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1. Introduction
Let H be a real Hilbert space with inner product 〈·, ·〉H and norm ‖ · ‖H. An
operator A : H → H is called monotone if

〈Ax− Ay, x− y〉H ≥ 0 ∀ x, y ∈ H,

Interest in monotone operators stems mainly from their usefulness in nu-
merous applications. Consider, for example, the following: Let f : H →
R∪{∞} be a proper lower semi continuous and convex function. The sub-
differential, ∂f : H → 2H of f at x ∈ H is defined by

∂f(x) =
{
x∗ ∈ H : f(y)− f(x) ≥ 〈y − x, x∗〉 ∀ y ∈ H

}
.

It is easy to check that ∂f : H → 2H is a monotone operator on H, and that
0 ∈ ∂f(x) if and only if x is a minimizer of f . Setting ∂f ≡ A, it follows that
solving the inclusion 0 ∈ Au, in this case, is solving for a minimizer of f .

Several existence theorems have been established for the equation Au = 0
when A is of the monotone-type (see e.g., Diemling (1985), Pascali and
Sburian (1978)).

The extension of the monotonicity definition to operators from a Banach
space into its dual has been the starting point for the development of non-
linear functional analysis. The monotone maps constitute the most man-
ageable class because of the very simple structure of the monotonicity
condition. The monotone mappings appear in a rather wide variety of con-
texts since they can be found in many functional equations. Many of them
appear also in calculus of variations as subdifferential of convex functions.
(Pascali and Sburian (1978), p. 101 ).

Let E be a real normed space, E∗ its topological dual space. The map
J : E → 2E

∗ defined by

Jx :=
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖.‖x∗‖, ‖x‖ = ‖x∗‖

}
is called the normalized duality map on E. where, 〈, 〉 denotes the general-
ized duality pairing between E and E∗.

Remark 12. Note also that a duality mapping exists in each Banach
space. We recall from Alber (1994) some of the examples of this mapping in
lp, Lp,W

m,p-spaces, 1 < p <∞.
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(i) lp : Jx = ‖x‖2−p
lp

y ∈ lq, x = (x1, x2, · · · , xn, · · · )
and y = (x1|x1|p−2, x2|x2|p−2, · · · , xn|xn|p−2, · · · ),

(ii) Lp : Ju = ‖u‖2−p
Lp
|u|p−2u ∈ Lq,

(iii) Wm,p : Ju = ‖u‖2−p
Wm,p

∑
|α≤m|(−1)|α|Dα

(
|Dαu|p−2Dαu

)
∈ W−m,q,

where 1 < q <∞ is such that 1/p+ 1/q = 1.

It is well known that E is smooth if and only if J is single valued. More-
over, if E is a reflexive smooth and strictly convex Banach space, then J−1

is single valued, one-to-one, surjective and it is the duality mapping from
E∗ into E. Finally, if E has uniform Gâteaux differentiable norm, then J
is norm-to-weak∗ uniformly continuous on bounded sets.

A map A : E → E∗ is called monotone if for each x, y ∈ D(A), the follow-
ing inequality holds: 〈

Ax− Ay, x− y
〉
≥ 0.

A is called uniformly monotone if there exists a continuous increasing func-
tion γ(t), γ(0) = 0, such that for each x, y ∈ D(A), the following inequality
holds:

〈Ax− Ay, x− y〉 ≥ γ(‖x− y‖).
If here γ(t) = ctp, p ≥ 2, where c > 0 is a positive constant, we have

〈Ax− Ay, x− y〉 ≥ c‖x− y‖p.
A map A : E → E is called accretive if for each x, y ∈ E, there exists j(x−y) ∈
J(x− y) such that 〈

Ax− Ay, j(x− y)
〉
≥ 0.

A is called strongly accretive if there exists k ∈ (0, 1) such that for each
x, y ∈ E, there exists j(x− y) ∈ J(x− y) such that

〈Ax− Ay, j(x− y)〉 ≥ k‖x− y‖2.

In a Hilbert space, the normalized duality map is the identity map. Hence,
in Hilbert spaces, monotonicity and accretivity coincide. For accretive-type
operator A, solutions of the equation Au = 0, in many cases, represent
equilibrium state of some dynamical system (see e.g., Chidume (2009),
p.116).
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For approximating a solution of Au = 0, assuming existence, where A :
E → E is of accretive-type, Browder (1967) defined an operator T : E → E
by T := I − A, where I is the identity map on E. He called such an op-
erator pseudo-contractive. It is trivial to observe that zeros of A corre-
spond to fixed points of T . For Lipschitz strongly pseudo-contractive maps,
Chidume (1987) proved the following theorem.

Theorem C1. (Chidume (1987)) Let E = Lp, 2 ≤ p < ∞, and K ⊂ E
be nonempty closed convex and bounded. Let T : K → K be a strongly
pseudo-contractive and Lipschitz map. For arbitrary x0 ∈ K, let a sequence
{xn} be defined iteratively by xn+1 = (1− λn)xn + λnTxn, n ≥ 0, where {λn} ⊂
(0, 1) satisfies the following conditions: (i)

∑∞
n=1 λn = ∞, (ii)

∑∞
n=1 λ

2
n < ∞.

Then, {xn} converges strongly to the unique fixed point of T .

By setting T := I − A in Theorem C1, the following theorem for approx-
imating a solution of Au = 0 where A is a strongly accretive and bounded
operator can be proved.

Theorem C2. Let E = Lp, 2 ≤ p <∞. Let A : E → E be a strongly accretive
and bounded map. Assume A−1(0) 6= ∅. For arbitrary x0 ∈ K, let a sequence
{xn} be defined iteratively by xn+1 = xn − λnAxn, n ≥ 0, where {λn} ⊂ (0, 1)
satisfies the following conditions: (i)

∑∞
n=1 λn =∞, (ii)

∑∞
n=1 λ

2
n <∞. Then,

{xn} converges strongly to the unique solution of Au = 0.

The main tool used in the proof of Theorem C1 is an inequality of Bynum
(1976). This theorem signaled the return to extensive research efforts on
inequalities in Banach spaces and their applications to iterative methods
for solutions of nonlinear equations. Consequently, Theorem C1 has been
generalized and extended in various directions, leading to flourishing areas
of research, for the past thirty years or so, for numerous authors (see e.g.,
Censor and Reich (1996), Chidume (1987), Chidume (1986), Chidume
(2002), Chidume and Bashir (2007), Chidume et al. (2005), Chidume et al.
(2006), Chidume and Osilike (1999), Deng (1993), Zhou and Jia (1996),
Liu (1995), Oihou (1990), Reich (1977), Reich (1978), Reich (1979),
Reich and Sabach (2009), Reich and Sabach (2010), Weng (1991), Xiao
(1998), Xu (1992), Xu (1991), Xu (1991), Berinde et al. (2014), Moudafi
(2003), Moudafi (2010), Moudafi and Thera (1997), Xu and Roach (1991).
Zhu (1994) and a host of other authors). Recent monographs emanating
from these researches include those by Berinde (2007), Chidume (2009),
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Goebel and Reich (1984), and William and Shahzad (2014).

Unfortunately, the success achieved in using geometric properties devel-
oped from the mid 1980s to early 1990s in approximating zeros of accretive-
type mappings has not carried over to approximating zeros of monotone-
type operators in general Banach spaces. Part of the problem is that since
A maps E to E∗, for xn ∈ E, Axn is in E∗. Consequently, a recursion formula
containing xn and Axn may not be well defined.

Attemps have been made to overcome this difficulty by introducing the
inverse of the normalized duality mapping in the recursion formulas for
approximating zeros of monotone-type mappings.

Recently, Diop et al. (2016) introduced an iterative schema and proved the
following strong convergence theorem for approximation of the solution of
equation Au = 0 in 2-uniformly convex real Banach spaces. In particular
they proved the following theorem.

Theorem 36. Let E be a 2-uniformly convex real Banach space with uni-
formly Gâteaux differentiable norm and E∗ its dual space. Let A : E → E∗

be a bounded and strongly monotone mapping such that A−1(0) 6= ∅. For
arbitrary x1 ∈ E , let (xn) be a sequence defined iteratively by

(1.1) xn+1 = J−1(Jxn − αnAxn), n ≥ 1

where J is the duality mapping from E to E∗ and (αn) ⊂]0, 1[ a real sequence

satisfying the following conditions: (i)
∞∑
n=1

αn = ∞; (ii)
∞∑
n=0

α2
n < ∞. Then,

there exists γ0 such that, if αn < γ0, for all n ≥ 1, then (xn) converges strongly
to the unique solution of the equation Au = 0.

It is purpose in this paper to introduce an explicit iterative algorithm
that converges strongly to the solution of equation Au = 0 in certain Ba-
nach spaces including all Hilbert spaces and all lp, Lp or Wm,p-spaces,
1 < p <∞. Furthermore, our technique of proof is of independent interest.

2. Preliminaries
A normed linear space E is said to be strictly convex if the following holds:

‖x‖ = ‖y‖ = 1, x 6= y ⇒
∥∥∥x+ y

2

∥∥∥ < 1.
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The modulus of convexity of E is the function δE : (0, 2]→ [0, 1] defined by:

δE(ε) := inf
{

1− 1

2
‖x+ y‖ : ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ε

}
.

E is uniformly convex if and only if δE(ε) > 0 for every ε ∈ (0, 2]. For p > 1, E
is said to be p-uniformly convex if there exists a constant c > 0 such that
δE(ε) ≥ cεp for all ε ∈ (0, 2].
Let E be a real normed space and let S := {x ∈ E : ‖x‖ = 1}. E is said to be
smooth if the limit

lim
t→0+

‖x+ ty‖ − ‖x‖
t

exists for each x, y ∈ S. E is said to be uniformly smooth if it is smooth
and the limit is attained uniformly for each x, y ∈ S and E is Frechet dif-
ferentiable if it is smooth and the limit is attained uniformly for y ∈ S .

Lemma 19 (Zalinescu (1983)). Let ψ : R+ → R+ be a increasing function
with lim

t→+∞
ψ = ∞. Then J−1

ψ is single valued and uniformly continuous on
bounded sets if and only if E is a uniformly convex Banach space.

Lemma 20. Let E be a uniformly convex and smooth real Banach space.
Then, the duality mapping J−1

p : E∗ → E is Lipschitz on bounded subsets of
E∗; that is, for all R > 0, there exists a positive constant m2 such that

‖J−1
p x∗ − J−1

p y∗‖ ≤ m2‖x∗ − y∗‖,

for all x∗, y∗ ∈ E∗ with ‖x∗‖ ≤ R, ‖y∗‖ ≤ R.

Proof. From lemma 19, J−1
p is uniformly continuous on bounded subset

of E∗ implies that for all R > 0 , there exists a nondecreasing function ψ0

with ψ0(0) = 0 such that:

‖J−1
p x∗ − J−1

p y∗‖ ≤ ψ0

(
‖x∗ − y∗‖

)
,

for all x∗, y∗ ∈ E∗ with ‖x∗‖ ≤ R, ‖y∗‖ ≤ R. By taking
(
ψ0‖x∗ − y∗‖

)
:=

m2‖x∗ − y∗‖, the result follows. �

Theorem 37. Xu (1991) Let p > 1 and r > 0 two real numbers and E be
a Banach space. The following are equivalent:

(i) E is uniformly convex;
(ii) There exists increasing function g : R+ → R+ with g(0) = 0 such that

‖x+ y‖p ≥ ‖x‖p + p〈y, fx〉+ g(‖y‖), ∀x, y ∈ B(0, r), fx ∈ Jp(x).
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(iii) There exists increasing function g : R+ → R+ with g(0) = 0 such that
〈x− y, fx − fy〉 ≥ g(‖x− y‖), ∀x, y ∈ B(0, r), fx ∈ Jp(x), fy ∈ Jp(y).

Definition 2. Let E be a smooth real Banach space with dual E∗.
(i) The function φ : E × E → R, defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2, x, y ∈ E,
where J is the normalized duality mapping from E into E∗, ( see e.g,
Alber (1994).)

(ii) The function φp : E × E → R, defined by

φp(x, y) = p
(
q−1‖x‖q − 〈x, Jy〉+ p−1‖y‖p

)
, ∀x, y ∈ E, 1

p
+

1

q
= 1.

(ii) Let Vp : E × E∗ → R be the functional defined by:

Vp(x, x
∗) = p

(
q−1‖x‖q − 〈x, x∗〉+ p−1‖x∗‖p

)
, ∀x ∈ E, x∗ ∈ E∗, 1

p
+

1

q
= 1.

Remark 13. These remarks follows from Definition 2
(i) If E = H, a real Hilbert space, then equation (2.1) reduces to φ(x, y) =
‖x− y‖2 for x, y ∈ H. It is obvious from the definition of the function φ
that

(‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖+ ‖y‖)2 ∀x, y ∈ E.
(ii) For p = 2, φ = φp. Also, it is obvious from the definition of the function

φp that
(‖x‖ − ‖y‖)p ≤ φp(x, y) ≤ (‖x‖+ ‖y‖)p, ∀x, y ∈ E.(2.1)

(iii) It is obvious
Vp(x, x

∗) = φp(x, J
−1
p x∗), ∀x ∈ E, x∗ ∈ E∗.

Lemma 21. Abinu et al. (2016) Let E be a reflexive strictly convex and
smooth real Banach space with E∗ as its dual. Then,

Vp(x, x
∗) + p〈J−1x∗ − x, y∗〉 ≤ Vp(x, x

∗ + y∗)

for all x ∈ E and x∗, y∗ ∈ E∗.

Lemma 22. For p > 1, let E be a uniformly convex real Banach space. For
r > 0 , le Br(0) :=

{
x ∈ E : ‖x‖ ≤ r

}
. Then for arbitrary x, y ∈ Br(0),

‖x− y‖p ≥ φp(x, y) + g(‖x‖)− p

q
‖x‖q, 1

p
+

1

q
= 1.

Where g is a function appearing in Theorem 37
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Proof. Since E is uniformly convex real Banach space , by condition ii of
Theorem 37, for any x, y ∈ Br(0), we have that

‖x+ y‖p ≥ ‖x‖p + p〈y, jx〉+ g(‖y‖).
Replacing y by −y gives

‖x− y‖p ≥ ‖x‖p − p〈y, jx〉+ g(‖y‖).
Interchanging x and y and simplifying by p, we get

p−1‖x− y‖p ≥ p−1‖y‖p − 〈x, jy〉+ p−1g(‖x‖)
= q−1‖x‖q − 〈x, jy〉+ p−1‖y‖p − q−1‖x‖q + p−1g(‖x‖)
= p−1φp(x, y)− q−1‖x‖q + p−1g(‖x‖),

so that
φp(x, y) ≤ p

(
p−1‖x− y‖p + q−1‖x‖q − p−1g(‖x‖)

)
,

which is equivalent to

‖x− y‖p ≥ φp(x, y) + g(‖x‖)− p

q
‖x‖q,

etablishing the lemma. �

Lemma 23 (Kamimura and Takahashi (2002)). Let E be a real smooth
Banach space and uniformly convex space, and let {xn} and {yn} be two
sequences of E.If either {xn} or {yn} is bounded and φ(xn, yn)→ 0 as n→∞,
then ‖xn − yn‖ → 0 as n→∞.

Lemma 24 (Tan and Xu (1993)). Let {an} be a sequence of non-negative
real numbers satisfying the following relation:

an+1 ≤ an + σn ∀n ≥ 0.

Assume that
∞∑
n=0

σn <∞. Then lim
n→∞

an exists.

3. Main results
We now prove the following results.

Theorem 38. Let E be a uniformly convex real Banach space with uni-
formly Gâteaux differentiable norm and E∗ its dual space. Let A : E → E∗

be a bounded and uniformly monotone mapping such that A−1(0) 6= ∅. For
arbitrary x1 ∈ E , let (xn) be a sequence defined iteratively by
(3.1) xn+1 = J−1

p (Jpxn − αnAxn), n ≥ 1, p ≥ 2
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where Jp is the duality mapping from E to E∗ and (αn) ⊂]0, 1[ a real sequence

satisfying the following conditions: (i)
∞∑
n=1

αn = ∞; (ii)
∞∑
n=0

α2
n < ∞. Then,

there exists γ0 such that, if αn < γ0, for all n ≥ 1, then (xn) converges strongly
to the unique solution of the equation Au = 0.

Proof. The proof is in two steps.
Step 1: We prove that xn is bounded. Since A−1(0) 6= ∅, let ū ∈ A−1(0). there
exists r > 0
such that:

(3.2) r ≥ max
{4p

q
‖ū‖q, φp(x1, ū)

}
,

1

p
+

1

q
= 1.

We show that φp(ū, xn, ) ≤ r for all n ≥ 1. The proof is by induction. By
construction, φp(x1, ū) ≤ r. Assume that φp(ū, xn) ≤ r for n ≥ 1, we show
that φp(ū, xn+1) ≤ r. Let

B :=
{
Jpx− θAx, 0 ≤ θ ≤, φp(x, ū) ≤ r

}
.

Since A is bounded, B is bounded, using Lemma 20. We have there exists
L ≥ 0 such that:

‖J−1
p u∗ − J−1

p v∗‖ ≤ L‖u∗ − u∗‖,
for all u∗, v∗ ∈ B. Since A is bounded, we have

M0 := L sup{‖Ax‖2, φp(x, ū) ≤ r} ≤ +1 <∞,
Where L is a Lipschitz constant of J−1. Define:

(3.3) γ0 = min{1, kr
4M0

}

Using the definition of xn+1, we compute as follows:

φp(ū, xn+1) = φp(ū, J
−1
p (Jpxn − αnAxn))

= Vp(ū, Jpxn − αnAxn).

Using lemma 2, with y∗ = αnAxn, we have:

φp(ū, xn+1) = V (ū, Jpxn − αnAxn)

≤ Vp(ū, Jpxn)− pαn〈J−1
p (Jpxn − αnAxn)− ū, Axn − Aū〉

= φp(ū, xn)− pαn〈xn − ū, Axn − Aū〉 − pαn〈J−1
p (Jpxn − αnAxn)− xn, Axn〉

= φp(ū, xn)− pαn〈xn − ū, Axn − Aū〉
− pαn〈J−1

p (Jpxn − αnAxn)− J−1
p (Jpxn), Axn〉.
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Using the uniformly monotonocity of A, Schwartz inequality and the Lips-
chitz property of J−1

p , we obtain

φp(ū, xn+1) ≤ φp(ū, xn)− pαnk‖xn − ū‖p + pαn‖J−1
p (Jpxn − αnAxn)− J−1

p (Jpxn)‖‖Axn‖
≤ φp(ū, xn)− pαnk‖xn − ū‖p + pα2

nL‖Axn‖2.

Using Lemma 22

φp(ū, xn+1) ≤ φp(ū, xn)− pαnk
(
φp(ū, xn)− p

q
‖ū‖q + g(‖ū‖

)
+ pα2

nM0.(3.4)

Using (3.4), we have:

φp(ū, xn+1) ≤ φp(ū, xn)− pαnkφp(ū, xn) + pαnk
p

q
‖ū‖q + pα2

nM0.(3.5)

Finally, using the fact that αn ≤ γ0, the definition of γ0 in (3.3) and the
induction assumption, it follows

φp(ū, xn+1) ≤
(

1− pαnk
)
φp(ū, xn) + pαnk

r

4
+ pαnk

r

4

φp(ū, xn+1) ≤
(

1− pαnk
)
r + pαnk

r

4
+ pαnk

r

4

≤ (1− pαnk

2
)r

< r.

Hence, , φp(ū, xn+1) ≤ r. By induction φp(ū, xn) ≤ r for all n ≥ 1. Thus, from
Inequality (2.1), (xn) is bounded.

Step 2: We now prove that (xn) converges strongly to the unique point , ū ofA.
Let x∗ ∈ A−1(0). Following the same arguments as step 1, the boundedness
of (xn) and that A there exists a positive constant M such that :
(3.6) φp(ū, xn+1) ≤ φp(ū, xn)− pαnk‖xn − ū‖p + α2

nM.

Consequently,
φp(ū, xn+1) ≤ φp(ū, xn) + α2

nM.

By the hypothesis that
∞∑
n=0

α2
n <∞ and the lemma 24, we have that lim

n→∞
φp(ū, xn)

exists. From inequality (3.6), using the fact that,
∞∑
n=0

α2
n <∞ , it follows that

∞∑
n=1

αn‖xn − ū‖ <∞.
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As
∞∑
n=0

αn = ∞, then lim inf
n
‖ū − xn‖p = 0. Consequently, there exists a sub-

sequence (xnk) of (xn) such that : xnk → ū as k →∞. Since (xn) is bounded
and Jp is norm- to-norm weak∗ uniformly continuous on bounded subset
of E it follows that there exists a (φp(ū, xnk)) of (φp(ū, xn)) converges to 0.
Therefore, {φp(ū, xn)} converges to 0. Also, by lemma 23, ‖xn − ū‖ → 0 as
n→∞. This completes the proof. �

Corollary 13. Let E := Lp, 1 < p ≤ +∞ or Wm,p and A be a bounded and
uniformly monotone mapping such that A−1(0) 6= ∅. For arbitrary x1 ∈ E , let
(xn) be a sequence defined iteratively by
(3.7) xn+1 = J−1

p (Jpxn − αnAxn), n ≥ 1, p ≥ 2

where Jp is the duality mapping from E to E∗ and (αn) ⊂]0, 1[ a real sequence

satisfying the following conditions: (i)
∞∑
n=1

αn = ∞; (ii)
∞∑
n=0

α2
n < ∞. Then,

there exists γ0 such that, if αn < γ0, for all n ≥ 1, then (xn) converges strongly
to the unique solution of the equation Au = 0.

Proof. Since E is uniformly convex with uniformly Gâteaux differen-
tiable norm, then the proof follows from Theorem 38. �

Now, let us consider an important application.
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4. Application to convex minimization problems
In this section, we study the problem of finding a minimizer of a uniformly
convex function f defined from a real Banach space E to R.

The following basic results are well known.

Remark 14. It is well known that if f : E → R be a real-valued differen-
tiable convex function and a ∈ E, then the point a is a minimizer of f on E if
and only if df(a) = 0.

Definition 3. A function f : E → R is said to be uniformly convex if there
exists γ(t), γ(0) = 0 such that for every x, y ∈ E the following inequality holds:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− γ(‖x− y‖).
If here γ(t) = ctp, p ≥ 2, where c > 0 is a positive constant, we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− ‖x− y‖p.

Lemma 25. LetE Let E be normed linear space. let f : E → R a real valued
differentiable convex function. Let df : E → E∗ denotes the differential map
associated to f . Then the following hold. If f is bounded, then f is locally
Lipschitzian, i.e., for every x0 ∈ E and r > 0, there exists γ > 0 such that f is
γ-Lipschitzian on B(x0, r), i.e.,

|f(x)− f(y)| ≤ γ‖x− y‖ ∀ x, y ∈ B(x0, r).

Lemma 26. Let E be a norm linear space and f : E → R a real valued
convex differentiable convex function. Assume that f is bounded. Then the
differentiable map, df : E → E∗ is bounded.

Proof. For x0 ∈ E and r > 0, let B := B(x0, r). We show that dF (B) is
bounded. From Lemma 25, there exists γ > 0 such that
(4.1) |f(x)− f(y)| ≤ γ‖x− y‖ ∀ x, y ∈ B.
Let z∗ ∈ df(B) and x∗ ∈ B such that z∗ = df(x∗). For u ∈ E, since B is open,
then there exists t > 0 such that x∗+ tu ∈ B. Using the fact that z∗ = df(x∗),
convexity of F and inequality (4.1), it follows

〈z∗, tu〉 ≤ f(x∗ + tu)− f(x∗)

≤ tγ‖u‖.
So that, 〈z∗, u〉 ≤ γ‖u‖ ∀u ∈ E. Therefore, ‖z∗‖ ≤ γ. Hence df(B) is bounded.

�
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Lemma 27. Let E be normed linear space and f : E → R a real-valued
differentiable convex function. Assume that f is uniformly convex. Then
the differential map df : E → E∗ is uniformly monotone, i.e., there exists a
positive constant k > 0 such that
(4.2) 〈df(x)− df(y), x− y〉 ≥ k‖x− y‖p ∀ x, y ∈ E.

We now prove the following theorem.

Theorem 39. Let E be a uniformly convex real Banach space with uni-
formly Gâteaux differentiable norm and E∗ its dual space. f : E → R be a
differentiable, bounded, uniformly convex real- valued function which satis-
fies the growth condition:f(x)→ +∞ as ‖x‖ → +∞. For arbitrary x1 ∈ E, let
{xn} be the sequence defined iteratively by:
(4.3) xn+1 = J−1

p (Jpxn − αnAxn), n ≥ 1, p ≥ 2

where Jp is the duality mapping from E to E∗ and (αn) ⊂]0, 1[ a real sequence

satisfying the following conditions: (i)
∞∑
n=1

αn = ∞; (ii)
∞∑
n=0

α2
n < ∞. Then, f

has a unique minimizer a∗ ∈ E and there exists a positive real number there
exists γ0 such that, if αn < γ0, for all n ≥ 1,

the sequence {xn} converges strongly to a∗.

Proof. Since E is reflexive, then from the growth condition, the conti-
nuity and the strict convexity of f , it follows that f has a unique minimizer
a∗ characterized by df(a∗) = 0 (Remark 14). Finally, from Lemma 25 and
the fact that the differential map df : E → E∗ is bounded, the proof follows
from Theorem 38. �
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5. Conclusion
In this work, we proposed a new iteration scheme for the approximation
of zeros of monotone mappings defined in certain Banach spaces. Our
results are used to approximate minimizers of lower semi continuous and
convex functions. The results obtained in this paper are important im-
provements of recent important results in this field.
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