, is locally trivial since 57, is
solvable. Let F: Y—%/#,, be defined as follows: F(y)=¢ mods#,,
such that ¢(#,)=Z,,, for ye Y. Since %/, has two connected
components, n(y) is constant. Now argue as in Lemma (5.42.5), using
G,, X SL, instead of % when n,=0, to conclude that G is almost effectively
realized by (1 X(G,, X SL,), P* X Aut® F},), m=|n,|, hence contained in one
of the conjugacy classes of Theorem (2.2).

It remains to study the subcase where G is finitely covered by SL,.
As we noticed in [U3], there are up to conjugacy 3 types of closed sub-

groups of dimension 1: (i) U"={<g 24) eSL,|a"=1, aek* be k},

.. a O
n:LLBHUOOT:{@ %,

SL, generated by T and (__(1) é) As before SL, operates on X and we

) eSL,|ae k*}, (iii) D, =the subgroup of

may assume that X consists of 2-dimensional orbits and that there exists
a morphism of algebraic operations (¢, f): (SL,, X)—(1, Y) where fis a
quotient map onto a rational curve Y. We can prove by the same argu-
ment as in the preceding subcase that f has a rational section and hence
we may assume f has a section s. Then we define a group scheme Z over
Y: Z={(g,y) e SL,X Y|gs(y)=s(y)}. Z is a subgroup scheme of dimen-
sion 1 over Y of SL,X Y. Then there exists a non-empty Zariski open
subset U of Y such that we have either (Z,)° is unipotent for all ye ¥ or
(Z,) is a torus for all ye Y. Therefore we may assume either (Z,)° is
unipotent for all y e Y or (Z,) is a torus for all y e Y. In the first case,
the same argument as in the preceding subcase allows us to conclude:

(i) (Z,) is conjugate to U,,, and the number n(y) is independent
ofyeY,

(ii) The normalizer of U, in SL, is a Borel subgroup

(e

(ii)) The projection p: SL,—SL,/B is locally trivial,
(iv) Letting F: Y—>SL,/B be the same morphism as in the preceding
subcase, we can locally lift F to F so that we have a commutative diagram

aekﬁbek}

/' SL,

Ve

N

- 1p
v E ,s1yB,
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(v) Replacing F by F, we may assume F is globally defined and
hence the conjugacy class of (G, X) is the same as that of (1 XSL,, P'X
SL,/U,). Therefore the conjugacy class of (G, X) is contained in the
conjugacy class of (SL,x Aut’F,, P* X F}) hence in one of the conjugacy
classes of Theorem (2.2).

We assume that (Z,)° is a torus for ye Y. We want to argue as
above. The only difference is that the normalizer of T or D, is D, hence
the projection SL,—SL,/D_=SL,/the normalizer of T or D, does not
have a local section for the Zariski topology. This subtle difference gives
rise to an interesting family (J11) of maximal algebraic groups contained
in Cr,. Let us argue however in a similar way but carefully. We may
assume that we have either (a) Z, is conjugate to T for all y e Y or (b) Z,
is conjugate to D, for all ye Y. The normalizer of T or of D,, is D.,.
Let F: Y—SL,/D., be defined as follows: for y e Y, FO)HF(y) '=Z,,
where H is T or D, according as (a) or (b). The projection p: SL,—
SL,/D.. does not have a rational section but it has a section over an étale
2-covering SL,/G,,—SL,/D... Thus there exists a étale 2-covering g: Y—Y
such that Fo ¢ has a local lifting F for the Zariski topology:

/ o > sLe,

) gEKEN Y—-)SLZ/D

We may assume F is regular on ¥. Hence by the same argument as
above, the operation of SL, over the fibre space f: X— Y is isomorphic to
the product operation if we pull it back over ¥. Namely the operation
(SL,, X) is given by the product operation plus a descent data through q.
Let us classify the descent data. We notice, first of all, that when we
proved (SL,, X X, ¥) is isomorphic to the product operation, so far as
the isomorphism (@, f): (SL,, ¥ Xy X)=(SL,, ¥ X SL,/H) is concerned, ¢
is the identity automorphism of SL,. Therefore the descent data is given
such an automorphism. Since g: ¥— Y is an étale 2-covering, there is an
involutive automorphism ¢ of ¥ such that ¥/(:)~Y. To give a descent
data on the product operation (SL,, ¥ X SL,/H) is to give an involutive
automorphism (Id, /) of algebraic operation (SL,, ¥ X SL,/H) such that
f’ covers the involution ¢: gop,=p, o f’. We need

Lemma (5.42.7). The group of the automorphisms (Id, f) of the
algebraic operation (SL,, SL,/T) is isomorphic to Z[2Z. The group of the
automorphisms (14, f) of the algebraic operation (SL,, SL,/D.,) is isomorphic
to 1.
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Proof. The first assertion was proved in Lemma (3.9.1) and the
last assertion is proved by the same method.

Corollary (5.42.8). If Z, is conjugate to D, for any y € Y, the opera-
tion (G, X) is isomorphic to the product operation (1 X PGL,, ¥ X PGL,/D,)
where T is a Cartan subgroup of PGL,. In particular the conjugacy class
of (G, X) is contained in the conjugacy class of (PGL, X PGL,, P X P?).

Proof. The lemma implies there is only trivial descent data on ¥ x
SL,/D... For the inclusion (PGL,, PGL,/D_)=—>(PGL,, P?), we refer to
Umemura [U3].

Corollary (5.42.9). If Z, is conjugate to T forany ye Y, G is con-
tained in one of the conjugacy classes of Theorem (2.2).

Proof. 1If Z, is conjugate to T for any y € Y, then the only one non-
trivial descent data on (1XSL,, ¥ X (SL,/T)) is given by (Id, 4): (1 XSL,,

PXSLIT)—AXSL,, Y X SL/TY, kv, D)= (e, g9 §)T) for

ye ¥, geSL, by Lemma (5.42.7). Corollary now follows from Proposi-
tion (4.26) and Lemma (4.28) since Y is rational by Liiroth’s theorem.

Case (5.43). G has at most 1-dimensional orbit.

The last case to examine is the generically intransitive group of which
the orbits are at most 1-dimensional. Let (G, X) be an algebraic operation
realizing such a group in Cr,. As in the preceding case, replacing X by a
Zariski open subset, we may assume that (1) X consists of 1-dimensional
orbits, (2) there exists a morphism of algebraic operation (¢, f): (G, X) —
(1, Y) where Y is the quotient of X by G. Since X is rational, Y is
rational by a theorem of Zariski [Z].

As in the case of generically intransitive groups in Cr, we can prove

Proposition (5.43.1). Let G be an algebraic group contained in Cr,.
If a (or any) realization of G has at most 1-dimensional orbit, then G is
contained in one of the conjugacy classes of Theorem (2.2).

We sketch the proof. If G is reductive, as in Subcase (5.42.3) G is
isomorphic to G,, or PGL,. In the first case G,, is contained in G, and
in the second case if we replace Y be a Zariski open set the same argu-
ment as in Subcase (C-intr-1), [U3] shows G is realized by the product
operation (1 X PGL,, Y X PY). If G is unipotent, the fibration f: X—Y is
locally trivial for the Zariski topology and we may assume f: X—7Y is
trivial. G is abelian since its operation on each orbit is abelian. G is
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nothing but a finite dimensional vector space V' contained H(Y, @y) (cf.
Lemma (4.4)). Replacing Y by a smaller Zariski open set, we may assume
Y is a Zariski open set of A%. There exists a certain rational function f on
A’ such that £ V C H%(A?, 0,.) (cf. Proposition (5.38.1)). By this twist, G
is contained in (J7) of Theorem (2.2) for an appropriate #n. If G is neither
reductive nor unipotent, the operation of the unipotent radical is nor-
malized as above and we have to control the operation of a torus. The
dimension of a maximal torus is 1 by Lemma (1.21), [U3] and it is con-
trolled as in Subcase (C-intr-2), [U3].

§ 6. Preof of the second assertion of the main theorem

Let us recall some basic facts on the inclusion of algebraic subgroups
of Cr,.

Proposition (6.1). Let (G, X)), (G,, X,) be realizations of conjugacy
classes of algebraic subgroups of Cr,. The conjugacy class of (G, X)) is
contained in the comjugacy class of (G,, X,) if and only if there exists a
morphism (¢, f): (G,, X))—(G,, X,) of law chunks of algebraic operation
such that f is birational.

See Proposition (1.10) Umemura [U3].

Let (G, X)), (G,, X;) be algebraic operations and (¢, f): (G,, X)—
(G,, X,) be a morphism of law chunks of algebraic operation. Then there
exists a non-empty G,-invariant Zariski open set U of X, such that f is
regular on U. Since a morphism of algebraic group germs ¢: G,—G, is
necessarily regular by Weil [W], (¢, f): (G, U)—(G,, X,) induces a mor-
phism of algebraic operations. We have thus proved

Proposition (6.2). Let (G, X)), (G,, X,) be realizations of conjugacy
classes of algebraic subgroups of Cr,. We assume (G,, X,) is a homogeneous
space. Then the conjugacy class of (G, X,) is contained in the conjugacy
class of (G,, X,) if and only if there exists a morphism (o, f): (G, X))—
(G,, X,) of algebraic operations such that f is birational.

Now we being the proof. In what follows we use the numbering
((a)-(b)) which says the proof that any operation of type (a) is not contained
in any operation of type (b) of Theorem (2.2). We have shown in our
preceding papers [Ul], [U2] that (P1), (P2), (E1) and (E2) determine
maximal (conjugacy classes of) connected algebraic subgroups of Cr,.
Let us therefore begin with the proof that (J1) is not contained in other
operations of the main theorem.

((ID~(x)) In view of Proposition (6.2), it is evident that the con-
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jugacy class of (J1) is not contained in any other conjugacy classes of the
algebraic operations of the main theorem since (J1) is a homogeneous
space and P> X P! is complete.

((J2)-(x)) For the same reason as ((J1)-(x)), the conjugacy class of
(J2) is not contained in any conjugacy classes of the algebraic operations
of the main theorem.

((I3)-(P1)) We know the conjugacy class of (Aut’F,,, F,,) is almost
effectively realized by (U,,,,G,.SL,, F},) where U, ., is an irreducible SL,-
module of dimension m+41 and U,., is a G,-module of weight 1
(see Umemura [U3]). Therefore we have to show that there does not
exist a morphism (p,f): (SL, X (U,.,G,SL,), P X F,)—>(PGL,, P*) of
algebraic operations such that f is birational. Let us assume that such a
morphism (g, /) exists. This gives an almost effective operation of SL,X
SL, on P? hence a representation V of degree 4 of SL,xXSL,. SL,XSL,
module V is a direct sum of irreducible modules and hence 4 is represented
as a sum of positive numbers; 4=14+1+414+1, 4=2+1+41, 4=3+1,
4=4,4=2+42. The partition 4=1-41+1+41 (or V is a trivial SL, X SL,-
module) is impossible because the operation (SL,xSL,, P?) is almost
effective. For the same reason the partitions 4=2-+1-+1 and 4=3+1
are impossible. We show the partition 4=4 (or V is irreducible) is
impossible. If ¥ is an irreducible SL, X SL,-module then ¥V is isomorphic
to either U,QU,, kQU, or UKQk. The last two cases can never occur
since the operation (SL,XSL,, P?) is almost effective. Thus we may
assume V is isomorphic to U,QU,. To distinguish the first factor from
the second factor, we denote by Uj (resp. by UY) an irreducible SL,x 1
(resp. 1 X SL,)-module of degree 2. In this notation V is isomorphic to
U,®U7Y. Then as 8, X 8l,-module, I, =(U;Q UQUIRUYY = (U;RQU3)
Q(UYRUY) = (kDU)NRKD U ) =kBkQUDURQkDU;QUY. There-
fore 8l,~pgl, is isomorphic to, as 3[, X 8l,-module, kAQUyPU;QkP U]}
®UY. ¢.(0x(Lie algebra of 0X G,, X1 in U,,,,G,SL,)) is a 1-dimensional
30, X 8l,-submodule of pgl,. But the decomposition above of 3[,X 3[,-
module pgl, does not contain a trivial 3[,X gl,-module of dimension 1.
We verify now the partition 4=2+2. Since the operation (SL,XSL,,
P?) is almost effective, the only possible isomorphism is V~kQUID U}
®k. Then as 8l, X 8l,-module g, ~(kQUyDURKRQUkRQURUIRQk) =~
EQUYQUBURQUBURQUYB(U:RQU)YRK ~ kQ(kDU)BU,Q UY
BURUYDKRPUDR@Kk. We identify the Lie algebra of U, ., with U, ,,
itself. Since ¢, (0X U,.,) is an irreducible 3[,X 3[;-module of degree
m-1 through the second factor, it follows from the decomposition of
8l, X 3l,-module gl,, m=2, 0, (0X U,,,,)=k®@UY. But ¢ (0XU,,,)is an
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abelian Lie subalgebra of 8, whereas k® U’ is not abelian since it comes
out from the decomposition Uy®@UY. Therefore the partition 4=2-+21is
impossible too and the conjugacy class of (J3) is not contained in the
conjugacy class of (P1).

((33)-(P2)) Since as we have seen in ((J3)-(P1)) the rank of PGL,X
Aut’F/, is 3 and that of SO, is 2, the conjugacy class of (J3) is not con-
tained in the conjugacy class of (P2).

((33)-(Ei)) Counting the dimension of the groups, we conclude the
conjugacy class of (J3) is not contained in the conjugacy class of (Ei) for
i=1,2.

((@3)-J1)) Since Aut"F,, contains an abelian unipotent group of
dimension m-+41 (Umemura [U3]), PGL, X Aut"F,, contains an abelian
unipotent group of dimension m+42>4. But PGL, X PGL, can not con-
tain an abelian unipotent group of dimension>4.

((33)-(J2)) We can argue as in ((J3)-(J1)).

((33)-(J3)) It follows from Corollary (4.10) that (J3) for m is not a
suboperation of (J3) for n with n=£m.

((J3)-(J4)) The same argument as in ((J3)-(P1)) works.
((J3)-(J5)) Compare the dimension.
((33)-(J6)) The same reason as ((J3)-(J5)).

((33)-J7)) Since the semi-simple part of PGL, X Aut"F,, is 3[, X 3[,
and the semi-simple part of Aut’J,, is 8[, by [U3] and by Proposition (4.8),
if there is an inclusion (PGL, X Aut’F,)C (Aut’J/, J}), 3l,x 8(, would be
a Lie subalgebra of 3[; which is a contradiction.

((33)-(J8)) Since by [U3] the semi-simple part of PGL,Xx Aut’F,,
is SL,XSL,, if we have a morphism (o, f): (PGL, X Aut"F,,, P' X F})—
(Aut’L;, ., L7 ) of algebraic operations such that f is birational then ¢
maps surjectively the semi-simple part of PGL,X Aut’F,, to the semi-
simple part of Aut’L; ,. Therefore ¢ maps the unipotent radical W; of
PGL, X Aut’F;, to the unipotent radical W, of Aut’L; .. All the W;-orbits
on P*x F,, is 1-dimensional and P' X F,,—P' X F/ /W,~P'X P! is an Al
bundle. Similarly all the W,-orbits on L/ , is 1-dimensional and L; ,—
L, /W,=P'XP". Thus f induces an isomorphism f: P'XF,—L; . of
A’-bundles over P* X P*. This is a contradiction as m>2, p>g >0.
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((j3)—(J9)) Since F7, is a line bundle on P!, it contains P! as the
O-section. Hence P'XF,, contains P*XP'. By Proposition (6.2), it is
sufficient to show P*X F}, can not be embedded into F, ,. For this end,
we show that P' X P! is not contained in F} , if p>¢>2. In fact if P'X
P! were in F, ,, letting =: F, ,—P' be the projection, the intersection
P < P! with the fibre of = would be a finite set since the fibre of = is affine
and P* X P is projective. Thus P* X P* would cover P! finitely. This is a
contradiction.

((33)-(3J10)) and ((J3)-(J’11)) The same argument as ((J3)-(J9)) gives
the result.

((J3)-(J12)) Compare the dimension of the groups.
((34-(x)). Argue as (JD-(x)).

((J5-(P1)) Assume that there exists a morphism (¢, f): (PGL,,
PGL,/D,,)—(PGL,, P*) with f birational. Denoting by D,, the inverse
image =~ '(D,,) by the natural isogeny =: SL,—~SL,/+-1=PGL,, we have a
D,,-invariant F of degree at most 3 (cf. Umemura [U2]) such that
{geSL,|gF=r,F,r, ¢ k}=D,,. Such F does not exist for n>>4.

((35)-(P2)) Argue as in ((J5)-(P1)) but we look for a D,,-invariant
as above of degree at most 4. This is possible only when n=4 and F is,
up to constant factor, in the GL,~orbit GL,(x*—)*) in the irreducible SL,-
module of homogeneous polynomial of degree 4 in x, y. Then SL,-orbit
SL, F=SL,(x*—3*) in P (homogeneous polynomials of degree 4)=P* is
not contained in a quadric in P*. In fact SL, operates on the generic
homogeneous polynomial ayx'+ax*y+a,x**+a,x)°*+a,)* and i=dai—
3a,a,+12a4a, is the unique (up to constant) SL,-invariant of degree 2 but
i does not vanish on x*—y* (See Vol I, 70, Weber [Wb]).

((J5)-(E1)) and ((J5)-(E2)) Compare the stabilizers.

((5)-1) If there were a morphism (o, f): (PGL,, PGL,/D,,)—>
(PGL, X PGL,, P* X P") of algebraic operations with f birational, then
there would be a non-trivial morphism (¢, f’): (PGL,, PGL,/D,,)—
(PGL,, P") of algebraic operations since there exists a morphism (PGL, X
PGL,, P X P)—>(PGL,, P'). The following Lemma gives a contradiction.

Lemma (6.3). There is no non-trivial morphism (PGL,, PGL,/D,,)—
(PGL,, P").

Assume the existence of such a morphism (¢, /'): (PGL,, PGL,/D,,)
—(PGL,, P"). Then D,, is contained in a Borel subgroup. Denoting by
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D,, the inverse image under z: SL,—SL,/+1=PGL,, the irreducible SL,-
module E of degree 2 so that SL,=SL(E) is not an irreducible D,,-
module. Since D,, is finite, therefore D,, is diagonalized in SL, which is
absurd.

((05)-(32)) and ((J5)-(33)) Argue as in ((J5)-(J1)).

((J5)-(J4) Assume that there exists a morphism (¢, f): (PGL,,
PGL,/D,,)—(PGL,, PGL,/B) of algebraic operations with f birational.
We may assume B consists of all the upper triangular matrices of PGL;.
Putting P={(a,;) € PGL,|a,,=a,;=0}, we get a morphism (PGL,, PGL,/B)
—(PGL,, PGL,/P) of algebraic operations hence by composition (¢, f’):
(PGL,, PGL,/D,,)—(PGL,, PGL,/P). ¢ defines a representation E of degree
3 of SL,. This representation should be irreducible. In fact letting =: SL,
—SL,/+1=PGL, be the natural isogeny and D,,=z"'(D,,), we have a
morphism (SL,, SL,/D,,)— (PGL,, PGL,/D,,) of algebraic operations
hence by composition (@, f): (SLy, SLy/D,,)—>(PGL,, PGL,/P). This
morphism is nothing but (SL,, SL,/D,,)—(SL,, P(E)). Since f is domi-
nant, SL, has an open orbit on P(E). If Eis not irreducible, then E is
the direct sum of E, and E, where E,’s are irreducible SL,-modules of
degree i. Then the stabilizer at a point of the open SL,-orbit in P(E) is a
1-dimensional unipotent subgroup of SL,. Thus the existence of the mor-
phism (g, £) implies D,, is contained in a unipotent subgroup of SL, which
is a contradiction and E must be irreducible. The transformation space
PGL,/B is the flag variety of E. We identify SL,-module E with the SL,-
medule of homogeneous polynomials of degree 2 in x, y: (‘CZ 3) e SL,
sends x to ax—+cy and y to bx+dy. The stabilizer at a point P={(x*-+)?)
C(x% 3)C E} of the flag variety is D,,, of SL,. Hence SL, P is an open
SL,-orbit on PGL,/B=the flag variety of E. Therefore SL, P coincides
with f(PGL,/D,,) and D,, is conjugate to D,,, which is impossible.

((I5)-(J6)) Argue as ((J5)-(J1)).

((@5-J7) Assume that there exists a morphism (p, f): (PGL,,
PGL,/D,,)—(Aut’J;,, J) of algebraic operation with f birational. As
there exists a morphism (Aut’J;,, J,,)—(PGL,, P?) of algebraic operations
by Proposition (4.8). We get a morphism (¢/, /*): (PGL,/D,,)—(PGL,, P?
of algebraic operations by composition. ¢’ defines a representation E of SL,
of degree 3 and (¢, /) gives a morphism (¢, f/): (SLy, SLy/D,,)—(SL(E),
P(E)). As in ((J5)-(J4)), E is irreducible. Let now W be the natural
representation of degree 3 of SL;: W is the vector space spanned by
indeterminants , v, w and («,;) € SL, sends ur—sa u+a,U+ayw, V—a,u
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+ U+t W, Wi+, U+a,w. Let S™(W) be the m-th symmetric
power of W, i.e., the vector space of the homogeneous polynomials in u,
v, w of degree m which is an SL;-module. We make S™(W)G,, SL.-
module by letting the vector space S™(W) G,-module of weight 1. We
need the semi-direct product G,,=S™(W)G,,.SL, and let H,, == (homogen-
eous polynomials in u, v, w of degree m whose degree in u<m—1) G, P
C G,y where P={(a;;) € SL,;|a,,=a,;=0}. Then H, is a subgroup of
G, and as in two variable case [U3], (Aut®J/,, J,) is almost effectively
realized (Gny, Gmy/H,) (see also Corollary (4.10)). Now (g, f): (PGL,,
PGL,/D,,)—>(Aut"J,, J,) gives a morphism (3, f): (SL,, SL,/D,,)—(G iy
Gm/H,). By considering the translation by an element of G,,, we can
replace ¢ by a conjugacy in G(,,. We may thus assume @(SL,) lies in
(0, 1, SL,) and ¢: SL,—(0, 1, SL;)=SL, is given by

7 b ad+bc 2ac 2bd
A )):( & ¢ b )

c d cd VN
This is given by letting SL, operate on the homogeneous polynomials of
degree 2 in x, y and taking a basis xy, x% > @(SL,) has an open orbit
on J/, and we letting =: J/,—>P* denote the projection, this orbit projected
onto P? is a @(SL,)=SL,-open orbit on P*=P¥kxy+kx’+k)"). Hence
(the projection by = of the open orbit) = SLxyC P kxy-+kx*+k)").
Therefore there exists a point P on z~'(xy) e J,, such that SL,P is open in
J,.. Equivalently since P is written as (A", 1, 1) H,, € G,,/H,, for suitable
A € k, the stabilizer at P=(Au™, 1, D@(SL,)(— ™, 1, 1) H,, is conjugate
to D,,, in particular finite. Butif m is even, (Au™, 1, 1)@ (SL)(— ™, 1, 1)
N H,=D,.=one dimensional dihedral group and if m= odd, (Au™, 1, 1)
-¢(SL)(— ™, 1, )N H,=G,, D,., according as 20 or 2=0. This is
a contradiction.

(@5)-(38)),  ((5)-39), (5)-710)), (J5)-(V'11)) argue as ((J5)-J1))
(sec Propositions (4.13), (4.18) and Corollary (4.23).

((I5)-(J12)) (I5) is generically transitive whereas (J12) is intransitive
even generically.

((J6)-(P1)) If there were a morphism (¢, f): (G, G/H,,,)—~(PGL,, P*)
with f birational, ¢ would give a representation E of G, XSL,XSL, of
degree 4. Since the kernel ¢ is finite, as SL, X SL,-module E would be
isomorphic to VAV or VPRV where ViV (resp. ViP) is the irre-
ducible SL,Xx1 (resp. 1 X SL,)-module of degree 2. In the last case, the
image of the center ¢(G,) would be scalar multiplications hence operate
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trivially on P?. This is absurd. Thus E would be isomorphic to V{"®
V@, Since VP, VP are irreducible non-isomorphic SL,X SL,-module,
o(G,,) would be diagonal. Let e,, e, (resp. e;, e,) be a basis of V(" (resp.
V). With these basis, we may assume

ab> 0
d

¢
0 (a/ b/)

L ¢ d

for t e G, X1x1. A non-trivial subgroup {¢ € G,|{"=(’} of G,, would

operate trivially on P°. This is impossible because G,, X 1X1 operates
effectively on G/H,, , and f'is birational.

L0
SL,x SLy)— o=
50( 2 X SLy) SD( ) ( 0 lslz>

((J6)-(P2)) The rank of SO is 2 but the rank of G,, X SL, X SL, is 3.
((J6)<(ED)), ((J6)-(E2)) Compare the dimension of the groups.

((J6)-(J1)) Let (G’, X’) be an effective realization of (J6). Assume
that there exists a morphism (¢, f*): (G', X")—~(PGL, X PGL,, P' XP?) of
algebraic operations with f” birational. Then there exists a morphism
(¢, /): (G, GIH,,,)—~PGL, X PGL,, P' XP? of algebraic operations with
f birational. Then as other case is treated similarly, we may assume
o((4, 4, B))=(4, ¢4, B)) e PGL, X PGL, for 1e G, 4, Be SL,, where
¢ G, XSL,—»PGL, is a morphism and in the right hand side 4 is
regarded as an element of PGL, The stabilizer of PGL,XPGL, at a
point of P* X P? is a Borel subgroup. Therefore ¢~' (stabilizer) can not
coincide with H,, ,, m>0>n.

((36)-(J2)) Assume that there exists a morphism (¢, f): (G, G/H,,, )
—(PGL, X PGL, X PGL,, P! X P* X P!) with f birational. Then we may
assume ¢{(4, 4, B))=(2, 4, B) e PGL, X PGL, XPGL, for 1¢ G,, 4, Be
SL,. Therefore ¢~'(the stabilizer of PGL,XPGL,xPGL, at a point of
P'XP'XP)=¢"' (a Borel subgroup of PGL,xPGL,XxPGL,) which
never coincides with H,, ,,, m>0>n.

(J6)-(J3)) Argue as ((J6)-(J1)) (see also Umemura [U3]).
((J6)-(J4)) Compare the rank of the groups.
((36)-(J5)) Compare the dimension of the groups.

(J6)-(J7)) Assume that there exists a morphism (o, f): (G, G/H,, ,)
~>(Aut’J;, J)) of algebraic operations with f birational. By Proposition
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(4.8), we get a morphism (¢, f*): (G, G/H,,, ,)—~(PGL,, P?) of algebraic
operations. Thus Ker ¢’ contains a subgroup K isogeneous to SL, which
operates on the fibre J;—P?. But the fibre is A' and the operation of SL,
should be trivial.  This is a contradiction.

((J6)-(J8)) The reductive part of Aut’L; , is isogeneous to G, X
PGL, X PGL, by Proposition (4.11) and this group has an open orbit W
onL; .. (G,XPGL,xPGL,, W) is almost effectively realized by (G,, X
SL,%xSL,, G,, XSL, X SL,/H,,,) where

Hoo={(s2 (§ 5)- (6 7)) € GaxSLxXSLil 1 1€ Gy x, e k).

The existence of an inclusion implies that of the isomorphism (G, X
SL,xSL,, G,, XSL,XSL,/H,, ,) = (G, XSL;XSL,, G,,XSL,XSL,/H, ,).
Considering the orbits of the center, it implies also that they are isomorphic
as principal G,-bundles over P' X P! but this is impossible because m =2,
—2>=nand k>1=>2.

(J6)-J9)) A semi-simple part of (J9) is 8l, whereas that of (J6) is
3l, % 8l,.

((J6)-(J10)) It follows from Corollary (4.20) that a reductive part of
(Aut"F; ., F7 ;) is G, XSL,XSL,. As in the proof of Lemma (4.30),
G,, X SL,XSL, has an open orbit on F; , isomorphic to (G, XSL,XSL,,
G,, XSL,XSL,/H,, ;). For the same reason as in ((J6)-(J8)), (G,, X SL, X
SL,, G, XSL,XSL,/H,, ,) (m=2, —2=n) can not be isomorphic to (G,, X
SL,XSL,, G,, X SL, X SL,/H, _,).

(J6)-(J’'11)) Compare reductive parts (cf. Corollary (4.23)).
((J6)-(J12)) Compare the dimension of the groups.

((J7)-(P1)) Let E be the natural irreducible representation of degree
3 of SL,. Let S™(E) be the m-th symmetric power of E. Letting G,
operate on S™(E) with weight 1, we see as in Section 2, [U3], the semi-
direct product S™E) G, XSL, operates on J,. The dimension of this

algebraic group is (m’;l; 2) -+9 which is greater than or equal to 15 if m>2.

Thus if we have an inclusion of (J7) in (P1), comparing the dimension, we
conclude m=2 and no automorphism of G, XSL,XSL, mapping H,, ,
(m>0>n) onto H,, ; (k>1>0).

((7)-(P2))  As we have seen above dim Aut’J;, >15, it is sufficient
to compare the dimension.
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({(AD-(ED), (N-(E2)), (J7)-J1)) and ((J7)-(J2)) Compare the di-
mension.

((37)-(J3)) Compare semi-simple parts (cf. Proposition (4.8) and
[U3]).

((@7)-(4), (IT)-(5)) and (37)-(J6)) Compare the dimension.

(AD-(38)), (AD-A39)), (I7)-(J10)), (J7)-(I'11)) and (J7)-(J12)) Com-
pare semi-simple parts (cf. [U3], Propositions (4.13), (4.18) and Corollary
(4.23).

{@3®-(P1)) LetU,,,, U,., be the irreducible SL,-modules of dimen-
sion m+1 and n--1. Letting G,, operate on U, ,,QU, ., with weight 1,
we see the semi-direct product U, , ®U, .. (G, XSL,XSL,) operates
almost effectively on L/ , (Corollary (4.12)). In particular Aut’L/, ,
cotains the vector group U,,,®U,,, of dimension (m+1)(n-t+1)>4.
Since SL, does not contain vector group of dimension >5, it is sufficient
to show that there exists no inclusion when m=n=1. Assume that there
exists a morphism (¢, f): (Aut’L] , L] )—(PGL,, P*) with f birational.
Then ¢ induces a morphism U,QU, (G, XSL,XSL,)—»PGL,. In partic-
ular, a representation E of degree 4 of SL, X SL,. Since the operation of
¢(SL,XSL,) on P° is almost effective, the representation E is faithful
modulo finite group. Thus E is isomorphic to either U,QCHCRU, or
U.®U,. If we consider ¢ induces a morphism U,® U,(SL, X SL,)—>PGL(E)
of which the kernel is finite, E is isomorphic to U,QCHCRU, and the
image o(U,®U, (G, XSL, X SL,)) = {(a;;) € PGL,|a;;=a,,=ay=a,,=0}.
But the stabilizer of PGL, at a point Q of P* is P={(b;;) ¢ PGL,|a,
=a,=d,=d,=0}. Counting the dimension of stabilizer, the orbit
o((U,QU,) (G, XSL, X SL,))Q is 3-dimensional subset of P® But

(U,®U,).G,, X SL, X SL, N P contains {((1) 2) 14e SLZ}. But the stabi-
lizer of (U, X U,),G,, XSL,XSL, at a point of the open orbit on L/, , is
solvable (cf. Corollary (4.12)). This is a contradiction.

((I8)~(P2)) By Corollary (4.12) the rank of Aut’L!, , equals to 3.
But the rank of PSO; is 2.

((J8)-(E1)) and ((J8)-(E2)) Compare the dimension of the groups.
((I8)-(J1)) and ((J8)-(J2)) We have seen in ((J8)-(P1)) Aut’L/, , con-

tains a vector group of dimension 4. But PGL, X PGL, and PGL, X PGL,
X PGL, do not contain a vector group of dimension 4.
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((J8)-(J3)) Since both groups have the same semi-simple parts, if
we have a morphism (g, f): (Aut’L;, ., L7, )—(PGL, X Aut’F}, P! X F})
with birational f, ¢ map the unipotent radical to the unipotent radical.
Since the fibrations L7, ,—P*! and P* X F;—P* X P* are quotient morphisms
with respect to the unipotent radicals, f induces an isomorphism of line
bundles L;, , and P* X F} over P* X P!, which is absurd.

((J8)-(J4)), ((38)-(J5)) and ((J8)-(J6)) Compare the dimension of the
groups.

((J8)-(J7)) Compare semi-simple parts.
((38)-(J8)) Argue as ((J8)-(J3)).

((I8)-(39)), ((I®)-(J10)) and ((J8)-(J’11)) Since L;, , is the total space
of a line bundle over P! XP! as we have seen, it contains P* XP!. But
being A’*bundle over P, F;, ., and E;! do not contain P* X P*.

((38)-(J12)) Compare the dimension of the groups.

((39)-(P1)) and (J9)-(P2)) Let U,,,, U,., be irreducible SL,-module
of dimension m--1 and n+1. Then the semi-direct product (U, .,®
U,.).SL, operates on F, ,. Therefore Aut’F,, , contains the vector
group U, ., DU, ., of dimension >7. But in PGL, and SO, there is no
vector group of dimension 7.

(J9)-(E1)) and ((J9)-(E2)) Compare the dimension of the groups.
((I8)-(J1)) and ((J9)-(J2)) Argue as ((J9)-(P1)).

((39)-(33)) By Umemura [U3], Section 2, PGL,XAut’F] is iso-
geneous to SL,X(U,.,.(G,XSL,)) where U,,, is the irreducible SL,-
module of dimension /+1 and as G,-module U,,, is of weight 1.
U,1®U, . SL, is simply connected and isogeneous to a closed subgroup
of Aut’F,, ,. There is no morphism with finite kernel of (U,,,,®U,,.,)SL,
to SL, X (U,,,.(G, XSL,)) and hence Aut’F,, , can not be embedded in
PGL, X Aut’F] for m>n>2.

((39)-(34)), ((39)-(J5)) and ((J9)-(J6)) Argue as in ((J9)-(P1)).

((39)-(J7)) Since a semi-simple part of Aut’F;, , is SL, and that of
AutJ; is SL,, if there exists a morphism (¢, f): (Aut’F,, ., F}, ) —(Aut’J},
J)) with f birational, ¢ maps that subgroup U,., of (U,,,DU,,,).SL,
(hence of Aut’F;, ) into the unipotnet radical of Aut’J;. By considering
the quotients by U, ., and the unipotent radical of Aut’J], we get
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f

'/ 4
Fl, .= J;

o, Lo

F, —> P~

Since the fibres of p and ¢ are A%, they coincide and f’ is an embedding.
This is impossible as n>2.

((39)-J8)) Argue as in ((J9)-(J7)). We conclude in this case F), is
embedded in P* X P* which is impossible as n>2.

d9)-J9)) If there exists a morphism (¢p,f): (Aut’F,, ., Fr. .)—
(Aut*F} ,, F{,,) with f birational, ¢ maps a semi-simple part to a semi-
simple part and unipotent radical to the unipotent radical because both
groups have isomorphic semi-simple parts. Therefore considering the
quotients by the unipotent radicals, we get

f

/ ’
Fm,n > Fk

o,

P —> P

As in ((J9)-(J8)) we conclude F, , is isomorphic to F; ;. Then by Pro-
position (4.13), m=k, n=1.

((39)-(J10)) Argue as ((J9)-(J9)) (see Propositions (4.18) and (4.19)).

((J9)-(J’11)) Compare the ranks (see Proposition (4.13) and Corol-
lary (4.23)).

((J9)-(J12)) Compare the dimension of the groups.

(J10)-(P1)) A semi-simple part of Aut’F;, , is SL,XSL, by Pro-
position (4.18) and an SL, X SL,-module U, ,,®U, operates on F;, ., hence
the semi-direct product (U, ,,QU,) SL,XSL, by Corollary (4.20). By
letting G,, operates on U, ,,®U, as scalar multiplication, (U, ,,QU,)-
(G,, XSL, X SL,) operates on F;, ,,. Now argue as in ((J8)-(P1)).

(J10)-(P2)) Compare the rank (cf. Corollary (4.20)).
((310)-(E1)) and ((J10)-(E2)) Compare the dimension of the groups.

((J10)-(J1)) and ((J10)-(J2)) Aut°F, , contains (U, ., ®U,)(SL,X
SL,) by Corollary (4.20) hence a unipotent subgroup of dimension 2(m+-2)
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>8. But such a big unioptent group is not contained neither in PGL, X
PGL, nor in PGL, X PGL, X PGL,.

((J10)-(J3)) The semi-simple part of Aut’F,, ,, is SL,xSL, by Pro-
position (4.18) and that of PGL,x Aut’F] is also SL,xSL, If there
exists a morphism (¢, f): (Aut’F,, .., F, )—(PGL,x Aut’F}, P! X F;) with
J birational, then the unipotent radical of Aut’F,, ,, is mapped to that of
PGL, x Aut’F;. But the unipotent radical of Aut’F;, ,, has 2-dimensional
orbit whereas that of PGL, X Aut’F} has 1-dmensional orbit (cf. [U3]).

((J10)-(J4)) Compare semi-simple parts (cf. Proposition (4.18)).
((J10)-(J5)) and ((J10)-(J6)) Compare the dimension of the groups.

(J10)-d7)) Compare semi-simple parts (cf. Propositions (4.8) and
(4.18)).

((J10)-(J8)) Both groups have the same semi-simple parts SL,XSL,
hence the unipotent radical of Aut’F;, ,, is mapped to that of Aut’L;, ..
But the unipotent radical of Aut°F,, ,, has 2-dimensional orbits whereas
that of Aut’L/, , has only 1-dimensional orbits which is a contradiction.

((J10)-(J9)) Compare semi-simple parts.
((J10)-(J10)) See Corollary (4.20).
((J10)-(J’11)) Compare semi-simple parts.
((310)-(J12)) Compare the dimension.

((J’'11))-(P1)) By exact sequence in Corollary (4.23) the unipotent
radical of Aut’(E}, F,,) is of dimension >I/m—1+m+1=Im+4+m. Thus
the dimension of a maximal unipotent subgroup of Aut’(E/, F.) is bigger
than or equal to /m-+m+1, since a semi-simple part of Aut’(E;, F})
contains G,. Therefore if /m+m-+1> dimension of a maximal unipotent
subgroup of PGL,=6, there does not exist an inclusion. We have to
check the case Im-+-m<(5. There are only two possible values of (7, m),
(4,1) 3,1). IfI=4, m=1, then by letting U be the unipotent radical of
Aut’(E?*, F)), we have an exact sequence by Corollary (4.23),

0—H'(F, Ox(2))—>U—H(P', Op,(1))—0
l
H'(P', 02)DH (P, 0(1)DH (P, 0).

Hence dim U=8. Hence U can not be contained in PGL, If /=3,
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m=1, the unipotent radical U of Aut’(E, F;) has an SL,-composition
series;

0— HY(F}, 05, (1))—> U—> H'(P", Op:(1))—0.

H(®P, @(1));LH (P, Up1) zU’z
o

It follows from the composition series that the only one possible way of
embedding (mod finite kernel) U SL, into SL, is through the SL,-module
V.2V, @V,. Then U SL, is identified with

« g 0 0

[£4
Z Z (1) 8 < SL, <T §>€SLz,a,b,C,d,eek.
¢c d e 1

The U, SL,-open orbit on P? is also a

a B 0 O
v@vysL=1|T 7 0 Ol or |(* PesL, a b c dekl-
2 2 2 ab(l)(l) 47,5 25 Yy Uy by
c a

orbit of P e SL,/P~P* where P={(a;,) ¢ SL,|ay=a,,=a,=0}. Then
(V:@V,).SL, P =(V,®V,) SL,/P N (V,DV,)SL, which is isomorphic to F ,
(see Proposition (5.30.7)). Thus we get an Fj-isomorphism F;,~U SL,-
open orbit in P*~E{®. This is a contradiction.

((J’11)-(P2)) As we have seen in ((J11)-(P1)) above the dimension of
a maximal unipotent subgroup of Aut’(E7, F;,) for I, m=2 or m>1, 1 >3
is at least 5. Therefore no inclusion.

(('11)-(E1)) and ((J’'11)-(E2)) Compare the dimension of the groups.

((11)-(J1)) and ((J'11)-(J2)) Compare the dimension of maximal
unipotent subgroups.

((F11)-(I3)) Argue as ((J9)-(J3)).

((J'11)-(J4)), ((I'11)-(J5)) and ((J’11)-(J6)) Compare the dimension of
the groups.

((’11)-J7)) We have an exact sequence
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(&) 1->N—Aut(E?; F,)>Aut'F, 1.

By Corollary (4.23), N coincides with H%F/,, O(im—2)). As SL,-module
H(F;,, 0(lm—2)) is isomorphic to, by the spectral sequence, @;_, H(P",
Op((I—Fk)ym—2)). If there exists a morphism (p,f): (Aut°E}, El)—
(Aut’J;, J7) with f birational, then composing with the morphism (¢, f/):
(Aut’];, J)—(PGL,, P?), we get a morphism (¢”, {”): (Aut"E}, E/})—
(PGL,, P?). Since ¢': Aut’J,—PGL, gives the semi-simple part of Aut’J/,
o(SL)#1.

Let us first assume /m>4. Under this assumption, the image of the
subgroup H(P', Op,(Im—2)) under ¢’ is 0. In fact otherwise the semi-
direct product H°(P', Op.(/m—2)) SL, is contained in SL, because SL,~
module H'(P', Op,(Im—2)) is irreducible. But this is impossible if /m>4.
Therefore the image ¢ (H°(P?, Op.(lm—2))) is in the unipotent radical of
Aut’J;,. Considering the quotients by H*(P', Op,(Im—2)) and by the
unipotent radical of Aut’J, since their orbits are A!, we get

77 3 ’
Em Jﬂ

F—>P

Thus E/ is a line bundie over F/, which is a contradiction. Now we treat
the case Im=3, namely m=1 and /=3. The unipotent part of kernel N
of (a) is H(F,,, O(Im—2))=H"F,,, O(1))=HP*, 0p:(1))DH’P", Op,) be-
cause the spectral sequence degenerates. Thus denoting by U the unipotent
radical of Aut’(E{; F}), we have an exact sequence

0—H(P, Op(1)DH(P', Opy)— U—(unipotent radical of Aut’F;)—>0.
| ‘

|

Let us put W =H(P!, 0p,(1)) of the kernel N.

If ¢”"(W)=0, we can argue as in the case /m>4. We may thus
assume ¢/(W)#0. Then ¢”((H°(P*, Op,) of N))=0 by comparing the
dimension of the unipotent radicals of a Borel subgroup of SL, and that
of ¢’(Aut’(E, F7)). Then we can argue as for im>4.

H(P', Opi(1))

((7’'11)-(J8)) We have an exact sequence
(b) 0—-R—Aut’L] ,—»PGL,xPGL,—1

where R is the radical of Aut’L; ; by Proposition (4.11). Assume there



430 H. Umemura

exists a morphism (g, f): (Aut(E;;; F;), E)—(Aut’L; ,, L; ) with f
birational. As n>2, ¢ takes an SL,-invariant subspace of the kernel N
of (a) to R.

In fact otherwise, since

N~ @ H®, 0(jm—2))

jim=2>0

as SL,-module, the semi-direct product N _(semi-simple part of Aut’E/})
would be contained in PGL, X PGL, (see Proposition (4.11)). If we con-
sider (N )-orbits, their dimension is at most 1. Hence generically they
coincides with R-orbits and we get isomorphism

4 4
E‘mL_> Lr,s

F, =——>P'xP.
But this is absurd as m>1.

(('1D)-(J9)) As the both algebraic groups have the same semi-simple
parts, if we have a morphism (¢, f): (Aut’E, EEH)—(AwWt°F; ,, F; ,) with
fbirational, ¢ takes the unipotent radical to the unipotent radical. Since
the unipotent radicals have only 2-dimensional orbits and the transfor-
mation spaces Ef, F; , are A*-bundle over P', f'is a P'-isomorphism. Let
Z, be the center of the unipotent radical of Aut’(E}, F.) and Z be that
of Aut’F; ,. 1If generically the Z.-orbits under f coincides with Z,-orbits,
then as in ((J’11)-(J7)), considering the quotients, we get isomorphisms

7L~ /4
Em )Fs,t

o~ 7
F, ——=>F.

This shows E;! is a line bundle. Hence even generically the image f(Z-
orbits) does not coincide with Z.-orbits. Therefore the vector subgroup
Z . o(Z ) has a 2-dimensional orbit therefore (Z, ¢(Zz))SL, operates on
F, . and has an open orbit. This open orbit is an A*bundle over P* (cf.
Subcase (5.30.1)). Consequently it coincides with F,,. In other words
F; . is a homogeneous space under (Z,_ ¢(Zy))SL,. Let H be the stabilizer
group at a point of (Z, ¢(Z;))SL, so that F; , ~(Z» o(Z5)).SL,/H. By
Subcase (53.30.1), Zr and ¢(Z;) are necessarily irreducible SL,-modules.
If we consider the quotient (Zy o(Zz))/Zr H of (Zr,o(Z5))SL,/H with
respect to the normal subgroup Z, of (Zy ¢(Zz))SL,/H, the quotient
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(Zr.(Z5)).SL,/ZH is isomorphic to F;. Therefore Z~U,,,, p(Z5)=
U,., and H is identified with (U},,@U,,,), B where B is a Borel subgroup
of SL, consisting of the upper triangular matrices and UJ,,, U,,, are B-
invariant subspace of codimension 1 of U,,,, U,,, (cf. (5.30.1)). Consider
now the quotient with respect to Z; or U,,,, then we get Z\E!~F,,
from the definition and o{(Z)\F; , ~(U,,,®U,,)SL,/U, ., H=F;:

1~ 4
E’”L Fs,ﬁ

|

F, —~>F..
It follows from the form of H that, the morphism F, ,—F; which is

U, ®U,,)SL/H—~(U,,®PU,.,)SL,/U,,, H~F,, is a line bundle over
F,. This is absurd.

((’11)-(J10)) We saw in Corollary (4.20) Aut’F;, , is isogeneous to
(U,..QU)GE: SL,xSL,. The semi-simple part of Aut’(E; F,) is SL,
and the unipotent radical U has SL,-exact sequence

©) 0-N->U->U,,,—0

induced from the morphism E/!F, and N=®7_, (X, O(lm—2—jm)).
N contains an irreducible SL,-module of dimension /m—1>2. Thus SL,-
composition series of U contains at least U, ,,, U;,_, (Im—1>2). Assume
the existence of morphism (¢, /)=(Awt’(E;; F;), EY)—(Aut’F, ,, F; )
with f birational. Then ¢ maps semi-simple part SL, into SL, X SL,. We
may assume ¢ is either 4—(4, 4), A—(4,1) or A—(1, A) since other
cases (e.g. A—(4, *A™")) are treated similarly. In the last case, ¢(SL,)
has only 2-dimensional orbits hence this case never occurs (Corollaries
(4.20) and (4.23)). In the first case the SL,-module U, ,,QU, is isomor-
phic to U,,,®U,_, and in the second case the SL,-module U,,,®U, is
isomorphic to U, ,,®U,,,.

Let ¢/ be the canonical map Aut’F, ,—Aut’F;  /radical~PGL, X
PGL,. Then ¢ o ¢ defines an SL,-exact sequence

PGL, X PGL,

0—Ker ¢f 0 p>U LD g 0 o(U)—0,
Ker ¢ o p=~g(U) N (unipotent radical of Aut"F, ). Since the diagonal
g, 8l,x 8l, is a maximal Lie subalgebra of 3[, X 8{,, we get
at most G, if A—(4, 1),

¢ olU) Z{o if Aes(A, A).
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Therefore the simple SL,-modules in a composition series of

Uyorb U,_, Uy 1 A(A4, 1),

U= at most { .
U,.tr, Upii if A—(4, A).

Let us first exclude m=1. In fact if m=1, />3, then by exact
sequence (¢) in an SL,-composition series of U, U,_,, U,y ---, U, U,
appear, which is impossible as we noticed above.

Let us now assume />2, m>2. By the observation above and by
(¢) it is impossible unless (a) (Im—1D=m-+1 or (b) Im—1)—(m+1)=+1
since Im—1>2, m+1>3. Notice (Im—1)—(m-+1)=—1 never holds as
=2, m=1 is excluded.

Let us study case (a) (( +1)m=2, namely /=m=2 or [=3, m=1.
The case /=3, m=1 was excluded above. If/=m=2, in an SL,-com-
position series of U, U,, U, and U, appear which contradicts our observa-
tion above. We pass to case (b) (Im—1)—(m+1)=1, namely m=1, =4
orm=3,]/=2. Wecan exclude m=1, /=4 as above. . If m=3, =2, by
(c), U contains U, U, which can not be imbedded in Aut’F}, , as we have
seen above.

(J’11)-(J’'11))  See Corollary (4.23).
((y’'11)-(J12)) Compare the dimension of the groups.

((J12)-(P1)) In (J12) SL, does not operate faithfully. Assume for
an operation (PGL,, X) of type (J12) the existence of morphism (¢, f):
(PGL,, X,)—(PSL,, P*) with f birational, ¢ defines an operation of SL, on
P® hence a representation E of degree 4 such that the center of SL,
operates trivially on P®. E is isomorphic to one of the following; (i) V,,
i) V@V, (i) V,DV,, (iv) V,2V.@®V,. We can exclude (iv) since in this
case SL, operates effectively on P(E). In case (i) or (iii), SL, has an
open orbit and hence these cases never occur. If Ex~V,®V,, then
(SL,, P(V,@V))) is, as an algebraic law chunk of operation, equivalent to
(SL,, V,). As the center of SL, operates trivially on V,, (SL,, V;) gives an
operation (PGL,, V;). It follows from Proposition (4.26) and Lemma
(4.28) that (PGL,, V,) is not isomorphic to (PGL,, X,) in (J12) as law
chunks of algebraic operation.

((J12)-(P2)) We argue as in ((J12)-(P1)). Assume for an operation
of type (J12) the existence of morphism (g, f): (PGL,, X, )—(PSO;, quadric
CP*) with f birational, ¢ defines a representation E of SL, of degree 5.
E is isomorphic to one of the following: (i) V;, (ii) V.BV,, (i) V,®V,,
iv) Vi, @v,ev, (v) V.aV,®V,. If E~P(V,), then SL,CSO(E) since SL,
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has an invariant 7 of degree 2 of homogeneous polynomial of degree 4
(see Weber [Wb] vol. I, § 70). It follows from the explicit expression of
the invariant 7, SL, has an open orbit on the quadric={i =0} CP(F) (see
Umemura [U2]). If ExV,@V, V,®V, or V,®V,®V, SL, operates
effectively on P(E) hence on the quadric. If E~V,BV,®V,, we argue as
in ((J12)-(JP)) for the case E~V,DV,.

((J12)~(E1)) and ((J12)-(E2)) (J12) is generically intransitive but (E1).
(E2) are generically transitive and they all have the same transformation
group.

((712)-(J1)) Assume for an operation (PGL,, X,) of type (J12), there
exists a morphism (g, f): (PGL,, X,) - (PGL, X PGL,, P*XP") of law
chunks of algebraic operation with f birational. Replacing n: C,—C, by
an smaller covering, we may assume (¢, f) is a morphism of algebraic
operations. SL, operates on X, through SL,—SL,/+1=PGL, hence we
get a morphism (SL,, X,)—(PGL, X PGL,, P> X P") of algebraic operations.
This gives an operation of SL, on P*XP'. This operation comes from
linear representations E,, E, of SL, of degree 3 and 2, namely (SL,,
P2 X P)=(SL,, P(E,) X P(E,)). E,isnot trivial. For otherwise, SL, has
only 1-dimensional orbits on P*XP!. E, is not trivial either. In fact,
otherwise SL,-orbits in P*XP' are contained in P*Xx (x ¢ P'). For any
SL,-module E,, (SL,, SL,/T) does not appear in (SL,, P(E))); (i) if E,=V,,
then the 2-dimensional SL,-orbit in (SL,, P(E,)) is (SL,, SL,/D,) (ii) if
E,=V,+V, then the 2-dimensional SL,-orbit in (SL,, P(E,)) is (SL,,
SL,/U)) with U,={(a,,) € SL,|a;;=ay,=1, a,,=0}. Since we have a mor-
phism (SL,, P(E,) X P(E,))—>(SL,, P(E;)): We have a dominant SL,-
equivariant morphism X,—P(E,). Therefore a general SL,-orbit on P(E;)
is dominated by (SL,, SL,/T) and hence by above observation F, is irre-
ducible. But if E; and E, are irreducible (SL,P(E,) X P(E,)) has an open
orbit. Contradiction.

((J12)-(J2)) Essentially the same as ((J’11)-(J1)). Argue as ((J'11)-
(J1)). We get (SL,; P' X P' X P') which is defined by the irreducible SL,-
modules E,, E;, EY of degree 2. If one of them, say E, were trivial, we
would get SL,-orbits on P* X P! X P! are contained in x XP'XP' (x e P).
Thus X, would be trivially fibred over a rational curve. Therefore E,, EY,

/7 are irreducible. Then (SL,, P' X P! X P*) has an open SL,-orbit.

((J12)-(J3)) Assume there exists a morphism (¢, /): (PGL,, X,)—
(PGL, x Aut’F/,, P* X F,) of law chunks of algebraic operation with f
birational. As in ((J12)-(J1)) we may assume (¢, f) is a morphism of
algebraic operations. By taking the projection we get a morphism
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@, f): (PGL,, X,)—>(Aut"F,, F;) of algebraic operations with f/ domi-
nant. Hence a general PGL,-orbit dominates a general ¢'(PGL,)-orbit
on F,. We show in [U2] a semi-simple part of Aut’F,, is SL,. If
¢ (PGL,) =1, ¢'(PGL,) is a semi-simple part of Aut’F,, and has an open
orbit on F}, isomorphic to (PGL,, PGL,/U,,). But there is no morphism
(©”, f"): (PGL,, PGL,-orbit on X,)=(PGL,, PGL,/T)—(PGL,, PGL,/U,,)
=(¢/(PGL,), open ¢'(PGL,)-orbit on F}). Hence o(PGL,)=1. But then
PGL,-orbit on X, should be contained in P* X x (x e F,,).

((J12)-(J4)) Assume there exists a morphism (g, f): (PGL,, X,)—
(PGL,, PGL,/B) of law chunks of algebraic operation with f birational.
We may assume (g, f) is a morphism of algebraic operations as in ((J12)-
(J1)). SL, operates on X, and ¢ defines an SL,-module E of degree 3.
E is not irreducible. For otherwise, SL, has an open orbit on PGL(E)/B.
If E=V,®V,, we get a morphism (PGL,, PGL,/B)—(PGL,, PGL,/P)=
{PGL,, P(V,®V,)). SL, has an open orbit isomorphic to (SL,, SL,/U)).
Since (SL,, SL,/T) does not dominate (SL,, SL,/U,). The assertion
follows as in ((J12)-(J3)).

((J12)-(J5)) Obvious.

((J12)-(J6)) Assume there exists an inclusion. This is equivalent to
the existence of a morphism (¢, f): (SL,, X,)—(G, G/H,, ) of law chunks
of algebraic operation with f birational. We may assume as above (g, f)
is a morphism of algebraic operations. Considering the projection (Id, p):
(G, G/H,, ,)—(G, G/G,XBXB)=(G,P'XP"). p:G/H, ,—~P'XP" is a
G,-bundle. The above morphism (p,f) defines an SL,-operation on
P X P!, thus 2 SL,-modules E, E’ of degree 2 so that SL,-operation on
P! X P! is isomorphic to (SL,, P(E) XP(E"). We denote by z, the com-
posite of p and the projection P,: P! X P'—P* onto the first factor. If one
of the representations E, E’, say E, were trivial, then ¢(SL,)-orbit on
G/H, , would be contained in a fibre #7!(x) which is isomorphic to
(G, XSL,, G,,XSL,/H,)=(G,, X SL,, SL,/U,,), where

H,— {(:, A)e GmxSLZ|A:(g 2_1), z=am}

(see the definition of H, ,). Therefore (SL,, SL,/T) would be in (SL,,
SL,/U,). Thus E, E’ are irreducible. Since a semi-simple part of G
is SL,XSL, and since the semi-simple part is given by the projection
(G, G/|H,, ,)—(G, P XP)—(SL,XSL,, P' XP"), ¢ is determined, up to
conjugacy in G once the SL,-modules E, E’ are fixed, this shows ¢ maps
SL, to the semi-simple part diagonally. The diagonal SL, of SL, X SL, as
a subgroup of G has an open orbit on H/H, ,.
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((J12)-(J7)) Assume there exists a morphism (g, f): (PGL,, X,)—
(Aut’J},, J.) of law chunks of algebraic operations. As in ((J12)-(J1)), we
may assume (¢, f) is a morphism of algebraic operations. By considering
the projection (Aut’J,,, J,)—>(PGL;, P?). (¢, f) defines a PGL,-operation

.on P? therefore a representation E of SL, of degree 3. E is not trivial
| since otherwise, SL,-orbits on J/, would be contained in fibres which are
isomorphic to A'. E=V,®V, is impossible as in ((J12)-(J1)). Notice,
since (Aut"J,, J,)—(PGL,, P gives a semi-simple part of Aut’J,, the
morphism ¢ is determined, up to conjugacy in Aut’J;, once SL,-module E
is fixed. If E=V,, then ¢(SL,) has an open orbit on J/, (see Corollary

(4.10)).
((012)-(78))  Argue as in ((J12)-(J6)).

((J12)-(39)) A semi-simple part of Aut’F,, , is SL, and the general
SL,-orbit on F/, , is (SL,, SL,/U,) with k=(m, n) by Corollary (4.20), where
U,— {(g Z) e SL,|a* =d* = 1}. But the general SL-orbit on X, is (SL,,
SL,/G,,) from the construction of X.

((J12)-(J10)) By Corollary (4.20), a semi-simple part of Aut’F,, , i
SL, X SL,. The operation (PGL,, X,) defines an operation (SL,, X,) such
that the center of SL, operates trivially. If there exists a morphism (¢, f):
(PGL,, X)—>(Aut’F,, ., F., ) of law chunks of algebraic operations, ¢
defines a morphism ¢: SL,—(a semi-simple part). By taking conjugacy,
we may assume ¢ defines a morphism ¢: SL,—(SL,XSL,) in Corollary
(4.20). Since the operation of SL, by ¢ on F,, ,, collapses the operation
of the center as on X, 3(4)=(4, 1) for 4 € SL, and m even. But then
the general SL,-orbit on F,, ,, is (SL,, SL,/U,,) by Corollary (4.20), where
Um={(g Z) € SLzla"‘=d”‘=1}. But the general SL,-orbit on X, is
(SL,, SL,/G,,) from the construction of X,.

((012)-(J’11)) A semi-simple part of Aut®(E}!; F;)) is SL, and has an
open orbit on E/! by Corollary (4.23).

((312)-(J12)) This is proved in Corollary (4.27).
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