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1. Introduction

Let T,,T
O
,...,T be independent survival times with T. having distri-

1 L n l

bution function (d.f.) F., density f. and hazard rate λ.(t) =f.(t)/[l-F.(t)].

One model often used in the analysis of survival experiments is the pro-

portional hazard model where

(1) λ
±
(t) = Δ_.λ(t) , t >_ 0

for some constant Δ. >0. Here λ(t) =f(t)/[l-F(t)] for d.f. F with density f.

In a different context, this model was considered by Lehmann (1953) and Savage

Δ.
(1956) in the equivalent form F.(t) = l-[l-F(t)] , some d.f. F. It was used

by Cox (1972) in situations where the distribution of T. depends on p covariates

x ,...,x. . Cox modeled this dependence by assuming

P

(2) λ (t) = Δ λ(t) , Δ = exp( I x 3.) ,

j=l
 J J

T
where 3= ($-,,...,3 ) is a vector of regression coefficients,

l p

Another model often used with survival distributions is the scale model

where

(3) F.(t) = G(t/τ.) , some τ. >0 , some d.f. G .

74
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When F. depends on covariates, one way to model this dependence is by writing

P

<*> log T = I x θ 4-
 e
 .

1J J X

T
Here x =(x..) are the same covariates as before and θ= (θ ,...,θ ) is a vector

~ lj ~ 1 p

of regression coefficients. Note that (4) is a special case of (3) with

P

τ
±
 = exp( I x..θ.) and G(t)=H(log t) where H is the d.f. of e..

In certain studies, there will be cenoring variables C,,...,C , and one

1 n

observes T! = min(T. ,C.) , and δ . = l[T. £ C . ] , rather than T., where I is the

indicator function.

Cox (1972) has introduced partial likelihood estimates for the model (2)

and Miller (1976), Buckley and James (1979), and Koul, Susarla and Van Ryzin

(1981) have considered least squares type estimators for the model (4).

In the next sections, we will first show that the models (1) and (3) coin-

cide only for the Weibull model and then make asymptotic comparisons between the

Cox estimates, least squares type estimates and rank estimates. In the Weibull

model, the rank estimates are asymptotically optimal. Efficiency results are

obtained in very special cases.

2. The Equivalence of the Proportional Hazard and Log-linear Models

The result that the proportional hazard and log-linear models coincide

only when T. has a Weibull distribution has appeared in Doksum (1975),

Kalbfleisch and Prentice (1980, p.34) and Louis (1981). Only the second refer-

ence gives a proof and in this proof the covariates x are allowed to vary and in

fact are allowed to be functions of the regression coefficients.

We give a different proof which requires that (i) the proportional hazard

model (1) and scale model (3) coincide when τ. and Δ. are unity, and (ii) that

they coincide for at least one value of τ. different from unity. We also need

the regularity condition: (iii) For some a>-l, lim [λ(t)/t ] exists and is

ίr>0
+

positive.
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The proof proceeds as follows: From (i) we conclude that G in (3) equals

the F in λ(t) = f(t)/[l-F(t)] of model (1). Now (3) and (ii) implies that

λ.(t) =λ(t/τ.)/τ. for some τ. ̂ 1 . When this is combined with (1), we obtain

(5) λ(t/τ) = τΔλ(t) , all t , some τ φ 1 ,

where we dropped the subscripts on τ. and Δ.. We will show that (5) implies

that λ(t) must be the failure rate of a Weibull distribution, i.e., that λ(t) is

y—1
of the form λ(t) = ct , some γ > 0.

First suppose that 0<λ(0)^°°, then λ(O)=Δτλ(O) implies Δτ = 1, i.e.,

λ(t/τ) =λ(t) for all t_>0. Now when τ^l and (iii) holds, this implies λ(t) =

constant, i.e., the model is exponential.

Next suppose that λ(0) =0. Let h(t)=λ(t)/t
a
 where a is given in (iii).

Using (5), we find h(t/τ) = Δτ
a + 1

h(t). Now since 0<h(0
+
)<°°, h(0

+
) = Δτ

a + 1
h(0

+
)

a+1
implies Δτ =1, thus h(t/τ)=h(t) for all t > 0 . Since τ 4 1, this implies

h(t) =constant, i.e., λ(t)=ct , and the model is Weibull.

Equations that include equation (5) as a special case can be found in

Kuczma (1968, p.47) and Nabeya (1974), but the present solution is not given

there.

In the Weibull model we use the notation where T. had d.f.

(6) F
±
(t) = 1 - exp{-(t/τ

i
)

Ύ
} .

P

Here log τ. = \ x..θ. as in (4). In the Cox model (2), the model (6) corres-
1
 j = i ^ J p

ponds to λ(t) = t^~ , Δ. =τ. . Thus log τ. = -γ \ x. . (3., and the corres-
1 x x

 J
= 1
_ i

1 J J

pondence between θ and 3 in the Weibull model is θ = -γ 3
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3. The Estimates

3.1 Least Squares (L.S.) Type Estimates

We consider only the uncensored case. The asymptotic variance of L.S.

type estimates has been obtained for certain types of censoring by Miller (1976)

and Koul, Susarla and Van Ryzin (1981). We consider the model (4) with x of

full rank and e
Ί
,...,e i.i.d. The variance of the L.S. estimate θ=(§_,...,θ )
in ~ 1 p

2 T -1 2
is then σ (x x) , where σ =Var(e.). If we specialize to the Weibull model

(6) we find that e. has d.f. H given by

H(t) = 1 - exp[-exp(γt)] ,

2 2
and variance Var(e.) =Var(log T.) =π /6γ .

Note that E(e.) is not equal to zero; in fact E(e.) =-E/γ where E=Euler
?
s

constant = .5772. It follows that the L.S. type estimates are not necessarily

consistent for the Weibull model. Thus, if ρ = 2 , and logT. =θ +θ x.+e.,

then θ_ converges in probability to θ.. -E/γ while θ~ is consistent. This can

be "fixed" by reparametrizing: Set log T. = θ
f
+θ x.+e., where e|=e.-E(e.)

and θ
1
 =θ + E(e.). Note that E(e.) is unknown if γ is, but we can think of the

L.S. estimate as an estimate of the intercept after the errors have been ad-

justed to have mean zero.

3.2 Cox Estimates

Relevant asymptotic results can be found in papers by Efron (1977),

Oakes (1977), Aalen (1978, 1980), Bailey (1979), Tsiatis (1981), and the book

by Kalbfleisch and Prentice (1980). In the model (2) with no censoring, let

t, <-••< t, v be the ordered observed survival times and let x , ^ =

(x,.
N
-,...,x,.v ) be the covariates corresponding to t,.

N
. Then the Cox

(ι)l (ι)p (i;

estimate R = (β..,...,β ) is the value that maximizes the Cox partial likelihood
1 p

L = Π I
CL
C

exp x,.vβ

n

Σ.
eχ
p ϊ(

S
)§

s=i
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The asymptotic covariance matrix of (β..,...,β ) is the inverse of the expected

value of the observed Cox partial information matrix defined by

n / n

I expίx β} ( I expίx &}

Note that the only quantity that is random in this expression is the index (j)

l n x
( j ) '

 x
( j ) k

a n d x

( j
) i i

3.3 Rank Estimates

We consider the log-linear model (4). Properties of estimates based

on ranks were developed for the two-sample problem by Hodges and Lehmann (1963),

considered for Type II censoring by Doksum (1967), extended to simple linear

regression by Adichie (1967), and to multiple linear regression by Jureckova

(1971). Let R. be the rank of T. among T-,...,T . Since Rank(T.)=Rank(log T.),
l l 1 n l i

the rank approach to log-linear models reduces the estimation problem to the

problem of estimating the parameters in a linear model for Y. = log T. , The

idea in the above references is to use the estimates θ ,...,θ obtained by

"inverting" linear rank statistics of the type

I n 1
 n

where J (—-) , ...,J (—77) are given scores (constants) and x . = — ) x.. ,
n n+l n n+1 j n ._- IJ

When H
n
: θ = 0 holds, the distribution of S = (S

Ί
,...,S ) tends to be concentrated

U ~ ^ ~ x P
Λ

near its mean E
u
 (S) =0. When Θ^O, let R. denote the rank of Y. -x.θ , where

x = (x , . . . ,x ) , and let S. (Y - xθ) = - J (x. . - x .) J (-—-) . When θ is the
~ j- l-L ip j ~ ~~ n, - xj j n n-t~JL ~

true value of the parameter, the distribution of S.(Y-xθ) will be concentrated

near zero, thus the idea is to use the estimate θ which "solves" S.(Y-xθ) = 0,
~ j ~ ~ ~

j=l,...,ρ, for 8. Exact definitions and conditions are in the above references.
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Note that since the ranks are invariant under additions of constants, i.e.,

Rank(logT. + a ) = Rank(logT.) , this approach can not be used to estimate α in

the model logT. = α+βx.+e.. Adichie (1967) and Jureckova (1971) introduce

rank estimates for α. We do not treat those here.

θ is consistent and (θ-θ) (standardized) is asymptotically normal with

mean zero, θ-θ has approximate covariance matrix

2
 fl

 2
 f

1
 2 ί °° H

where A = J (u)du - [ J(u)du] , B= [-f-J(H(x) )]dH(x) , and J is the limiting

/
[nu]+l

Nscore function, J(u)=lim J ( —_—) , 0 < u < l . Here [ ] is the greatest integer

n
_

>00
 n n+1

function.

2 ^ Λ

Let σ (Θ;J,G) denote the asymptotic variance vector of [(θ - θ )/b ,...,

(θ -θ )/b ] where b. =[ Y (x_ -x ,)
2
] . If the distribution G is known,

P P P J ,=-, il J
2 ^ i (i^

and thus H is also known, σ (Θ;J,G) is minimized by choosing J (——) = E [φ(U
v
 ,

n n+1

H)], where φ(u,H) = -h
f
 ( i Γ ^ u ^ / M l f

1
^ ) ) , h is the density of H, and U

( l )
 is

the i uniform order statistic in a sample of size n. Another optimal choice

is the simpler form J (—-r) = φ(—-i-,H). These results follow from Hajek and

n n+1 n+1
\/
Sidak (1967) and the above references.

In particular, if T. has the Weibull distribution (6), then the optimal J
1 n

i (")
is J (—7τ) = E{-log(l-ir

 ;
)} = I (1/j), the exponential or Savage scores,

n n
 j=n+l-i

The asymptotically equivalent simpler version is J (^rr) =-log{l«[i/(n+l)]} .

Note that these functions do not^depend on the shape parameter γ of the Weibull

model, thus the exponential scores estimate θ obtained by setting J (—77) =

~κ n π+i

n
^

Ί
 .(1/j) or J (——) = -log{l-[i/(n+l)]} minimizes the asymptotic variance

j=n+l—1 n n+1

uniformly in γ. This optimality does not hold only in the class of rank

estimates, but over the class of all "regular" estimates including least squares

and Cox estimates.

The exponential scores estimate has another strong optimality property. It

is asymptotically minimax over the class of increasing failure rate average
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2 /s 2
 Λ

(IFRA) distributions. More precisely, let σ (θ;J)=suρ σ (Θ,J,G), where the

sup is over all G continuous and IFRA. The estimate which minimizes σ (Θ J) is

the exponential scores estimate; moreover for this estimate, the maximum appro-

2 -2
ximate variance (i.e., the maximum of A B ) is attained at the exponential

distribution. In fact the approximate covariance matrix Σ(G) of θ is such

~κ
T -1

that for the exponential distribution, it reduces to the familiar matrix (x x) .

T -1
 Λ

Thus we can think of (x x) as a lower bound for the covariance matrix of θ
~ ~ ~κ

for IFRA distributions. This result leads immediately to simple bounds on the

standard error of θ and confidence intervals for θ. These results are ex-

tensions of Doksum (1967).

Rank estimates for Type II censoring was considered in the two sample case

by Doksum (1967). Rank test statistics for censored samples have been con-

sidered by Rao-Savage and Sobel (1960), Gastwirth (1965), Gehan (1965), Mantel

(1966), Efron (1967), Basu (1968), Doksum (1969), Johnson and Mehrotra (1972),

Peto and Peto (1972), Cox (1972), Crowley (1974), Prentice (1978) and Aalen

(1978), among others.

The following is an extension of the exponential scores statistic: The

survival times are ordered. The first survival time is given score= — ,

st ^

the (k+1) is given the score of the k
t n
 plus the reciprocal of the number

n - of subjects at risk right before the (k+1) death. The censoring time

C. is given the score of the largest survival time T to the left of C. plus

one. "One" can be interpreted as the average of the possible scores to the

right of (and including) the score of T. If there is no survival time T to

the left of C., C. gets score one. If this scheme is used, the asymptotic nor-

mality and optimality of the exponential scores estimate carries over to Type II

censored samples in the two-sample case (Doksum (1967)).

4. Comparisons

From the considerations in Section 3, we know that for the Weibull model

without any censoring, the rank exponential scores estimate θ is asymptotically
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optimal. The asymptotic efficiency of the least squares type estimate θ is

~J_iO

/\ /\ o
e(θ ,θ ) = (6/π ) = .61 for all values of the Weibull parameter. To study the

efficiency of the Cox estimate, we need to consider the two-sample problem. We

let the parameter of interest be the ratio 6 of the means of the survival

distributions. When Y = l, we find

δ

e ( δ cox'
S L S )

V

1

1

1

.6

2

1 .5

.90

4

1 .2

.71

8

.83

.50

16

.55

.33

From the results of Section 3, a qualitatively similar result should hold

for Y ^ l , Type II censoring and more general designs, but we do not have exact

figures.

5. DISCUSSION

The asymptotics for the Weibull and increasing failure rate average

models clearly favor the rank exponential scores estimate. However, this

estimate is hard to compute and its finite sample size properties are not well

known. Moreover, if we consider a different model such as the log normal model

for the distribution of T., then the LS type estimate will be best in the case

of no censoring. In this model, the optimal rank estimate would be the rank

normal scores estimate.
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