
Chapter 7. Representation Theory of the Symmetric Group

We have already built three irreducible representations of the symmetric
group: the trivial, alternating and n — 1 dimensional representations in Chapter
2. In this chapter we build the remaining representations and develop some of
their properties.

To motivate the general construction, consider the space X of the unordered
pairs {i, j} of cardinality (J1). The symmetric group acts on these pairs by
7r{i, j} = {π(i),τr(jf)}. The permutation representation generated by this ac-
tion can be described as an (£) dimensional vector space spanned by basis vectors
e{^j}. This space splits into three irreducibles: A one-dimensional trivial rep-
resentation is spanned by U = Σ e{ij} An n — 1 dimensional space is spanned
by V{ = Σj e{ijy — cΰ, 1 < i < n, with c chosen so V{ is orthogonal to Έ. The
complement of these two spaces is also an irreducible representation. A direct
argument for these assertions is given at the end of Section A. The arguments
generalize. The following treatment follows the first few sections of James (1978)
quite closely. Chapter 7 in James and Kerber (1981) is another presentation.

A. CONSTRUCTION OF THE IRREDUCIBLE REPRESENTATIONS OF

THE SYMMETRIC GROUP.

There are various definitions relating to diagrams, tableaux, and tabloids. Let
λ = (λi, . . . , λ r) be a partition of n. Thus, λi > λ2 . . . > λ r and λi + .. . + λ r = n.
The diagram of λ is an ordered set of boxes with λi boxes in row i. If λ =
(3,3,2,1), the diagram is

If λ and μ are partitions of n we say λ dominates μ, and write λ>/i, provided that
λi > μi, λi + X2 > μι + μ2> > etc. This partial order is widely used in various
areas of mathematics. It is sometimes called the order of majorization. There is
a book length treatment of this order by Marshall and Olkin (1979). They show
that \>μ if and only if we can move from the diagram of λ to the diagram of μ by
moving blocks from the right hand edge upward, one at a time, such that at each
stage the resulting configuration is the diagram of a partition. Thus, (4,2)>(3,3),
but (3,3), and (4,1,1) are not comparable. See Hazewinkel and Martin (1983)
for many novel applications of the order.
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132 Chapter 7A

A λ-tableau is an array of integers obtained by placing the integers from 1
through n into the diagram for λ. Clearly there are n\ λ-tableaux.

The following lemma is basic:

LEMMA 0. Let λ and μ be partitions ofn, suppose that t\ is a λ-tableau and t2

is a μ-tableau. Suppose that for each i the numbers from the ith row of t2 belong
to different columns of t\. Then \>μ.

Proof Since the numbers in the first row of t2 are in different columns of
h, λi > μi The numbers in the second row of t2 are in distinct columns of ί i ,
so no column of t\ can have more than two of the numbers in the first or second
row of t2. Imagine "sliding these numbers up to the top of the columns of ίlβ

w

They fit in the first two rows, so λi + λ2 > μ\ + μ2. In general, no column of tι
can have more than i of the numbers from the first i rows of t2. Ώ

If £ is a tableau, its column-stabilizer C% is the subgroup of Sn keeping the
1 2 4 5

columns of t fixed. For example, when t — 3 6 7 , Ct = S^gy X £{26} X
8

^{47} X £{5} The notation 5{tfj,...,A?} m e a n s the subgroup of Sn permuting only
the integers in brackets.

Define an equivalence relation on the set of λ-tableaux by considering t\ ~ t2

if each row of t\ contains the same numbers as the corresponding row of t2. The
tabloid {t} is the equivalence class of t. Think of a tabloid as a "tableau with
unordered row entries." The permutations operate on the tabloids in the obvious
way. The action is transitive and the subgroup stablizing the tabloid with 1, . . . , λ\
in the first row, λi + 1,. . . , λi + A2, in the second row, etc., is

S ^ l ^ . ^ A i } X 5 { λ 1 + l , . . . , λ i + λ 2 } X ••••

It follows that there are n\/λι\.. .λ r ! λ-tabloids.
Define the permutation representation associated to the action of Sn on

tabloids as a vector space with basis e^ty. It is denoted M λ . This represen-
tation is reducible but contains the irreducible representation we are after. To get
this, define for each tableau t a polytabloid et E M λ by

Check that πet = eτi, so the subspace of Mχ spanned by the {e*} is invariant
under Sn (and generated as an " 5 n module" by any e^). It is called the Specht
module 5 Λ . The object of the next collection of lemmas is to prove that Sχ is
irreducible and that all the irreducible representations of Sn arise this way. These
lemmas are all from Section 4 of James.

LEMMA 1. Let λ and μ be partitions of n. Suppose that t is a λ tableau and s
is a μ-tableau. Suppose that

sgn(π)eΈ{s} φ 0.
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Then λ>μ, and if X = μf the sum equals ±et.

Proof. Suppose for some α, b that a and b are in the same row of s and in the
same column of t. Then

(id - (ab))e{s} = e { , } - e{s} = 0.

Since a and b are in the same column of t, the group < id, (ab) > is a sub-
group of Ct- Let σi,...,σjfe be coset representatives, so Σ sgn(7Γ)eπ{s} =

k

Σ sgn(σi)σt {id - (ab)}e^sy = 0. This is ruled out by hypothesis, so the numbers

in the ith row of s are in different columns of t. Lemma 0 implies that \>μ.
Suppose λ = μ, and the sum does not vanish; then, again, numbers in the

ith row of s appear in different columns of t. It follows that for a unique TΓ* G
Ct, τr*{/} = {s} and this implies that the sum equals ±et (replace {s} by π*{ί}
in the sum). D

LEMMA 2. Let μ G Mμ, and let t be a μ tableau. Then for some scalar c

sgn(π)πu = c et.

Proof, u is a linear combination of β^sy. For u = β^s}, Lemma 1 gives the result
with c = 0 or ±1. D

Now put an inner product on Mμ which makes e^sy orthonormal: < e^sj,
ejfj > = 1 if {s} = {t} and 0 otherwise. This is Sn invariant. Consider the "opera-
tor" At = £} sgn(π)π. For any u, v G Mμ

y < Atu,υ > =
πect

Σ sgn π < πUjV > = Σ sgn π < uyπ~1υ > = < u,Atv >. Using this inner
product we get:

LEMMA 3. (Submodule Theorem). Let U be an invariant subspace of Mλ. Then
either U D Sx or U C 6 t λ x . in particular, Sλ is irreducible.

Proof. Suppose u E U and t is a λ-tableau. By Lemma 2, ^4^ is a constant
times e*. If we can choose u and t such that this constant is non-zero, then et G U
and, since πe* = eπ/, Sx C U. If A ^ = 0 for all ί and w, then 0 = < AfU, e^} >
= < u,At e{t} > = < uyet >. So U C 5 Λ ± . D

At this stage we have one irreducible representation for each partition λ
of n. The number of irreducible representations is the same as the number of
conjugacy classes: see Theorem 7 of Chapter 2. This number is also the number
of partitions of n as explained at the beginning of Chapter 2D. Hence, if we can
show that the Sx are all inequivalent, we have finished determining all of the
irreducible representations of Sn.
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LEMMA 4. Let T: Mχ —> Mμ be a linear map that commutes with the action of
Sn. Suppose that Sλ (f_ her T. Then \>μ. If λ = μ, then the restriction ofT to
Sλ is a scalar multiple of id.

Proof By lemma 3, Ker T C Sχ±. Thus for any ί, 0 φ Tet = TAte{t} = AtTe{t}.
But Te^ty is a linear combination of μ-tabloids e^sy and for at least one such e{5},
At e{sy φ 0. By Lemma 1, \>μ. If λ = μ, then Tet = c et by the same argument.

D

LEMMA 5. Let T:Sλ —• Sμ be a linear map that commutes with the action of
Sn. IfTφO, \>μ.

Proof Any such T can be extended to a linear map from Mλ to Mμ by defining
T to be 0 on Sx±. The extended map commutes with the action of Sn. If T φ 0,
then Lemma 4 implies \>μ. •

Theorem 1. The Sχ are all of the irreducible representations of Sn.

Proof. If Sχ is equivalent to 5 μ , then, using Lemma 5 in both directions, X = μ.
Ώ

Remark. The argument for Lemma 4 shows that the irreducible representations
in Mμ are Sμ (once) and some of {Sχ: \>μ} (possibly with repeats). In fact, Sχ

occurs in Mμ if and only if λ>μ.
To complete this section, here is a direct proof of the decomposition of Mn~ 2 ' 2

discussed in the introductory paragraph to this chapter. We begin with a broadly
applicable result.

A USEFUL FACT.

Let G be a finite group acting on a set X. Extend the action to the product
space Xk coordinatewise. The number of. fixed points of the element s £ G is
F{s) = \{x:sx = x}\. For any positive integer k:
(1) ]b\ Σ F(s)k = I orbits of G acting on Xk\.

(2) Let iZ, V be the permutation representation associated to X. Thus V has as
basis 6X and Rs(δx) = δsx. The character of this representation is XR(S) =
F(s). If R decomposes into irreducibles as R = vn\p\ 0 . . . 0 mnpn; then

Σm = I orbits of G acting on X2\.

Proof. For (1) we have the action of G on Xk given by s(xι,.. .,£*;) =
( , . . . , sxk). Let Ci be a decomposition of Xk into G orbits. Then

X\ Xk
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The innermost sum is the cardinality of the stabilizer of G at x: \NX\ with Nx =
{s:sx = x}. Observe NsX = s Nxs"1. In particular, the size of Nx doesn't
depend on the choice of x in a given orbit. Since |G| = \NX\ \C{\ the inner sum
equals |G|/|C t |. The sum over x E C\ multiplies this by \d\. The final sum yields
\G\ |Orbits| as required. To prove (2), we use the orthogonality of characters:
XR = rriiXi + .. + rnnχn so < XR\XR >= m\ + . . . + ra2. On the other hand, it
is clear χR(s) = F(s) and i^s" 1 ) = F(s), so < χR\χR >= φ\ΣF(s)2. D

REMARKS AND APPLICATIONS

(a) With k = 1, part (1) is called Burnside's lemma. It is at the heart of Serre's
exercise 2.6 which we have found so useful. It also forms the basis of the
Polya-Redfield "theory of counting." See e.g., de Bruijn (1964).

(b) If G acts doubly transitively on X, then there are two orbits of G acting on
X X X: {(x,x)} and {(x,y)m-y Φ x}. It follows that V decomposes into two
irreducible components: One of these is clearly spanned by the constants.
Thus its complement {v: Σv{ = 0} is irreducible.

(c) When G acts on itself we get back the decomposition of the regular repre-
sentation.

(d) There is an amusing connection with probability problems. If G is consid-
ered as a probability space under the uniform distribution U, then F(s) is
a "random variable" corresponding to "pick an element of G at random and
count how many fixed points it has." When G = Sn and X = {1,2,..., n},
F(π) is the number of fixed points of TΓ. We know that this has an approx-
imate Poisson distribution with mean 1. Part (1) gives a "formula" for all
the moments of F(g).

EXERCISE 1. Using (1), prove that the first n moments of i^π) equal the first
n moments of Poisson(l), where π is chosen at random on Sn.

(e) Let us decompose M n ~ 2 ? 2 . The space X is the set of unordered pairs {i, j}
with 7r{i,j} = {fl"(i)?π(.?)} Th e permutation representation has dimen-
sion (2). There are 3 orbits of Sn acting on X x X corresponding to pairs
{hJ}Λk>£} with 0, 1, or 2 integers in common. Thus, clearly Sn acts tran-
sitively on the set of pairs ({i,j}, {i, j}). Also for ({i, j}, {j, I}) I φ i,j and
for ({i,j}, {k,t}) with {kj} Π {ij} = φ. It follows that V splits into 3 irre-
ducible subspaces. These are, the 1-dimensional space spanned by F = Σe^ jj,
the n — 1-dimensional space spanned by "V{ — Σjβ^jy — cv 1 < i < n, and
the complement of these two spaces. Clearly, the space spanned by v gives
the trivial representation and the space spanned by V{ gives the n - 1 di-
mensional representation. What is left is n(n - 3)/2 dimensional. If we
regard the permutation representation as the set of all functions on X with
sf{x) = f(s~λx)y then the trivial and n - 1 dimensional representations are
the set of functions of form f{i>j} = /ι(i) + /i(j)

EXERCISE 2. Show that for fixed j , 0 < j < n/2, Mn~^ splits into j + 1
distinct irreducible representations, the ith having dimension (?) - (^i)-- Hint:
use the useful fact and induction, (e) above is the case j = 2.
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We can build some new irreducible representations directly by tensoring the
representation we know about with the alternating representation. Tensoring the
alternating representation with the n - 1 dimensional representation always gives
a different irreducible representation. For n = 4 we already have all irreducible
representations: 2 of 1 dimension, 2 of 3 dimensions and 1 of dimension n(n -
3)/2 = 2. The sum of squares adds to 24. For n > 4 (but not n = 4) the
n(n — 3)/2 dimensional representation yields a new irreducible representation of
the same dimension. For n = 5 this gives all the irreducible representations but
1. We can build this by considering the action of Sn on ordered pairs (i,j). That
is, M 3 ' 1 ' 1 .

B. MORE ON REPRESENTATIONS OF Sn

The books by James and James-Kerber are full of interesting and useful facts.
Here is a brief description of some of the most useful ones, along with pointers to
other work on representations of Sn.

(1) The Standard Basis of Sχ. We have defined Sχ as the representation of
Mλ generated by elements et. There are n! different et and the dimension of Sχ

can be quite small. For example, if λ = (n— 1,1), we know Sχ is n-1 dimensional.
It turns out that a few of the et generate Sλ. Define H o be a standard tableau

1 3 5 I
if the numbers increase along the rows and down the columns. Thus — 'is

a standard [3,2] tableau. There is only 1 standard (n) tableau. There are n — 1
standard (n — 1,1) tableaux. In Section 8, James proves that {et\t is a standard
λ-tableau} is a basis for Sμ. This is a beautiful result, but not so helpful in "really
understanding 5 λ . " What one wants is a set of objects on which Sn acts that
are comprehensible. The graphs in Section 5 of James are potentially very useful
in this regard for small n. As far as I know, a "concrete" determination of the
representations of Sn is an open problem. See (6) below.

(2) The Dimension of Sλ. There are a number of formulas for the dimension
(and other values of the character) of the representation associated to A. The
dimensions get fairly large; they are bounded by Λ/ΉJ of course, but they get quite
large:

n

max dim
2
1

3
2

4
3

5
6

5
16

7
35

8
90

9
216

10
768

We know that dim(5'λ) equals the number of ways of placing the numbers 1,..., n
into the Young diagram for λ in such a way that the numbers increase along rows
and down columns. From this follows bounds like the following which was so
useful in Chapter 3:

dim(5λ) < Γ W(n-λi) ! .

There is a classical determinant formula (James, Corollary 19.5)

dim(5λ) = n\ Det|l/(λ; - i + j)! | , where 1/r! = 0 if r < 0.

Finally, there is the hook formula for dimensions. Let λ be a partition of n. The
(i, j) hook is that part of the Young diagram that starts at (i, j) and goes as far



Representation Theory of the Symmetric Group 137

as it can either down or to the right. Thus, if λ = (4,3,2), X

X

X the (2,2)

hook is indicated by xfs. The length of the (i,j) hook is the number of boxes in
the hook. Using this terminology, the hook length formula says

dim(S'λ) = 7i!/product of hook lengths in λ.

For example, when λ = (4,3,2), the hook lengths are

6
4
2

5
3
1

3
1

1

The dimension is 9!/6! 3 = 168.
The dimension of S(n~1Λ) is n - 1. The dimension of S 1 1 - 1 is 1.
Greene, Nijenhuis, and Wilf (1979, 1984) give an elegant, elementary proof

of the hook length formula involving a random "hook walk" on a board of shape
λ.

Hooks come into several other parts of representation theory - in particular,
the Murnaghan-Nakayama rule for calculating the value of a character (section
21 of James).

(3) Characters of the Symmetric Group. To begin, we acknowledge a sad
fact: there is no reasonable formula for the character χχ(μ) where λ is a partition
of 7i, xx the associated irreducible character of Sn, and μ stands for a conjugacy
class of Sn. This is countered by several facts.
(a) For small n (< 15) the characters have been explicitly tabulated. James-

Kerber (1981) give tables for n < 10 and references for larger n.
(b) For large n there are useful asymptotic results for χ\{μ). These are clearly

explained in Flatto, Odlyzko, and Wales (1985).
(c) For any specific λ and μ there is an efficient algorithm for calculating the

character called the Murnaghan-Nakayama rule. Section 21 of James (1978)
or Theorem 2.4.7 of James-Kerber (1981) give details.

EXERCISE 3. Define a probability Q on Sn as follows: with probability pn choose
the identity with probability 1 — pn choose a random n-cycle. Determine the rate
of convergence. How should pn be chosen to make this as fast as possible? Hint:
See (d) below.

(d) For "small" conjugacy classes μ, and arbitrary n and λ, there are formulas like
Frobenius' formula used in Chapter 3D. Ingram (1950) gives useful references.
See also Formula 2.3.17 in James-Kerber (1981).

(e) For some special shapes of λ, such as hooks A = (fc, 1,1,..., 1), closed form
formulas are known, see e.g. Stanley (1983) or Macdonald (1979).

(f) There are also available rather intractable generating functions for the charac-
ters due to Frobenius. This analytic machinery is nicely presented in Chapter
1.7 of Macdonald (1979).
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(4) The Branching Theorem (Section 9 of James). Consider p the n - 1
dimensional representation of Sn. Let SVi-i be considered as a subgroup of Sn

(all permutations that fix 1). Then p is a representation of Sn-ι, "by restriction"
James writes S^*1"1*1) [ SVi-i Observe that p restricted to Sn-ι is reducible.
If we choose the basis e\ — e<ι,e\ — β3,. . . ,ei — e n ; then the sum of the basis
elements generates a one-dimensional invariant subspace. Since Sn-\ operates
doubly transitively on the basis elements, we have p [ Sn-\ splitting into two
irreducible subspaces; one of dimension 1 and one of dimension π - 2.

The branching theorem gives the general result on how Sμ [ Sn-ι decom-
poses: there is one irreducible representation for each way of removing a "box"
from the right hand side of the Young diagram for μ in such a way that the result-
ing configuration is a diagram for a partition. Thus, the diagram for [n — 1,1] can
be reduced to (n - 1) or (n - 2,1) and these are the two irreducible components.
The branching theorem is used to give a fast Fourier transform for computing all
f(p) in Diaconis and Rockmore (1988).

EXERCISE 4. (Flatto, Odlyzko, Wales). Let p be an irreducible representation
of Sn. Show that p restricted to Sn-ι splits in a multiplicity free way. Using this,
show that if P is a probability on Sn that is invariant under conjugation by Sn-ι
(so P(τr) = P(σπσ~1) for σ G £ n _ i ) , then P(p) is diagonal for an appropriate
basis which does not depend on P.

(5) Young's Rule. This gives a way to determine which irreducible subspaces
occur in the decomposition of M λ . It will be extremely useful in Chapter 8 in
dealing with partially ordered data "in configuration λ." For example, data of
the form "pick the best m of n" can be regarded as a vector in M^n~rn}Tn\ the
components being the number of people who picked the subset corresponding to
the second row of the associated tabloid. The decomposition of M^n"m^ into
irreducibles gives us a spectral decomposition of the frequencies and a nested
sequence of models. See Chapter 8B and 9A.

Young's rule depends on the notion of semi-standard tableaux. This allows
repeated numbers to be placed in a diagram. Let λ and μ be partitions of n. A
semi-standard tableau of shape λ and type μ is a placement of integers < n into
a Young tableau of shape λ, with numbers nondecreasing in rows and strictly
increasing down columns, such that the number i occurs μt times. Thus, if λ =
(4,1) and μ = (2,2,1), there are two tableaux of shape λ and type μ:

1 1 2 2 1 1 2 3
3 2

Young's Rule: The multiplicity of Sx in Mμ equals the number of semi-standard
λ tableaux of type μ. As an example, consider, for m < 7i/2, μ = (n — m,m).
We are decomposing Mμ. The possible shapes λ are

m - l

1 1 . . .12 . . .2 ,1 1...12 . . . 2 , . . . 1 1 1
2 2
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Each occurs once only. Thus M ( n " m ' m ) = £(n) φ S^"1-1) φ S(n-2.2) φ . . . φ
S ( n - m m ) . By induction dim S( n " m ' m ) = (») - ( ^ J . When we translate this
decomposition into an interpretation for "best m out of n" data, the subspaces
g(n-mfm) h a v e interpretations:

571 _ Th e grand mean or # of people in sample.
ii e f f e c t o f i t e m ^ i < , < n .

effect of items {i,j} adjusted for the effect of i and j .

Sn k'k — The effect of a subset of k items adjusted for lower order effects.

Remarks. Many further examples of Young's rule appear in Chapter 8. Young's
rule does not give an algorithm for decomposing Mμ or interpreting the Sμ. It
just says what pieces appear. Section 17 of James (1978) solves both of these
problems in a computationally useful way. This remark is applied in Chapter 8C
below.

Young's rule is a special case of the Littlewood-Richardson rule which de-
scribes how a given representation of Sn restricts to the subgroup Sk X Sn-k- See
James and Kerber (1981, Sec. 2.8).

(6) Kazhdan-Lusztig Representations. The construction of the irreducible
representations given in Section A constructs Sλ as a rather complicated subspace
of the highly interpretable Mλ. Even using the standard basis ((1) above), Sx is
spanned by the mysterious Young symmetrizers et. It is desirable to have a more
concrete combinatorial object on which the symmetric group acts, with associated
permutation representation isomorphic to Sx. An exciting step in this direction
appears in Kazhdan and Lusztig (1979). They construct graphs on which Sn

acts to give 5 λ . For n < 6, these graphs are available in useful form. Kazhdan
and Lusztig construct these representations as part of a unified study of Coxeter
groups. The details involve an excursion into very high-powered homology. Garsia
and McLarnan (1988) gives as close to an "in English" discussion as is currently
available, showing the connections between Kazdahn and Lusztig's representations
and Young's natural representation as developed in Chapter 3 of James-Kerber.

(7) The Robinson-Schensted-Knuth (RSK) Correspondence. There is a fasci-
nating connection between the representation theory of Sn and a host of problems
of interest to probabilists, statisticians, and combinatorialists centered about the
R-S-K correspondence. The connected problems include sweeping generalizations
of the ballot problem: if one puts λi-ones, λ2-twos, ..., λ^ — A 's into an urn and
draws without replacement, where λi > X2 .. > λ& is a partition of n, then the
chance that # ones > # two > . . . > # k's at each stage of the drawing equals
/(λ)/n! where /(λ) = dim(5'λ) discussed in (2) above. This links into formu-
las for the coverage of Kolmogorov-Smirnov tests, the distribution of the longest
increasing subsequence in a permutation, and much else.

The connection centers around a 1-1 onto map π —• (P,Q) between Sn and
pairs of standard Young tableaux of the same shape. Since there are /(λ) of
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these tableaux of shape λ, we have an explicit interpretation of the formula n\ —
Σ Λ /(λ) 2 .

One route to accessing this material starts with Section 5.1.4 in Knuth (1975).
Then try Stanley (1971), then some of the papers in Kung (1982). Narayana
(1979) gives pointers to some statistical applications. Kerov and Virshik (1985)
give applications to statistical analysis of other aspects of random permutations.
White (1983) discusses the connection between the R-S-K correspondence and the
Littlewood-Richardson rule.




