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This paper has three parts. The first give an expository review of a model from stochas-
tic population biology. This model leads to eigenvalue inequalities for random evolutions.
The second gives a proof by Charles M. Newman of one of these inequalities. The third
gives conjectures and questions. Some of these have been previously stated; most are new.

1. Introduction. The growth of a population in a random environment can be modeled

in a simple way by a stochastic process called a random evolution. Bounds on the growth

rate of a population in a random environment can be expressed in terms of certain eigen-

values. The first purpose of this paper is to describe informally how a population can be

modelled by a random evolution and why eigenvalue inequalities arise naturally (section

2). The main inequalities to be discussed have been proved by Cohen, Friedland, Kato and

Kelly (1982). I shall henceforth refer to this paper as CFKK. The second purpose of this

paper is to give a proof (section 3) of one of these inequalities that was discovered by

Charles M. Newman of the University of Arizona during my talk at the symposium on In-

equalities in Statistics and Probability. The third purpose of this paper is to state conjec-

tures, open problems and questions concerning further inequalities (section 4).

2. Populations in Random Environments and Eigenvalue Inequalities. Suppose one

has a vat of bacteria sitting in a laboratory. Suppose the number of bacteria is large enough

so that there is no discomfort in taking N(f), the number of bacteria at (real scalar) time

ί, to be a real variable rather than strictly integer valued. Suppose also that the number of

bacteria is small compared to the number of bacteria that the nutrient medium in the vat

can support, or that the medium is continuously refreshed. If the division cycles of the bac-

teria are unsynchronized, then the simplest model of the population is to suppose that the

number of fissions that occur per unit time is directly proportional to the number of bacteria

in the vat. Thus, for some real constant by

dN(t) /dt = bN(t) for t ^ 0, N(0) = No.

It is well known, even among biologists, that the solution of this equation is

In this deterministic model, the long-run growth rate b may be computed from an observed

trajectory N(t) of the size of the population from the formula

UmΓ1\ogN(ή = b.

The left side of this equation is referred to as a Liapunov characteristic number of the pro-

cess.
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If one interprets the growth rate b as a stochastic process that is degenerate at a single

fixed value for all time t, one can take averages wherever one wishes in the Liapunov char-

acteristic number, i.e.,

because both sides are equal with probability 1 to b. However, if b is a stochastic process

that is not degenerate, the above equality must be replaced by

ΓλE\ogN{t) ̂  Γ1 \ogEN(ή

because of Jensen's inequality and the concavity of log.

Now suppose that the conditions of our vat of bacteria are not perfectly uniform in time,

but fluctuate randomly because of changes in the outside weather, in the voltages of the

power lines that drive the vat's heating bath and mixers, and in other factors affecting the

growth rate of the bacteria. Let us model these fluctuations by supposing that

dN(t) /dt = b{i)N(t) for / ̂  0, N(0) = No,

where b(t) is a real-valued functional of an n-state (1 < n < oo) continuous-time homogene-

ous irreducible Markov process V(t). This means that the sample paths of b(t) are piecewise

constant, and each piece is constant at one of n real numbers bx, ... , bn. The Markov chain

V(t) on the state space {1, ... , n} may be thought of as determining the subscript / of the

growth rate bέ that is current at time t according to

b(t) = bV(ί)9 with b(0) = bl.

Given that the Markov chain V(t) starts in state 1, the subsequent behavior is determined

by the intensity matrix Q according to

P[V(t + s)=j\ V(ή = i] = (eQ% for s ̂  0, t^ 0.

Recall that the intensity matrix Q is essentially nonnegative, i.e., qtJ ^ 0 if i¥ j , with the

additional condition that ΣjL λ qtJ? = 0, i = 1,2 ... , n.

The process N(t) is called a random evolution. It is a special case of the random evolu-

tions studied by Griego and Hersh (1971), reviewed by Hersh (1974) and inspired by Kac

(1957).

Since V(t) and b(i) are piecewise constant, a graph of a sample path of log Λf(O as a func-

tion of / is piecewise linear, increasing when b(t) > 0, constant when b(t) — 0, and declining

when&(ί)<0.

If gj{t) is the occupancy time in state j up to time ί, i.e., the sum of the lengths of the

time intervals up to time / such that V(ή = j , then an explicit formula for the random evolu-

tion N(0 is

This formula is obvious because, as long as V(t) = j , N(t) grows exponentially at rate bj

as if b(t) were fixed at bj.

The formula makes it easy to compute one of the plausible measures of the long-run

growth rate. First, since Q is irreducible (meaning that every growth rate is accessible from

every other growth rate), there is an invariant or equilibrium probability vector π with posi-

tive elements π, , i = 1,2, ... , w, such that

τrΓQ = 0

and such that

gj(t)/t->TTj with probability 1, for 7 = 1 , ... ,«.
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Then using the above formula forN(t) gives

HmΓ1 E\ogN(t) = l imr 1

In words, the mean of the growth rates of population size (averaged over sample paths)

equals the mean growth rate (averaged over the growth rates of any single sample path).

The second plausible measure of the long-run growth rate, namely the growth rate of

mean population size, is given by a Feynman-Kac formula for this random evolution

(Cohen, 1979a) as

(2.1) lim Γ' \ogEN(t) = log r(eQ+B),

where r is the spectral radius, or maximum of the moduli of the eigenvalues, and B is the

nx n diagonal matrix withyth diagonal element equal to bj.

Whereas the mean of the growth rates of population size depends on the intensity matrix

Q only through its leading left eigenvector πτ, and is therefore the same for any intensity

matrix with the same ττΓ, the growth rate of mean population size depends on all of Q.

While it is plausible to suppose that the bacteria grow in continuous time, it is equally

plausible to suppose that a biologist observes them at discrete time intervals. Suppose he

or she observes once a day the conditions (temperature, light, nutrient concentration) af-

fecting bacterial growth and infers or records a time series b(0), b(\), b(2), ... of instan-

taneous growth rates. Suppose the observer models ND(t) the number of bacteria (D for

"discrete") by

ND(t + 1) = ND(t)eb(ί\ ί = 0 , l , 2 ND(0) = No.

P[b(t + 1) = bj,\ b(t) = bt] = (e% = p i p b(0) = b].

According to the first of these equations, if the observer sees growth rate b(t) at the epoch

of observation on day t, he supposes that this growth rate will continue without variation

until the epoch of observation on the next day. Since he has no information to tell him other-

wise, this seems a reasonable first approximation. According to the second of these equa-

tions, he takes the transition probability ptj from growth rate ft,- to growth rate bj to be just

the transition probability that would be estimated from any long sample path of V(t) by

sampling at unit intervals.

The biologist's purpose in constructing this discrete approximation ND(t) to the random

evolution N(t) is to estimate the growth rates of N(t). If he computes lim Γ1 E log ND(t)

and lim Γ1 log E ND(t), how will these rates relate to the corresponding rates for N(t)Ί

For the average growth rate of population size, it follows from the explicit formula

and the fact that

gPiή/t-tTTj with probability 1, j = 1, ... ,n,

where gf(i) is the discrete occupancy time of state j prior to time t ( = number of days

ft >m 0 up to and including t-1 such that V(.) = j) that

lim Γ1 E log ND(ή = ΣjL, b/πj
ί->oo

= limΓ1 E log N(t).
ί o o

Thus the discrete model for ND(t) give exactly the average growth rate of the continuous

time random evolution N(t).
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What about the second measure, the growth rate of average population size? An elemen-

tary computation shows that

END(t) = eh(0) x first row sum of ( Λ B ) ' .

Because Q is irreducible, eQ is (elementwise) positive, so that by the Perron-Frobenius

theorem

(2.2) lim Γ1 log END{t) = log r(eQeB).

After publishing this formula (Cohen, 1979b, p. 249), I discovered that it was known to

LeBras (1974). I have recently learned from a secondary source (Iosifescu, 1980, pp. 162—

163) that the formula should be credited to papers by O. Onicescu and G. Mihoc published

during World War II.

The growth rate (2.2) of mean population size in the discrete model is an upper bound

on the growth rate (2.1) of mean population size in the random evolution. More precisely,

Theorem 2 of CFKK (p. 64) states: If A and B are two real n x n matrices, all a{. > 0 if / Φ

j , and all b{j = 0 if i Φ j , then

(2.3) r(eA+B)^r(eAeB).

Moreover, this inequality is strict if A is irreducible and at least two diagonal elements of

B are distinct. The next section gives a proof of the weak inequality.

Before giving that proof, let me informally show how (2.2) can be used to derive (2.1).

(This does not pretend to be a rigorous proof.) We construct a sequence of discrete approxi-

mations NDχ{i) = ND(t), N?(ί)» N^(t), ... . In the kih approximation a unit interval of time

is divided into k equal subintervals. The growth rate b(t) is constrained to be constant on

each subinterval but is permitted to change, with transition probability matrix fllk, from

one subinterval to the next. Within each subinterval of length 1/fc, the long-run growth

rate of mean population size, from (2.2), is log r(eQ/keB/k). Therefore, in one unit of time,

which is k subintervals of length 1/ k, the growth rate of mean population size is

k\ogr(eQ/keB/k) = \ogr*(eQ/keB/k) = logrα^V'*]*).

But for any two n x n matrices A and B, there is a formula attributed to Sophus Lie (can
anyone tell me the original source?)

\im(eA/keB/k)k = eA+B.

If you accept that

lim lim Γ1 \ogEN%(ή = lim Γ1 \ogEN(t),

so that the growth rate of mean population size in the discrete approximations approaches

that of the continuous-time random evolution, then the two preceding formulas and an ex-

change of limits combine to yield the Feynman-Kac formula (2.1).

If the Markov chain V(t) is reversible, CFKK proved (p. 62) that many more eigenvalue

inequalities hold. For example, if the eigenvalues λ,, ... ,\n of an arbitrary n x n complex

matrix Mare ordered so that I λ] | ^ | λ 2 | ^ ••• ^ | λ n |, and if

<P* = Σ ? - i l U * = l , . . . , n ,
then for any reversible intensity matrix Q, any diagonal real matrix B and k = 1, ... , n,

φ * ( e Q + B ) ^ φ * ( Λ B )
The random evolution described here has also been found useful by economists to whom
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I have suggested it as a model of price inflation in random (political, social and economic)

environments. In this application, N(t) is an index of price, b(t) the instantaneous rate of

inflation, and one of the interesting questions is: given 0 < N\ <N2 and t\ < t2 and N(t\)

< Λfj, what is the probability that N(ή < N2 for all tλ ^ t ^ t2Ί Another question is: given

N(tι) = N\, what is the distribution of the first time t2 > tx such thatΛf(ί2) = N2>NλΊ

I hope it will both aid and promote people's interest in studying discrete and continuous

random evolutions to observe that these random evolutions are special multiplicative func-

tionals of Markov chains and processes. Markov's first paper in 1906 on these chains (again

according to Iosifescu [1980]) aimed for a central limit theorem for additive functionals

of a chain. Since then, many publications, scattered and apparently overlapping, have dealt

with various functionals of Markov chains and processes. Among them are Doeblin (1937),

Frechet (1952), Blanc-Lapierre and Fortet (1953 [1965]), Volkov (1958), Kemeny and

Snell (1960 [1976]), Meyer (1962), Keilson and Wishart (1964,1967) Fukushima and Hit-

suda (1967), Pinsky (1968), Keilson and Rao (1970), Kertz (1974), O'Brien (1974), Ellis

(1974), Serfozo (1975), ςinlar (1975), Keepler (1976), Wolfson (1977), Katz (1977), Dur-

rett and Resnick (1978), Dagsvik (1978), primary papers cited in Iosifescu (1980), Fried-

land (1981) and Siegrist (1981). This work needs coherent synthesis.

3. Newman's Proof. After my lecture at the Nebraska Conference on Inequalities,

Charles M. Newman presented me with a proof of (2.3). I give this proof with his kind

permission.

LEMMA 1. Let A and B be two real n X n matrices with atJ ^0ifi^= j , and btj =

Oifi Φ j . Thenfor any positive integer m, anyrealxif i — 1, ... , m, anda > 0,

F(xx, ... , xm) = Tr(eaV1 W 2 ® . . .^V"3)

is minimized on {x( ̂  0, Σ*, == ma}atXi = a for alii.

Proof. We may express A as A = Q + D where Q is an intensity matrix and D is

diagonal real. Let V(t) be the Markov process determined by Q with an initial distribution

that is uniform on the states {1, ... , n} and conditioned so that V(0) = V(T) where T =

am. Thinking of a = Tim as a discrete timestep for observing V(f), we have by the Feynman-

Kac formula that

KF(x1, ... , xj = EexpUJέ/vw* + ^T=^xjbv(ja)}

where dj = ΌJJ and bj = B^ and K = [Tr{eTQ)Tλ.

To see that F is a convex function of (xlf ... , xm) it suffices to show that the matrix

with (ι\/)th element equal to d2F/dXidXj is positive semi-definite.

Ifci, ... , cm are any m complex numbers it follows that

KSijdΛ&F/axβxjlcj = E(\ZjCjbv(jα)\
2cxpΐZhxhbV(hα) + SSdV(odt]) ^ 0.

ThusFis convex in (xl9 ... ,jcm).

On {xι ^ 0, ΣJC, = mα}, write xm = mα - ^z\ JC, SO that xλ, ... , *,„_! are independent.

To prove Lemma 1, it suffices to show that

dF/dxj = 0 at (xu ... ,xm) = (α,α, ... ,α).

But because xm depends on all Xj,, 1 ̂  j ^ m -1, we find

dF/dxj = Trifle**.. .ef^Be**.. .eα V " B )
- Tr(eα V l B . . .e" V>B.. .eα V " BB).

When (JCI, ... , Xm^\) = (α, ... ,α) the two Trace terms are equal and dF/dxj = 0. •

LEMMA 2. For all N= 1,2, . . . ,
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Proof. Choosing a = XIK, m = KN SLS before, let Xj = 0 for ally that are not exactly

divisible by K and let JC, = 1 if K divides./ exactly. In this case,

F{xu ... ,xm) = Tr([eAeB]N).

On the other hand

F(a, ... ,a) = Tr([eaAeaBr) = Tr([eA/κeB/κ]KN)

and Lemma 1 asserts that

Tr([eAeB]N) ^ Tr^WY™)

Hold N fixed and let #->oo, using Sophus Lie's formula. •

Proof of (2.3). For any nonnegative nx n matrix M,

= lim[7r(M")]1/7V.

Apply this to the inequality of Lemma 2, using M = eAeB on the left and M = eA+B on

the right. G

The central idea in this proof of (2.3) is to use the Feynman-Kac formula. It seems to

be harder to find a proof of the strict inequality in (2.3).

4. Open Problems. The concluding section is devoted to conjectures and open prob-
lems.

The first three conjectures, taken from CFKK (pp. 92-93), arose in attempts to find

proofs of (2.3) and related results.

CONJECTURE 1. Let AbeannXn essentially nonnegative matrix, B an n x n real

diagonal matrix. Then F(t) = log r(eAteBt) is convex in the real variable t. If, in addition,

A is irreducible and B is not a scalar matrix, then F(t) is strictly convex in t.

The conjecture is proved only for 2 x 2 matrices. I have checked it numerically with

examples of 3 x 3 matrices, including matrices A with real and complex spectra. For

n X n matrices, it is not hard to show that F(t) + F(-t) ^ 0 = 2F(0). If r is replaced by

7>, then F(t) is not convex in t for some 3 x 3 matrices A with complex spectra. If the

stated conjecture is true, it provides another proof of both the weak and strict inequality

(2.3) via Theorem 5 of CFKK (p. 78).

CONJECTURE 2. Let \ i 9 ... , Ak be nonnegative irreducible n x n matrices with posi-

tive diagonal elements, for some positive integer k. Let Dj, ... , D^ be real diagonal n X

n matrices with zero trace. Then

is a strictly convex function of (Ό i, ... , D * ) .

If true, this conjecture would provide sufficient conditions for strict inequality in a

generalization (Theorem 3 of CFKK, pp. 71-72) of (2.3).

CONJECTURE 3. Let A and B be n x n Hermitian matrices and at ^ 0, b{ ^ 0, i =

1, ... 9n.Leta = Σ A , b = ΣΛ Then

\\e« V l B . . .eakAebkB \\ ^ r(e2aAe2'*)1/2

9

r(£?αi V l B . . .eakAebkB) ^ r{eaAebB).

The first of these inequalities is known to be true if, for some nonnegative scalar c, and
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i = 1, ... , k, we have bt = CΛ, . The second inequality is known to be true when the same

conditions hold and in addition max at ^ all.

Instead of the initial condition P[V(O) = i] = 1 assumed in section 2, assume that P[V(0)

= i] = ir, ^ 0, ι = 1, ... , n, where IT = (TΓ,-) is an equilibrium probability row vector

of Q, i.e. ΊΓΓQ = 0, Σ, ir, = 1. Denote the expectations of N(t) and ND(f) under these initial

conditions by EΊtN{t) and E^ND(t). Let 1 be the n-vector with all elements equal to 1. It

is known (CFKK, p. 76) that, for integral times t,

EJf(t) = i rV Q + B »l ^ EJNP(t) = ir W ) ! ,

with strict inequality if t ^ 1, Q is irreducible and at least two diagonal elements of B are

distinct.

cohen

What about higher moments of N(t) and ND(t)Ί For simplicity, take Q to be irreducible

andW0

 = 1 Then τr > 0 elementwise. For any real c,

EJT(f) = Etxp&jbjgj(t)]c = EcxpΐZjicbβgjit)] = ττV Q + c B ) 7 ϊ, t ^ 0,

and similarly

Ej[ND(t)]c = >πτ(eQecByi, t = 0,1,2, ...

Since Var N(t) ^ 0 and Var ND(ή ^ 0, with both inequalities strict provided t > 0 and

at least two diagonal elements of B are distinct, we have

Ί Γ V Q + 2 B ) Ί ^ (τrV Q + B ) Ί) 2 , t ̂  0,

τrτ(eQe2Byi^(>πτ(eQeByi)2

9t= 0 , 1 , 2 ,

with strict inequalities under the conditions stated.

More generally, I can prove that if A is an essentially nonnegative n x n matrix, B is

a diagonal real nXn matrix, and x and y are nonnegative n- vectors (1 < n < °o), then

(xVA + 2 B ) ty)(xΓΛ) ^ (xVA+B)'y)2, t ̂  0,

(xτ[eAe2BYγ)(xτeAty) ^ (x Γ [eV]'y) 2 , t = 0,1,2, ... ,

with strict inequality if t > 0, A is irreducible, x > 0, y >0, and at least two diagonal

elements of B are distinct. Also,

If A is irreducible and at least two diagonal elements of B are distinct, the preceding in-

equalities are strict. The preceding inequalities hold if r is replaced throughout by Tr.

CONJECTURE 4. Let A be an essentially nonnegative matrix and B a diagonal real mat-

rix. Then

(4.1)

ίfu ^ 0, v ^ 0 are n-vectors such that

(4.2) u V = uτr(eA),

(4.3) e A v = r(<?A)v,

then for positive integers θ,
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(4.4) [ u Γ ( Λ A ) β v ] [ u V θ v ] - [ u Γ ( Λ A ) θ v ] 2

^ [uV 2 B + A ) θ v][uV θ v] - [ u V B + A ) θ v ] 2 .

When A is irreducible and B is not a scalar matrix (i.e. at least two diagonal elements

of *B are distinct), both inequalities are strict.

If either (4.2) or (4.3) fails to hold, then the conjectured inequality (4.4) need not hold.

For example, let

H i !)••-(* 8)

so that (4.3) holds but (4.2) fails. Then with θ = 1, the left member of (4.4) is 0 while

the right member is approximately 18.6917.

If A and B are complex Hermitian matrices, (4.1) need not hold. Numerous numerical ex-

amples have failed to falsify Conjecture 4. Conjecture 4 implies that
Dt)9t = 0,1,2,

and gives (potentially) sufficient conditions for strict inequality.

CONJECTURE 5. Under the assumptions of Conjecture 4, for every nonnegative integer

k,

with strict inequality under the additional conditions given in Conjecture 4.

The use of Lie's formula shows that Conjecture 5 implies (4.1). For

= limtr2 V^V 1 1 7 2 W 7 2 *; -
k

and (4.1) would hold if the sequence in brackets on the right were a decreasing function

of it. The left side of (4.1) is the case when k = 0.

CONJECTURE 6. Let E and F be n x n nonnegative matrices (elementwise), F diagonal.

Then for every nonnegative integer k, the function

H(t) = r*(E2F2(1+ ί>)f^2P2<1-^)-ιa*(EF1+l)r2*(EF1-1)

is convex in t on [-1, 4-1 ]. IfE > 0 elementwise and all diagonal elements ofF are positive
and at least two of them are distinct, then H(t) is strictly convex.

I claim Conjecture 6 implies Conjecture 5. For

and by convexity (H(l)+ //(-l))/2 = //(I) ^ #(0). Thus

r*(E2F4)/(E2)-r2Λ(EF2)r2Λ(E) ψ

Letting E = ̂ A / 2 , F = eB/2 and rearranging terms gives

which is equivalent to Conjecture 5.

The illustrative inequalities in section 2 for a random evolution driven by a reversible

Markov chain are special cases of Corollary 4 of CFKK (p. 62), which states: If A = DSD"1

where S is symmetric and D is diagonal nonsingular, B is diagonal real, and φ is a real-val-
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ued continuous function of the eigenvalues of its matrix argument, finite when all elements

of its argument are finite, such that

(4.5) φ([MM*]*j ̂  I φ(M2*) |, Jk = 1,2, ... ,

for every nX n complex matrix M, then

(4.6) φ ( * A * B ) > φ ( e A + B ) .

Does this result have a converse? If true, Conjecture 7 would provide a new characteriza-

tion of reversibility.

CONJECTURE 7. Let A be an essentially nonnegative matrix such that (4.6) holds for

every diagonal real matrix B and every φ, as just described, that satisfies (4.5). Then there

exists a symmetric matrix S and a diagonal nonsingular matrix D such that

A = D S D 1

So far in this paper, I have considered only the case where N{t) is a real scalar. However,

if the vat of bacteria contains more than one species of bacteria, or more than one genotype

of the same species, or subgroups of a species differentiated by physical or biochemical

markers, it is natural to try to model the simultaneous evolution of all distinguishable types.

Consider the following ^-dimensional random evolution, where k is a fixed positive in-

teger greater than 1. Let Bj, ... ,Bn be k x k real matrices and (as before) V{t) a homogene-

ous continuous-time irreducible Markov process on the state space {1, ... , n}, with V(0)

= 1, and with intensity matrix Q. Let N(/) be a k-vector that evolves according to

dN(t)/dt = B v w N(r) for t ^ 0, N(0) = No.

For biological applications, the vector N(t) of number of individuals of each type is required

to be nonnegative. Given No ^ 0, a condition sufficient to guarantee that, for all t ^ 0,

N(t) ^ 0 is that each B7 is essentially nonnegative, i.e., every off-diagonal element of B7

is nonnegative, j= 1, ... ,n. I henceforth assume that every B7 is essentially nonnegative.

This assumption makes the model more relevant to biological situations where an in-

crease in the number of one type of bacteria leads to an increase (or no decrease) in the

number of other types, as when types correspond to genotypes. It makes the model less

relevant to biological situations where the types are different species, some of which con-

sume other species.

Under these assumptions, I can prove that, if 11.11 is any vector norm,

where A and B are both (kn) x (kn) matrices defined by

A = Q0I*, Ik = k x k identity matrix

B = diag(B,, ... ,Bn).

The same norm applied to matrices means the matrix norm induced by the chosen vector

norm. It is easy to show that

QUESTION 1. Is there a simple exact expression for Urn Γ1 E log \\ N(ί) || (analogous to

that in the one-dimensional case)?

As in the one-dimensional case, it is natural to suppose that a biologist who observed
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this fc-dimensional random evolution would construct a discrete-time approximation ND(ί)

according to

N D (r+1) = e x p ( B v ω ) N D ( 0 , t = 0 , 1 , ... , N D (0) = N o .

P[By{t+l) = *iKi) = B< J = &\ =Pu> ^(0) = B

Thus N D ( 0 is determined by a Markovian product of random nonnegative matrices accord-

ing to

ND(ί) = exp(BV(r_i))exp(BV(/_2))... exρ(BV ( 0))N 0.

It follows from Furstenberg and Kesten (1960) that lim r 1 log | |ND(ί)| | exists and equals

lim Γ1 E log I\ND(ή\ | with probability 1.

QUESTION 2. Is there a simple exact expression/or lim Γ1 E log | |ND(ί) 11 ?

QUESTION 3. What is the relation between lim Γ1 E log ||N(ί)|| and lim Γ 1 E log

l|ND(ί)||?

It is easy to show that

limΓ 1 log | |£N D ( ί ) | | = logr(eV*),

where A and B are the (kn) x (kn) matrices defined above. This follows from a formula

for E N D ( 0 that I published (Cohen, 1977) without knowing that it had been previously

derived in a never-published (so far as I know) report of Bharucha (1960). The above for-

mula is a Feynman-Kac formula for products of random matrices. The expression log

r(eA+B) for the continuous-time random evolution may be derived by constructing a se-

quence of approximations to N(/) using ever finer subdivisions of time, as in the one-dimen-

sional case.

What is the relation between lim Γ1 log | \E N(ί) 11 and lim Γ1 log | \E ND(t) \ \ ? The following

conjecture would cover the special case when all the B, matrices commute with one another.

CONJECTURE 8. Ifn essentially nonnegative k x k matrices B, satisfy

BiBj

then

where R is any essentially nonnegative nX n matrix and

B = diag(B,, ... , B Π ) .

If R and B, , i = 1, ... , n are all irreducible, then the inequality is strict.

The conjectured inequality need not hold if the assumed commutativity is not true. For

example, if

«-(! !).•.-(! l)*-(\ ?)•

r(exp[R(x)I2 + diag(Bj, B2)]) = 85.583

> r(exp[R®I2]exp[diag(B!, B2)]) = 84.671

(These numerical computations, and other tests of conjectures, were performed on the

MATLAB system of Moler [1981] as implemented on SCORE in the Stanford University

Computer Science Department.)

A sufficient condition for Conjecture 8 is:
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CONJECTURE 9. IfRis an elementwise nonnegative n x n matrix and Bit i = 1, ... ,

n are commuting (elementwise) nonnegative k X k matrices, then

r(A2B2) ^ r*(AB)

where A and B are defined in Conjecture 8.I/R and all Bj are (elementwise) positive,

then the inequality is strict.

The counterexample to Conjecture 8 without commutativity also shows that Conjecture

9 fails without commutivity. In this case

A2B2 =

Since all row sums of A2B2 are 24, r(A2B2) = 24. Since all row sums of AB are 5, r(AB)

= 5. Thus r(A2B2) < r2(AB), contrary to the desired inequality.

So far we have considered two measures of the long-run growth rate of the ^-dimensional

random evolution N(ί) in continuous time, namely lim Γ1 E log ||N(ί)|| and lim Γ1 log \\E

N(ί)|| (with corresponding measures for the discrete-time approximation ND(ί)) Another

plausible measure is lim Γ1 log E ||N(ί)||. By the triangle inequality for norms,

limr1 log||£N(r)|| ^l imΓ 1 log£||N(r)||.

I claim that this inequality is in fact an equality for any vector norm. For any real or complex

k-vector x, the vector norm defined by

6
8

6

8

4
6

4

6

6
4

6

4

8 \
6

8/.A1

6>

n
2

•Hi
\2

1
1

1

1

1
1

1

1

2
1

2

1

is the Holderp-norm for/? = 1. By construction, N(ί) ̂  0. So ||N(f)||i = XjNjtf) and \\E

N(ί)||i = Xj[EN(t)]j = XjE[N(t)]j = EϊjNj(t) = E ||N(ί)||,. For any other vector norm ||.||,

there exist constants c and cλ depending on ||.||, such that for all JC, ||JC|| ^ Cι\\x\\λ and ||JC||]

^ C||JC|| (see e.g. Lancaster, 1977, pp. 199,204). Therefore

limr1 logEllNWNlimr 1 logC lE ||N(ί)||i

= limr1logE||N(ί)||1

= limr1log||EN(ί)||,

^ limr1 log c||£N(ί)||

= limr1 log ||£N(f)||.

Combining this with the reverse inequality previously established shows that

limr1 log||£N(r)|| = limr1 log£||N(ί)||.
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