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Several nonadaptive repeated-MLE procedures for
stochastic approximation in quantal response problems
are compared Examination of how the shapes of the
efficient score functions of individual observations
affect the behavior of these rules shows that the
nonadaptive logit-MLE rule is much less susceptible to
misleading initial observations than are the nonadaptive
probit-MLE rule or a nonadaptive Robbins-Monro rule. A
consistency theorem for repeated-MLE procedures in
quantal response problems is stated.

1. Introduction and summary.

Let F: IR •*• [0,1] be a quantal response curve. Thus, if we choose a

stimulus level xn, we observe a Bernoulli random variable yn, indicating

response or nonresponse to the stimulus, where

(1.1) Pr{yn - 1} - 1 - Pr{yn - 0} - F(xn>.

Examples include bioassay, where yn = 1 indicates the death of a test animal

which has been given a dose of level xn of a toxic substance, and reliability

testing of components or materials, where yn » 1 indicates the failure of a test

item which has been subjected to a stress or shock of magnitude xn The problem
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of interest here is the estimation of the lOOp-th percentile L of F,

where p € (0,1) is given. The goal will be to find a scheme for sequentially

choosing the stimulus levels X j ^ , . - . so that xn converges to L as quickly as

possible. In applications like those mentioned above, the quantal response

function F will typically be continuous and increasing with lim F(x) β
 0 and

χ+-CO

lim F(x) = 1, or at least with lim F(x) < p and lim F(x) > p. Thus, a unique
x++c° x-).- oo x M - «

root L of

(1.2) F(L
p
) = p

which also satisfies F(x) < p for x < L and F(x) > p for x > L will typically

exist and be unique. For reasons of tradition and generality, this paper will

not assume that F is continuous or increasing, but rather only that there exists

a reasonably well defined and unique lOOp-th percentile. To wit, we assume the

existence of a stimulus level L satisfying

(1.3a) F(L
p
) - p

(1.3b) For every 0 < δ < 1, sup^FίL - h) < p.

(1.3c) For every 0 < δ < 1, inf .F(L + h) > p.
δ<h<δ"

X p

The stochastic approximation problem described above is obviously one

to which Robbins-Monro procedures can be applied. In the present setting, the

standard, nonadaptive Robbins-Monro rules for recursively choosing the x^s take

the form

( 1 4
>
 x

n+l

where b is a positive constant. The Robbins-Monro rule (1.4) will be denoted by

RM(b).
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The RM(b) rule can be obtained by doing repeated maximum likelihood

estimation under a simple linear model. (See Lemma 1 of Lai and Robbins

(1979) •) To be specific, suppose that our model for the distribution of y
n
,

given stimulus x
n
, is

(1.5)

2
where b > 0 is known and ε ,ε_,.. are i i d N(0,σ ) random variables. Then

the x
n + 1

 produced by the RM(b) rule is precisely the maximum likelihood estimate

for L under the model (1.5).

Suppose that 3 = -=—F(x) | __
0
 exists and is positive. It is well known

that the asymptotically best choice of b in (1.4) is b - 3 (See, for example,

Sacks (1959), and Lai and Robbins (1979).) Although Lai and Robbins (1979)

consider only stochastic approximation with i.i.d. "errors", it seems clear that

their results and methods also apply in our setting. Thus, one can attain the

asymptotically optimal convergence rate of ^ to L by replacing b in (1.4) with

certain strongly consistent estimators 3 of 3. Such adaptive RM procedures may

to some extent be regarded as repeated MLE procedures based on the model

(1.6) y
±
 = 3(x

±
 - L ) + p + ε

±
,

where now both the location parameter L and the scale parameter 3 are unknown,

2
and the errors ε remain i i.d N(0,σ ). The relationship between adaptive RM

procedures on the one hand and repeated MLE (or "iterated least squares")

procedures on the other is discussed in Lai and Robbins (1982). See also Wu

(1985, 1986).

Wu (1985, 1986) has suggested that the x
n

f
s be chosen to equal the

maximum likelihood estimate of Lp under a parametric model which is more

appropriate for quantal response that the models (1.5) and (1.6), which at first

glance might seem almost grotesquely inappropriate. He has focused most of his

attention on the location-scale logit model for F given by
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(1.7) F(x) - G(x|α,λ) - {1 +
 e
"

X(
<

K
'
(X>
>}^

1

 y
 λ > 0, α € IR.

Wu (1985) has done Monte Carlo simulations to compare the performance of RM(b)

and adaptive RM procedures with this "adaptive" (since the scale parameter λ is

being estimated) logit-MLE for moderate sample sizes (n = 10 to 35). Five

different functions (including a logit curve and a probit curve) were used as

the true quantal response functions in these simulations, and Wu claims that a

modification of his adaptive logit-MLE method with truncated step sizes

generally outperforms RM(b) and adaptive RM procedures. He also claims that his

method is asymptotically equivalent to adaptive RM if_ it is consistent

(Although the model (1.6) may seem "grotesquely inappropriate" for quantal

responses, the asymptotic behavior of adaptive RM rules does not seem to be

subject to general improvement even here. See Sellke (1986), Section 1, for an

example.) However, Wu has not given any rigorous proof of consistency.

Adaptive designs are probably of greater interest and importance than

"non-adaptive" (= fixed scale parameter) designs, since only adaptive designs

have some hope of matching the asymptotically optimal behavior of adaptive RM

when the true value of 3 is unknown. However, nonadaptive procedures are much

easier to study than adaptive procedures, and insights gained from the

examination of nonadaptive procedures may to some extent carry over to the much

more complicated adaptive designs. Also, the simulations of Wu (1985) show that

a well-chosen nonadaptive procedure will often outperform adaptive procedures

for moderate sample sizes

Section 2 will study several nonadaptive repeated MLE procedures by

looking at their (normalized) efficient score functions. Comparison of the

shapes of the efficient score functions of individual observations shows that

the nonadaptive logit-MLE rule performs far better than the nonadaptive probit-

MLE rule or the nonadaptive RM rule when the initial observations are taken far

from L .

Section 3 states a consistency theorem for repeated MLE procedures .
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2. Geometry of nonadaptive repeated MLE designs.

Let G be a c d .f with an everywhere positive density g, and for which

G(0) = p. Consider the location model for F given by

(2.1) F(x) - G(x - α), α C ΊR.

Since G(0) = p, we have L - α under the model. The log likelihood function

for α based on data {(x ,y )}
i a
, is

( \
 n

(2.2) L
U ;
( α ) = Σ [log G(x.-α)] l{y =1} + [log{l-G(x -α)} ] I{y - 0}.

i l

The efficient score function is

(2.3) L
(n)
(α) = Σ „,

 1
 . l{y =1} + _ £ - _ _ l{y =0} .

If we let I,(α) be the efficient score function for the i-th observation, then

we can rewrite (2.3) as

(2.4) L
( n )

(α) - Σ I (α).

i-1

Of course, the MLE α , if it exists, will be a root of

(2.5) L
( n )

(α) - 0.

It is desirable that L be monotone, so that (2.5) has at most one root. A

necessary and sufficient condition for I (α) to be monotone when y^ = 1

(respectively, y± - 0) is that log G (respectively, log (1 - G)) be concave,

(c.f. Silvapulle (1981).) If these conditions hold, then it is easily verified

that the MLE α will exist and be unique precisely when
n

n n

(2.6) Σ y
±
 > 0 and Σ (l-y

±
) > 0.
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One can start using repeated maximum likelihood estimation to choose x
n +
^ only

after (2.6) holds. One can either use some other choice rule until some time

after (2.6) is satisfied, or one may start with some "fake" initial data for

which (2.6) holds and which one may feel reflects prior opinion, so that all

"real" observations can be determined according to the MLE rule.

Let us now define a normalized score function. Write

( 2
*

7 ) Γ ( t ) = P

(2.9) S
U ;
( α ) = Σ r(o-x )l{y -1} + q(α-x. )l{y -0}

i-1

Then

(2.10) S
(n)
(c«)

The MLE α is of course also a root of
n

(2.11) S
( n )

(α) = 0.

The normalization factor ρ(l-p)/g(O) was chosen so that r(0) = 1-ρ and

q(0) - -p.

Let us examine what the r,q and S^
n
' functions look like when p - 1/2

and G is a logit or a probit c .d .f. The formulas are as follows.

Logit: G
L
(t) « (1+e

 ϋ
) ~ , r

L
(t) « (1-e

 t
) " " , q

L
(t) (l"

1 1
)""

^ '
2

The asymptotic distribution of n
1
'

2
(x

n
-L ) under the logit and probit MLE rules

is determined by the derivative r
f
(0) - q

f
(0). (See Sellke (1986),
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Section 5.) If the above r and q functions are rescaled (by a rescaling of the

t-axis) so that r
f
(0) = q

f
(0) • 1, then their graphs are as shown in Figures 1

and 2. Note that r and q are monotone in both cases. (The concavity of log G

and log(l-G) is easy to verify analytically,) Figure 5 shows how the score

function and the MLE are changed by a single observation under the logit

model. The geometric aspects of how the score function and the MLE are updated

under the probit model are similar

If one computes the efficient score function corresponding to the

model (1.5), one finds that a repeated MLE rule under this model is equivalent

to choosing x
n + 1

 to satisfy S
R
 (

χ

n + 1
) " 0> where

(2.12) r
R
(t) » 1 - p + bt,

(2.13) q
R
(t) - -p + bt,

and where S^ is defined by (2.9). The graphs of r
R
 and q

R
 with b - 1 are

shown in Figure 3. Since S^ is a line of slope (nb) for which
R

S^ (x ) • y - p, it is easy to verify that the updating rule (1.4) holds.
R n n

The graphs in Figure 1, 2 and 3 can be used to examine how individual

observations affect the value of the MLE. The effects of "outliers" are of

particular interest. Suppose that {(x ,y )}?_, have been observed. Let us

consider the effect that a particular observation, say (x^y^), has on the value

of α in these three models. In the logit and probit models, r > 0 and q < 0.

Thus, for logit and probit, (x^y^) will "push left" on α if y^ • 1, in the

sense that the MLE would be larger if (x^,y^) were deleted from the data.

Likewise, (x^,y^) will "push right" if y^ - 0, regardless of the value of x^.

The size of the "push" will obviously depend on the value of x^. If y^ - 1 and

x » α then ^x,»yχ) will generally have only a tiny effect on ^ since
1 n 1 n*

r(α - x . ) will be very small. If y, - 0 and x. « α , the situation is
n 1 j. l n

similar. If yĵ
 β
 1 and x. « α , then r(α - x ) « 1 under the logit model,

and r(α - x.) « (π/2)(α - x.) under the probit model. Thus, the logit model
n 1 n l
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- 4 t λ - l
qftl^l-e^Γ'-l

Figure I. Logit

Figure 2. Probit
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Figure 3. RM ( I )

r ( t ) = - !
( l + ( i r t ) 2 } { 2 - ( 4 / i r ) α r c t α n ( i r t ) }

q ( t ) = - r ( - t )

2 t

Figure 4. Cαuchy
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s ( β l<«>

S 1 5 ' (α)

r ( α - x β )

x 6 satisfies S < 5 ) ( x 6 ) =0.

S ( 6 ) ( a ) = S ( 5 ) ( a ) + r(a-x 6 ) , since y6

x 7 satisfies S ( 6 ) ( x 7 ) = 0 .

Figure 5. The Logit-MLE rule
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is "robust" against outliers in the sense that the presence or absence of a

single observation, no matter how extreme, will generally have only a small

effect on the value of α (at least if Σy and Σ(l - y.) are both not small.)

n i i

The probit model is not robust in this sense: if x^ is allowed to increase to

+», with y^ - 0 and { ( x ^ y ^ K ^ k
e l d f i x e d

> then α will also increase to +°°.

The RM(b) rule can produce rather perverse effects in the quantal
Λ
 —1

response setting. If x. > α + (2b) , then the (x^,y^) observation "pushes

right" regardless of the value of y^. If x. < α - (2b) , then (x^y^) "pushes

left." The RM(b) rule is also not robust in the sense used above.

The robustness comparisons of the previous paragraphs are obviously

very similar to the standard approach to robustness for M-estimators involving

considertion of the influence function. See for example, Huber (1981).

It may be of interest to consider the degree to which a single outlier

observation retards the movement of ^ to L . Suppose, therefore, that we start

with (x,,y,)
 β
 (0,1) and (x2»y2)

 β
 (0>0)> and that the score function rules of

Figure 1, 2 and 3 are used thereafter. Suppose further that y
i
 • 0 for all

subsequent observations Under each of the three rules, x^
 β
 0 and x

n +
i > x

n

for n > 3. If K > 0, how long will it take x
R
 to reach K? Under the logit-MLE

rule of Figure 1, the size of the steps (x
n + 1
 - x

n
) rapidly converges down to

.560. The first three step sizes are .693, .600 and .571. Thus, it takes about

(.560)""^ = (1.78)K steps for ^ to exceed K. Under the probit-MLE rule of

Figure 2, it takes

16 log 2'

2
steps to exceed K, where πK /(16 log 2) is probably an underestimate. For the

RM(1) rule, for n > 2,

x
n + 1

 = (1/2) Σ (i)"
1
 - (1/2M-3/2 + log(n) + C - (2n)~

X
 + 0(n"

2
)}.

n L
 i-3

where C - .5772 is Euler's constant. (See Apostol (1969), p 618, Exercise 2).



294 SELLKE

Thus, it takes about

exp{2K + 3/2 - C + (1/2) exp(-2K - 3/2 + C)} -1

additional observations after the first 2 to exceed K. For K = 10, the above

estimates for the numbers of additional observations needed for x
n
 to reach K

are 18, 28 and 1,220,814,797 for logit-MLE, probit-MLE,and RM(1),

respectively. (The 18 is correct, the 1,220,814,797 is close to being correct,

and the 28 is probably much too small.)

What happens if one uses a Cauchy c.d.f. in (2.6)? The resulting r

and q functions are shown in Figure 4. Repeated maximum likelihood estimation

under this model would have the perhaps desirable property that, the more

extreme an outlier, the smaller its influence on α . However, the score

function would not necessarily have a unique root, and Proposition 1 of Section

3 does not apply to prove consistency. The author conjectures that this

repeated maximum likelihood rule would still be consistent under conditions

(1 3a,b,c)

Another way of comparing the robustness properties of the score

function rules of Figures 1 through 4 is to consider how fast x
n
 grows under

these rules if the y
n

f
s are all i.i.d. Bernoulli (p

Q
), with 0 < p

Q
 < p - 1/2.

It can be shown that x
n
 grows roughly like a multiple of log n in all cases, but

the coefficient of log n would decrease in the order of Cauchy, logit, probit,

If p φ 1/2, then the graphs of r and q are obtained from the p = 1/2

graphs by a horizontal location shift and a vertical rescaling. (Achieving

r
f
(0) = q

f
(0) = 1 would require another horizontal rescaling.) The conclusions

reached above concerning robustness and the effects of outliers are generally

valid when p φ 1/2.

To summarize, the somewhat qualitative comparisons above lead the

author to favor the nonadaptive logit-MLE rule over the competitors. The

"bounded influence" property of the logit model would cause ^ to move more

quickly to the neighborhood of L if one has started far away from L than would
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the probit or RM(b) rules. The RM(b) rules are clearly the easiest from a

computational point of view, but the logit-MLE rule would also be easy to

implement. The probit-MLE rule would be slightly more cumbersome, since it

involves the normal c d f. Even if the Cauchy-MLE rule turns out to be

consistent, implementation of this rule would have to contend with the

possibility of multiple roots of the score function

3 Consistency.

It is well known that the RM(b) rules are consistent under conditions

(1.3a,b,c). (See, for example, Robbins and Siegmund (1971) for a very elegant

proof.) Are other repeated MLE rules also consistent under such weak

conditions? One strategy of proof which is suggested by the geometry of score

functions is to attempt to show that the relationship of x ^ ^ to ^ for repeated

MLE rules is very similar to formula (1.4). If, for large n, S^
n
' is

"approximately linear" near ^ with slope a -: -r-
 s
/^\I > then

α=x

(3.1)

Except for the approximation (3.1) has the form of a general Robbins-Monro

rule. Furthermore, one would expect a
n
 to be on the order of n, so

-1 -2

that Σ (a ) - °° and Σ(a ) < °°. One can in fact apply the non-negative almost

supermartingale convergence theorem of Robbins and Siegmund (1971), mimicking

their proof of consistency of RM(b) rules, to the approximation (1.3) to

establish consistency of the nonadaptive logit-MLE rule. (The proof is not

particularly elegant because of various technical distractions.) The argument

also works for the nonadaptive probit-MLE once the boundedness of the x
n

sequence has been demonstrated.

A different and more general proof of consistency is given in Sellke

(1986). Wu (1985a,b) has shown that x
R
 cannot converge to an incorrect value.

In terms of the score function S^
n
', his argument is as follows If

x •• x* > L , then by (1.3c) and the continuity of r and q at zero, it follows
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that s'
n
' diverges to +

00
 uniformly in a small interval (x* - δ,χ* + 6) about

x*. But this and S
( n )

(x
n + 1

) « 0 imply that X
R
 t (x* - ό,x* + 6) for

sufficiently large n, contradicting x + x*. Sellke (1986) completes the proof

of consistency by showing that x^ must converge. The argument is based on an

upcrossing inequaltiy. Let L < a < b be given, and suppose that x
m
 < a. The

upcrossing inequality gives a bound on the probability that sup x > b in terms

n>m

of the difference

S
( m )

(b) - S
( m )

( a ) .

It follows that x
n
 cannot cross the interval [a,b] infinitely many times.

The following proposition is a special case of Theorem 1 of Sellke

(1986).

PROPOSITION 1. Suppose that F satisfies (1.3a,b,c). Suppose that G is a c.d.f.

for which log G and log (1-G) are concave, and for which the second derivatives

at zero

dx*
ί
 i o g { i

-
G ( x ) }

U
exist and are strictly negative. Suppose also that G(0) = p. If x is chosen,

for all sufficiently large n, to equal the MLE of L under the location model

(2.1), then x converges to L almost surely

Acknowledgement. The author thanks Jeff Wu for a number of helpful

comments
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