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Let Vk,m denote the Stiefel manifold which consists of 771 X k{m > &) matrices

X such that X1 X — Ik- We present decompositions of a random matrix X and

then of the invariant measure on Vk,m , relative to a fixed subspace V in Rm, for all

possible four cases to be considered according to the sizes of fc, 772, and the dimension

of V. The results are utilized for deriving the distributions of the canonical correlation

coefficients between two random matrices of "general" dimensions, and for discussing

high dimensional limit theorems (as 772 —>• OO) on Vfc?m.

1. In t roduct ion . We consider the Stiefel manifold V/~,m which consists

of m x k(m > k) matrices X such that X'X — //-, the k x k identity matrix.

For k = m, the Stiefel manifold is the orthogonal group 0(m). An invariant

measure (i.m.) on T4,m is given by the differential form (d.f.)

m — k k

(X'dX) = ^x'jdxi /\ /\ b jdxi, (1.1)

i<j j=l i=l

in terms of the exterior products (Λ), where we choose an m X (m — k) matrix

B such that [X:i?] = (xι Xk &i * i>m-k) E 0(m) and dx is an mx 1 vector

of differentials. The volume of V^m is given by w(k,m) — 2/c7r/cm/2/Γ/~(ra/2),

where Γ*(α) = π ^ ^ " 1 ) / 4 Π? = i Γ(α - (i - l)/2), and the normalized i.m. of

unit mass on T4,m is denoted by [dX](= (XfdX)/w(k,m)).

The Grassmann manifold Gk,m-k consists of ά-planes, i.e., fc-dimensional

linear subspaces in Rm. For X E V/-?m, we can write X = GQ\ that is, X

in VKiTn is determined uniquely by the specification of the &-plane, i.e., the

"reference" matrix G in GKim-k and the orientation Q £ O(fc) of G. An i.m.
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on Gk,m-k is given by the d.f.

m — k k

(B'dG)= /\ Λδί
j=i t=i

where the column vectors of G — (g\ -gk) and those of B = (&i bm-k)
are orthonormal vectors spanning the &-plane and its orthogonal complement,
respectively. The volume of Gk,m-k is given by v{k,m) = w(k,m)/w(k,k),
and the normalized i.m. of unit mass on Gj^m-k is denoted by [dG](=
(B/dG)/v(k,m)). A detailed discussion of manifolds may be found in James
(1954) and Farrell (1985).

Throughout this paper, probability density functions (pdf 's) of distributions
on the Stiefel and the Grassmann manifolds are expressed with respect to their
normalized i.m.'s, while those on the spaces of all m x k matrices or of all k x k
symmetric matrices are expressed with respect to their Lebesgue measures.

There exists an extensive literature of statistical analysis on Stiefel mani-
folds; of directional statistics on VΊ>m (see e.g., Mardia (1975), Watson (1983a),
and many others), and of orientational statistics on Vfc?m (see e.g., Chikuse
(1990, 1991a, b), Downs (1972), Jupp and Mardia (1976), Khatri and Mardia
(1977), Prentice (1982), and Watson (1983b)). Chikuse (1993) and Chikuse
and Watson (1992) investigate asymptotic distribution theory on Grassmann
manifolds.

Let ί/bea fixed subspace of Rm of dimension p and v1- its orthogonal com-
plement. In this paper, a random matrix X £ Vfc,m is decomposed as the
sum of mutually orthogonal singular value decompositions (svd's) of PUX and
P^-LX, where Pu and Pvi. denote the orthogonal projection matrices onto v
and vL, respectively. The matrix decomposition is presented for each of "all
possible four cases" to be considered according to the sizes of fc,m, and p, ex-
tending Chikuse (1991a), who considered only one special case of them. Based
on each of these matrix decompositions of X, we shall express the i.m. (X!dX)
as the product of the i.m.'s on the component Stiefel and/or Grassmann man-
ifolds and of a measure on the set of canonical correlation coefficients (ccc's)
between the random subspace M(X) spanned by the columns of X and the
subspace v. The results are summarized in Section 2 and proved in Section
3. James (1954) considered this problem via an analytic approach, and this
paper completes his result. Also, the results reduce to those in Watson (1983a,
Sections 2 and 3.4), for k — 1.

The results presented in Section 2 are of interest and wide use in multivariate
analysis. Various distributional results concerning the component matrices in
the decompositions of X can be derived. Section 4 gives a method for deriving
the distribution of the ccc's between two random matrices of "general" dimen-
sions, with illustrations provided for the multivariate normal distribution and
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for a "conditionally matrix Langevin" distribution. Section 5 is concerned

with high dimensional limit theorems for the distributions depending on Pv X

only.

2. Decompositions of a Random Matrix and the Invariant Measure

on the Stiefel Manifold. Let X be an m x k random matrix on Vfc,m,

and let v and vL be a fixed subspace of Rm of dimension p and its orthogonal

complement (of dimension m — p), respectively. There are four cases to be

considered in this paper, putting p\ = m - p;

Case (i) k < p and k < p\,

Case (ii) p < k < p\,

Case (iii) Pi < k < p, and

Case (iv) p < k and p\ < k. (2.1)

We need to introduce some notation. Let Vĵ m denote the 2~kth part of VkiTn

consisting of matrices X\ whose elements of the first row positive with the

normalized i.m. [dX{\ = 2k(X{dXι)/w(k,m). A1/2 is defined as the unique

square root of a positive definite matrix A. 0q,r and 0q are the qxr and q x q

matrices of zero elements, respectively.

THEOREM 2.1. Case (i). (Chikuse (1991a)) X may be uniquely decom-

posed as the sum of mutually orthogonal svd's in v and u±

J

X = CxExTkQ + dϋ^h - Tff'2Q, (2.2)

wAere C\ and Cη. are mx p and m x p\ constant matrices in Vp>m and VPlί7n,

respectively, such that C{C2 = 0,#i G Vk,P,Ui G Vk,Pl,Q £ 0(k), and Tk =

diag(U, • ,ΐfc), 0 < ίi < < ίjk < 1. The decomposition (2.2) leads to

[dX] = [dfΓi][dtfiPQ][dΓ*], (2.3)

where [dTk] is the normalized measure ofTk (or ίi, , tk) given by

= (dTk)/K(m,k,p), with (2.4)

(dTk) = Π [ C * ( 1 - *?) ( m-*-'-1 ) / 2]Π*W " *?) A Λ« (2-5)
i=l i<j i=l

and the normalizing constant K(m,k,p) = f(dTk) being

K(m,k,p) = Γfc((m - p)/2)Tk(P/2)Tk(k/2)/2kπk^2Tk(m/2). (2.6)

Case (ii). X may be uniquely decomposed as

X = Ci[fr2:Op,fc_p]<nag(rp,Ofc_p)Q

fc_p)ρ, (2.7)
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where C\,C2>>U\ and Q have been defined in Case (i), H2 G O(p), and

Tp = diag (ίi, ,ίp),0 < ίi < • < ίp < 1. Tie decomposition (2.7) leads

to

[dX] = [dH2][dUn][dU12+][dQ][dTp]7 (2.8)

wiere we have the partition U\ = [ί7ii:ί7i2] with U\\ G VpjPl, t i e (p\ - p) X

(k — p) matrix Z7i2* G Gk-PiPl-k is defined such that Uu = G(Un)Uu* for

G{U\\) being chosen so that \U\\\G(U\\)\ G O(pι), and [dTp] is the normalized

measure ofTp given by

[dTp] = (dTp)/K(m,p, A?), K being defined by (2.6) with
(2.9)

p P

<=i * % i<j J l =i (2.10)

Case (Hi). X may be uniquely decomposed as

X =C1H1^^(TPliIk.Pl)Q

Dk-P1)Q, (2.11)

where C\,C<ι and Q have been defined in Case (i), Hi G Vk,p,U2 G O(pι),

and TPl = diαg(tι, , ί P l ) , 0 < ίi < < tPl < 1. The decomposition (2.11)

leads to

[dX] = [dJTn][dJΓ12.][d^2][dί?][dΓp1], (2.12)

where we have the partition Hi = [Hu'.Hw] with H\\ £ VPliP) the (p — pi) x

(k-pι) matrix H12* G Gk-Pl,P-k is denned such that Hχ2 = G(H\ι)H\2* for

G(Hn) being chosen so that [Hn' G(Hn)} eθ(p), and [dTPl] is the normalized

measure ofTPl given by

[dTPl] = (dTPl)/K(m,pi,k), with (2.13)

f=i (2.14)

Case (iv). X may be uniquely decomposed as

X = Ci[jr2:Op,fc-P] diag (T r,Ip_ r,Ofc_p)Q

+ c 2 [c ί 2 1 ;o p l i P _ r ;c/ 2 2 ]
X diag((/ r - T r

2)1/2,Op_ r,/ f c_p)<5, with r = m - ife,

(2.15)
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where C\,C2 and Q have been defined in Case (i), H2 G 0(p), [#21 "#22] €
O(pi) with U2i € K^! , and Tr = diαg(tu , ί r ) ,0 < tτ < < tr < 1. The
decomposition (2.15) leads to

[dX] = [dH2i][dU2i][dQ][dTr]9 (2.16)

where we have the partition H2 = [#21^22] W i ίA #21 G Vr,p, and [dTr] is the
normalized measure ofTr given by

[dTr] = (dTr)/K(m,r,p), with (2.17)

π - ' ( ! - *?) ( p + f c " m " i ) / a ]π 1

Γ ( ί i - *?) λ *•
f=i i<j <=i (2.18)

COROLLARY 2 . 1 . In particular when v is the subspace Λί (Γ) for anπixp

constant matrix Γ in F p , m 5 Theorem 2.1 holds with Γ replacing C\.

It is noted that there are singular situations such as when the projection of

a column of X onto v or z/-1 is zero, or when some of the ί, are equal, but that

such singular situations have zero i.m.. Hence, Theorem 2.1 and Corollary 2.1

hold with one i.m..

The problem of deriving the decomposition of the i.m. on V^m was con-

sidered by James (1954) via an analytical approach. In his method, those

decompositions, except that of the i.m. for Case (i), are not explicitly given.

Theorem 2.1, thus, may be a completion of his result.

We note the geometrical interpretation of Theorem 2.1, with the aid of

James (1954, Section 7). The columns of C\ and C2, which are both not

explicit in James (1954), are the orthonormal bases of the subspaces v and

ί/1-, respectively. The 0j, where cos^ = /j, are the critical angles between the

random subspace Λ4(X) in Gk,m-k and the subspace v in G p ? m _ p , while the

ti are called the canonical correlation coefficients (ccc's).

3. Proofs of Theorem 2.1. The results for Case (i) have already been

given and proved (Chikuse (1991a)). The proof for each case involves its own

aspects, and we shall start giving the outline of the proof for Case (ii).

Proof for Case (ii). X is written as

(3.1)
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A svd of PUX in v of dimension p is

uX = C1[H2

:.OPtk-p]TQ, (3.2)

where C\ is an m x p constant matrix in VPiJn,H2 G O(p),Q G 0(&), and
T = diag(Γp,O*_p), with Tp = diapih,--- ,ίp),0 < ί< < l,t = 1, ,p. For
uniqueness, we assume that H2 G 0(p) and 0 < t\ < < tp < 1.

Next, putting Z = (PuxX)Q' and substituting (3.2) into (3.1), we have
Ik = {XQ'yXQ' = T2 + Z'Z, and, hence, in view of the fact Z £vL,

Z ^ t / x d i a g α / p - Γ p 2 ) 1 / 2 , / ^ ) , with ί/xGVfc.p,, (3.3)

where C<ι is an mxpi constant matrix in VPlim such that C[C2 = 0. Combining
(3.1) - (3.3) establishes the desired result (2.7).

Writing (2.7) as

X = GQ, with G = (g1 gk)J (3.4)

and differentiating (3.4), we obtain, in use of the notation in (1.1),

m — k k

(X'dX) = (B'dG)(Q'dQ), with {B'dG)= /\ /\ bfjdgh (3.5)
i=i t=i

(James (1954, (5.22))), and the i.m. (BfdG) on Gk,m-k is now to be decom-
posed further.

With G in (3.4), putting K<ι — {h\ hp) and U\ = (uι "a*;), we have

9i = UCxhi + (1 - tifPCiUu i = 1, , Λ

i = p + l , ,A, (3.6)

i,i = 1, ?P»

We now choose &i, , 6m_A; as

ί 6,- = -(1 - ty^dhj + tjCtUj, j = 1, ,p and

where ί7χ3 = (ttfc+i "Wpi) is chosen so that [Ui'.Uiz] G O(pi).

A method similar to James (1954, Sections 5.3 and 7), with the conditions
(3.6) and (3.7), leads to, after some differential calculation,

Pi k

(BfdG) = (H^dH2)(U{1dU11)(dTp) a, with α = /\ /\ 1 ^ , ( 3 . 8 )
j=k+li=p+l
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where we recall #2 E O(p),Un E VPiPl is defined by Z7i = [Un -Uu], and

(cfTp) is given by (2.10). a is now to be evaluated, utilizing the argument of

Muirhead (1982, Lemma 9.5.3). For fixed ί/n, we can write the pi x (p1 — p)

matrix V = [Uu '.U13] as V = G{Un)V^ where G{Un) is any fixed matrix

chosen so that [Un * G(Un)] E O(pi), and V* = [Uu* : C/13*] E O(pi - p) with

E/12* being (pi — p) X (fc — p); the relationship between V and V* is one-to-one.

Putting V* = (vι - - - v P l _ p ) , α is expressed as

Pi — p k—p

a = yy y^ t?jrfτ?t = (ί^ί3*rfί7i2*)j (3.9)
j=fc-p+l 2=1

which is the i.m. on Gk-P,Pl-k

From (3.5), (3.8) and (3.9), we obtain the decomposition of (XfdX) as

(X'dX) = (HϊdH2)(U[1dU11)(U[3JU12*)(QfdQ)(dTp). (3.10)

Integrating both sides of (3.10) yields

r
(dTp) = 2pw(k,m)/w(p,p)w(p,pι)υ(k -p,pi -p)w(k,k)

= K(m,p9k). (3.11)

Proof for Case (in). The method for Case (ii) can be applied to this case,

due to its symmetry with Case (ii). This fact leads to the decomposition of

X in the form (2.11), with (IPl - S2

pi)^2(SPl = diag(θi, , s P l ) ,0 < sPl <

• < si < 1) replacing TPl, and, hence, putting t\ = (1 — θ?) 1/ 2, i = 1, ,pi,

establishes the desired result (2.11). The decomposition (2.12) of [dX], thus,

follows, where we have

(dTPl) = 2Plw(k,m)/w(pup)v(k-pup-p1)w(pup1)w(k,k)

= K(m,Pl,k). (3.12)

Proof for Case (iv). We can write the unique svd of PUX in v as

PvX = Cλ\K2\0p,k-p\TQ, (3.13)

where C\ and Q follow the same conditions as in Case (i), H2 E O(ί>), and

T = diag(TrjIp-rjOk-P), with Tr = diag{tu-- , ί r ) ,0 < ίi < < ί r < 1,

since T is of rank p and we have r(< p and < Pi) ccc's; the value of r is yet
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to be known. From Ik = Γ 2 + Z'Z, with Z = (PV±X)Q', we can write Z'Z,

being of rank "pi", as

Z'Z = diag(/r - Γ r

2,0 p_ r,/ f e_ p), (3.14)

which is of rank "r + k - p", thus leading to "r = m — k".

From (3.14) and the fact Z e / 1 , we readily see that

Z = C2C/diag((/r - T 2 ) 1 / 2 ,O p _ r ,/ f c - p ) , (3.15)

where C2 follows the same condition as in Case (i), and the p\ x k matrix U

is expressed as U = [U2i:OPuP-r:U22], w i t h [^21^22] G O(pi)> ί/21 being
Pi X r. Combining the above results establishes the desired result (2.15).

Writing (2.15) in the same form X — GQ as in (3.4), and putting H2 =

[H2i: #22] = (fei fer : hr+i hp), U2i = (t*i t t r ), and J722 = (np+i uk),
we have

i = 1, ,r,

5i = Cihi) i = r + 1, , p,

flfi — C^^i? i = _ p + l , , fc, (3.16)

Now, we choose &i, , &m-fc as, noting r = m — k,

bj = -(1 -i])ll2C1hj + tjC2uj, j = 1, ,m-fc. (3.17)

Then, similarly to Case (ii), we obtain

(5'rfG) = (H!ιldH21)(U^dU21)(dTr), (3.18)

where we recall #21 € FΓ ) P and t/21 G Vr,Pl, and (dΓΓ) is given by (2.18).

Integrating both sides of (3.5), with (3.18) being substituted, yields

(dTτ) = 2rw(k,m)/w(r,p)w(r,pi)w(k,k) = K(m,r,p). (3.19)

4. Distributions of Canonical Correlation Coefficients of General

Dimensions.

4.1. Canonical Correlation Coefficients of General Dimensions. It is already

known that the angle θ between the two m X 1 vectors x and y is defined by

cos0 = i/>*, i.e., (cos0)2 = 2/iP^*, (4.1)
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where x* = a;/||a;||, j / * = 3//||y||, with ||x|| = (x'x)1/2 being the length of x,

and P x = x*x* is the orthogonal projection matrix onto the space M(x).

We extend the definition (4.1) for vectors to that for matrices. Given mxk

and mxp matrices X and Y(m > k and m > p), let us write the unique polar

decomposition of X and Y as

ί X = Exτψ, with Ex = XiX'X)-1'2 and Tx = X'X, and

\ y = iryτj/2, with # r = y(YΎ)-1/2 and Γy = yy,
(4.2)

respectively. Ex indicates the "orientation" of the matrix X, extending the

notion of direction for k = 1, and Tx the inner products of columns of X (see

Downs (1972) and Chikuse (1990)). The "angles" between X and Y may be

defined by the (nonzero) latent roots of

V = E'YEX, i.e., W = W = E[rPxEγ, (4.3)

where Px = ExE
f

x is the orthogonal projection matrix onto the space M(X).

The matrix W in (4.3) is rewritten as

w = (y'y)-1 / 2y'x(x/x)-1x'y(y/y)-1 / 2. (4.4)

Usually, in multivariate analysis, m is the sample size and k+p is the dimension

of the population, and the (nonzero) latent roots of W are well known to give

the squares of the (sample) ccc's between the two observation matrices X

and y . Assuming m > k + p, the pdf of the ccc's has been obtained from

the distribution of the sample covariance matrix S = (5ij),i,j = 1,2, where

5*ii = XrX,Si2 — S21 = XrYf and S22 — Y'Y, for the multivariate normal

population (see e.g., James (1964, (76)) and also Muirhead (1982, Theorem

11.3.2)).

We give a method, based on the definition (4.3) utilizing the results in Sec-

tion 2, for deriving the distributions of ccc's of "general" dimensions, relaxing

the assumption m > k + p. For two random orientation matrices X 6 Vk,m

and Y E Vp?m, the ccc's given Y are the (nonzero) latent roots t{ of Y'X,

utilizing Corollary 2.1, with Y replacing Γ. The conditional distribution of

the ccc's given Y is obtained by integrating unnecessary variables out of the

conditional distribution of X given Y, utilizing the decompositions of X and of

the i.m. [dX] for each of Cases (i)-(iv), and then the (marginal) distribution,

by taking expectation over Y £ VPiΎn. The method is now illustrated for two

multivariate distributions.

4.2. Multivariate Normal Distribution. First an m x k (rectangular) ran-

dom matrix Z is defined to have the mxk matrix- variate normal NmXk(M, Σi

®Σ2) distribution, if its pdf is (2π)-W2| Σ l | -*/2 | Σ 2 | -m/2 e t r [-Σ~\Z - M)



186 INVARIANT MEASURES

Σ ^ ( Z - M)'/2], where etr A = exp ( tr A), M is an m x fc matrix, and Σi

and Σ 2 are, respectively, mx m and A; x k positive definite matrices.

Let Z = [X:Y], with X and Y being m x t and m x p, respectively, be

distributed as NmXq(0,Im ® Σ)(q = k + p). Then, from the conditional pdf

of X given Y (e.g., Muirhead (1982, Theorem 1.2.11)), utilizing Herz (1955,

Lemma 1.4) (see also James (1954, (8.19))), the pdf of Hx given Y is obtained

as

c(Y) ί
Jττx>o

etr [ - ^ n A + M!{Y)HXT]/2} \Tχ\^-k-^2(dTx), (4.5)
L z J

where c(Y) is the normalizing constant, depending on Y, we have the partition

Σ = (Σ;j),i,j = 1,2, with Σn being k x fc,Σn.2 = Σn - Σ ^ Σ ^ Σ ^ , and

Noting the decomposition \dHχ] — [dGχ][dQχ] based on the matrix de-

composition Hx — GxQx, where Gx G Gk,m-k &nd Qx £ 0(k) (see the

Introduction), we integrate (4.5) over Qx G O(fc), utilizing the integral defi-

nition (e.g., James (1964, (27))) of the oî i hypergeometric function of matrix

argument (see the Appendix for the hypergeometric function of matrix argu-

ment). Then, making the transformation S = Σ ^ 2 T χ Σ ^ / 2

2 / 2 , utilizing the

Laplace transform (e.g., James (1964, (28))) of the hypergeometric function

of matrix argument, and evaluating the normalizing constant, we obtain the

pdf of Gx given Y as

etΐ(-QTγ/2)1F1(m/2;k/2;YΘY'GxG'x/2), (4.6)

where

Θ = Σ ^ Σ ί i Σ i i ^ Σ ^ Σ ^ 1 . (4.7)

For given Y, we recall Corollary 2.1, with Hx G Vk,m and Hy G VVyΎn replacing

X and Γ, respectively, and utilize the decompositions of Hx (and, hence, of

Gx) and of [c?Gχ], for each of Cases (i)-(iv).

Case (i). It is seen from (4.6) that the pdf of Tk given Y, with respect to
the normalized measure [dTk] given by (2.4), is

h{Tk\Y) = etr( - iθiy

(4.8)
which depends only on Tγ; we may write /i(Γ f c |Γy) instead of / i(Γ f c | y) .
Making the transformation Hi -> HHχ,H G O(p), and then integrating over
H € O(p) yields

fi(Tk\Tγ) = e\τ{-QTγl2)xF[p\ml2 kl2;QTγl2,Tl), (4-9)
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where \F^ is the hypergeometric function of two matrix arguments (see the

Appendix).

Now, the (marginal) iV m X p (0,/ m ® Σ22) distribution of y , in view of Herz

(1955, Lemma 1.4), yields the pdf of Tγ

g(Tγ) = etr(-Σ^2

1Γy/2) iTγ^-^1^2/2pm/2Tp(m/2) \Σ22\
m'2. (4.10)

The (marginal) pdf of TkJλ(Tk) = / T γ > 0 fλ(Tk \ Tγ)g(Tγ)(dTγ), with respect

to [dTk], is obtained by making the transformation S = (Θ + Σ^"2

1)1/2Ty(Θ +

Σ^"2

1)1/2/2 and utilizing the Laplace transform (James (1964, (31))) of the

hypergeometric function of two matrix arguments, as

with P 2 = Σ 2 " 2

1 / 2 Σ 2 iΣ 1 - 1

1 Σi 2 Σ 2 " 2

1 / 2 . (4.11)

Noting that 2F[v\au α2; fc/2; A, £ ) = 2F^k)(a1,a2',p/2; A, £ ) , we establish the

distribution of t\ , , t2

k(= T%) as

X

7</ i=i (4.12)

where K(m,k,p) is given by (2.6).

Noting that replacing Ip - P2 and P 2 by Ik-P? and Pj2 = Σ ^ ^ Σ ^ Σ ^ 1

-I /Λ

E 2 1 E 1 X ' , respectively, does not change the result in (4.12), it is seen that

(4.12) is exactly the same as the known result (James (1964, (76))).

Case (ii). Integrating (4.6) over H2 G O(p) yields the pdf of Tp given Tγ,

with respect to [dTp] given by (2.9), as etr(-ΘΓy/2) 1 P 1

( p ) (m/2; k/2; ΘΓy/2,

T2). Thus, the similar method leads to the distribution of t\, ,/2 as

iή - t2) \
i<j <=i (4.13)

which is exactly the same as (4.12) interchanging p and k; this is the known

result.

Case (Hi). The pdf of TPl given Γy, with respect to [dTPl] given by (2.13),

is

/3(ΓP1|7Y) = etr(-θΓ y /2) / / iFi(m/2; k/2;
J J

where Ht = [H11\G(H11)ΠU,] e Vk,p. (4.14)
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From the invariance of [dHn] and [dHu*\, making the transformation Hi

HHι,H e 0(p), and then integrating over H e O(p) yields

h(TPl\Tγ) = etτ(~ΘTy)1Fίp)(±m]±k;±ΘTγ,άiΆg(TΪiJk-Pl)). (4.15)

The similar method leads to the distribution of t\, , t2

Vl as

Pi

x \T2^-k-^2\IPl - T}1\V°+*-m-1V2γ[[\ή - ή) f\ dt2. (4.16)
i<j 2 = 1

Case (iυ). The integration of (4.6) over H21 E VΓ}P is evaluated by mak-

ing the transformation U2{— [#21 ^22]) —* HH2, H E O(p), and then in-

tegrating over H E O(p), so that the pdf of Tr given Tγ, with respect to

[dTr] given by (2.17), is obtained as etr (-ΘΓy/2) 1 F 1

( p ) (m/2; k/2; ΘTV/2, diag

(Γ^, Ip-r)). Thus, the similar method leads to the distribution of t\ , , t2

r as

2-rK-\m,r,p) \IP - P2\m'22F[V) (\™, \m; \k P2,diag(Γ2,/p_r))

r

\s I'T1^ |(fc—p—1)/21 r rp2 \(k \-p—m—l)/2 1 I (+2 J.2\ Λ J ^ 2 (A ΛΠ\

I r I \ r — 7*1 11 v ? i ) I \ i ' \ ' )

4.3. Conditionally Matrix Langevin Distribution. For random matrices X

and Y on Vfc,m and Vp>m, respectively, let the conditional distribution of X

given y be the matrix Langevin X(m, k\ YA), (see (A.4)), with A being a p x k

constant matrix, while Y has "any" marginal distribution. Hence, the mode

of the conditional distribution of X given Y is in the orientation of Y.

Case (i). The distribution of T* given Y, with [dTk] given by (2.4), is

cί I eiτ{A! H^Q^dQldH^dTkl with c = 0Ff '(m^; A'A/4),

= cofί
p)(fc/2;Λ/A/4,Γfc

2)[dΓib] = co,pf ^p/2; A;A/4,T,2)[dΓfc], (4.18)

which is independent of y , and, hence, gives the (marginal) distribution of

1̂? * ?^

Similarly, integrating the conditional pdf of X given Y over the common

Q e O(k), and (ii) H2 G O(p), (iii) H12* E G * - P l , p _ * and fΓ n E y p i, p, and

(iv) H21 E VrjP, respectively, yield
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Case (ii). the distribution of t\, ,ίp, with [dTp] given by (2.9), as

c0FΪp)(k/2; AA'/4,tf)[dTp], (4.19)

Case (Hi), the distribution of ί1? , ί P l , with [dTPl] given by (2.13), as

c0Fik) (p/2; A'Λ/4, diag (Γ^, Ik.Pl)) [dΓPl], (4.20)

and

Case (iv). the distribution of ίi, , ί r, with [dΓr] given by (2.17), as

^ (4.21)

5. High Dimensional Limit Theorems. Let X be a random matrix
on Vkym

 a n d v a subspace of Rm of dimension p. In this section, we utilize
the results in Theorem 2.1 for Cases (i) and (ii) (i.e., for k + p < m), since
our interest is in the limiting behaviours, asm-> oo, of random matrices.
Theorems 5.1 and 5.2 which follow can be proved by comparing the limiting
joint distributions of Hi ^m^^T^Q and of K<i,m}^2Tp, Q for Cases (i) and (ii),
respectively, with the joint distribution of the svd of a random NpXk(M, Σi (g)
Ik) matrix, extending Chikuse (1991a). The results extend Watson (1983b)
for k = 1, and are useful for inferential problems on Vk,m f°Γ large m.

5.1. The Distribution Depending on PyX Only. We consider the case
when X has the distribution whose pdf is of the form f(PuX)^ for a suitable
function /( ) being continuous at the origin 0.

THEOREM 5.1. The random matrix m1l2C[X( = rr^^C^PyX) is
NpXk(0, Ip ® Ik), and, hence, mλl2PυX is "degenerate" Nmxk(0,Pl/ ® Ik)9

in the limit as m —> oo.

EXAMPLES. Let us consider the two cases when X is distributed as the
matrix Langevin L(m,k;F) and the matrix Bingham B(m,k;D), having the
svd's, with Γ, (A.5) of F and (A.7) of £>, respectively. Then, the mλl2VX are
NpXk(0,Ip ® Ik) in the limit as m —> oo. Since the case F (or D) — 0 reduces
to the uniform distribution [dX] on V^m, the limiting normality of m1/2Γ'X
holds, for a uniform X on Vfc,m and any m X p constant matrix Γ E VPjm

5.2. The Distribution Depending on m1/2 PUX Only. When we investi-
gate high dimensional behaviours for the distribution depending on PUX , it
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would be natural to let the pdf be of the form /(m 1 / 2 P ί / X); otherwise, the

distribution seems to become flat as m —> oo. Two cases are considered.

THEOREM 5.2. For the matrix g - i ( m , k;p,v; rn^^F) distribution (see

(A.8)), m1/2C[X is NpXk(C[F,Ip ® Ik), and, hence, mλl2PυX is degenerate

u ® Ik), in the limit as m —> oo.

THEOREM 5.3. For the matrix g — SW(rn,k;p,v;mD) distribution

(see (A.9)), where Ip - 2C[DCι is positive definite, m112 C[X isNpXk(0,(Ip

-2C[DC1)-1®Ik), and, hence, mχl2PvX is degenerate Nmχk(0, Cι(Ip

-2C[DCι)-1C[ ® Ik), in the limit as m -> oo.

APPENDIX

A.I. Hypergeometric Functions of Matrix Arguments. The hy-
pergeometric function p ί 1

g ( α i , ,α p ;6i, ,6g;A) with a i x f c symmetric

matrix A has a series representation

(A.I)
1=0 X

Here, λ ranges over all ordered partitions of /, i.e., λ = (/i, ,/fc),/i >

• ^ Â; ^ 0, Σ ^ = 1 /ί = /, αi, ,αp,&i, , 6g are real or complex constants,

O)λ = Π L i ( β - (* " i)/ 2 )/,, with (α)/ = α(α + 1) -(α + / - 1), and Cχ(A)

is a zonal polynomial. The zonal polynomials C\(A) were defined by the

theory of group representations of the real linear group on the vector space

of homogeneous polynomials of degree / on the space of symmetric matrices,

and constitute a basis of the space of all homogeneous symmetric polynomials

in the latent roots of A. The hypergeometric function with two symmetric

matrices A and B is defined by

/ g (A.2)
θ(k)

and has a series representation

oo

Σ Σ t( α i ) λ KV(&i)λ (bq)χl \Cλ(Ik)]Cλ{A)Cx{B). (A.3)Σ Σ
/=o λ

See James (1964) and Constantine (1963) for a more detailed discussion of

the zonal polynomials and hypergeometric functions of matrix arguments.
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A.2. Some Population Distributions on Vfc>m.

A.2.1. The Matrix Langevin Distribution. A random matrix X £ Vk,m is

said to have the matrix Langevin (or von Mises-Fisher) L(m, k; F) distribution,

if its pdf is given by (Downs (1972))

etτ(F'X)/0F1(m/2;FlF/4), (A.4)

Where F is an m X k matrix (see also Chikuse (1990) and Khatri and Mardia

(1977)). Writing the svd of F, being of rank p(0 < p < k), as

F = ΓΔΘ', where Γ <Ξ Vp<m, Θ G Vp,k, and Δ = diag(λi, , λp), λ, > 0,

(A.5)

Γ and Θ indicate "orientations", extending the notion of directions for k = 1,

and the λ; are "concentration" parameters in the p directions determined by

Γ and Θ. M = ΓΘ' gives the "modal orientation" of the distribution (Chikuse

(1991b)).

A.2.2. The Matrix Bingham Distribution. The matrix Bingham

B(m,k;D) distribution has the pdf

etr {X'DX)l1F1(kl2; m/2; D), (A.6)

where D is an m X m symmetric matrix, with a restriction, e.g., tr B = 0 (see

Bingham (1974) (for k = 1), Jupp and Mardia (1976), and Prentice (1982)).

We write the svd of Z), being of rank p (0 < p < m), as

D = ΓΔΓ', where Γ G Vp,m, and Δ is a pxp diagonal matrix.

(A.7)

A.2.3. Generalized Distributions. Letting v be a given subspace of Rm

of dimension p, we generalize the above two distributions. It is noticed that

putting v = M(T) yields the distributions (A.4) and (A.6).

The matrix generalized Langevin distribution (g — L(m,k;p,v;F)) has the

pdf, with F being a n m x ί ; matrix,

etr (JP
/Pί/X)/oFi(m/2; P.FF'jA). (A.8)

The matrix generalized Scheiddegger-Watson distribution (g—SW(m,k;

p,v\ D)) has the pdf, with D being an m x m symmetric matrix,

; m/2; PUD), (A.9)

generalizing that of Watson (1983a, Section 3.4) for k = 1.
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