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Let Vk,m denote the Stiefel manifold which consists of ™ X k(m > k) matrices
X such that X' X = I,. We present decompositions of a random matrix X and
then of the invariant measure on Vk:,m: relative to a fixed subspace v in R™, for all
possible four cases to be considered according to the sizes of k, M, and the dimension
of . The results are utilized for deriving the distributions of the canonical correlation
coefficients between two random matrices of “general” dimensions, and for discussing

high dimensional limit theorems (as M — 00) on Vi p,.

1. Introduction. We consider the Stiefel manifold Vj ,, which consists
of m x k(m > k) matrices X such that X'X = I, the k£ x k identity matrix.
For k£ = m, the Stiefel manifold is the orthogonal group O(m). An invariant
measure (i.m.) on Vi ., is given by the differential form (d.f.)

m—k k
(X'dX) = /\ zidz; [\ )\ bjdz, (1.1)
z<] 7=1 i=1

in terms of the exterior products (A), where we choose an m x (m — k) matrix

B such that [X:B] = (21 -+ @x:by - - - bp_k) € O(m) and dz is an mx 1 vector
of differentials. The volume of Vi,m is given by w(k,m) = 2F7*™/2 T (m/2),
where Tp(a) = wF(k-1)/4 H I'(a — (¢ — 1)/2), and the normalized i.m. of
unit mass on Vi n, is denoted by [dX](= (X'dX)/w(k,m)).

The Grassmann manifold G ,— consists of k-planes, i.e., k-dimensional
linear subspaces in R™. For X € Vi, we can write X = G@Q; that is, X
in Vy m is determined uniquely by the specification of the k-plane, i.e., the
“reference” matrix G' in G ,,— and the orientation @ € O(k) of G. An i.m.
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on G,m—k is given by the d.f.

m—k k
(B'dG)= N\ ) bjdgi, (1.2)
j=1 =1

where the column vectors of G = (g1 -+ -gx) and those of B = (by---bp—x)
are orthonormal vectors spanning the k-plane and its orthogonal complement,
respectively. The volume of Gy,m—k is given by v(k,m) = w(k,m)/w(k,k),
and the normalized i.m. of unit mass on Gkm—r is denoted by [dG](=
(B'dG)/v(k,m)). A detailed discussion of manifolds may be found in James
(1954) and Farrell (1985).

Throughout this paper, probability density functions (pdf’s) of distributions
on the Stiefel and the Grassmann manifolds are expressed with respect to their
normalized i.m.’s, while those on the spaces of all m x k matrices or of all k x k
symmetric matrices are expressed with respect to their Lebesgue measures.

There exists an extensive literature of statistical analysis on Stiefel mani-
folds; of directional statistics on V; ,, (see e.g., Mardia (1975), Watson (1983a),
and many others), and of orientational statistics on Vi, (see e.g., Chikuse
(1990, 1991a, b), Downs (1972), Jupp and Mardia (1976), Khatri and Mardia
(1977), Prentice (1982), and Watson (1983b)). Chikuse (1993) and Chikuse
and Watson (1992) investigate asymptotic distribution theory on Grassmann
manifolds.

Let v be a fixed subspace of R™ of dimension p and v+ its orthogonal com-
plement. In this paper, a random matrix X € Vi, is decomposed as the
sum of mutually orthogonal singular value decompositions (svd’s) of P, X and
P,. X, where P, and P,. denote the orthogonal projection matrices onto v
and v+, respectively. The matrix decomposition is presented for each of “all
possible four cases” to be considered according to the sizes of k,m, and p, ex-
tending Chikuse (1991a), who considered only one special case of them. Based
on each of these matrix decompositions of X, we shall express thei.m. (X'dX)
as the product of the i.m.’s on the component Stiefel and/or Grassmann man-
ifolds and of a measure on the set of canonical correlation coefficients (ccc’s)
between the random subspace M(X) spanned by the columns of X and the
subspace v. The results are summarized in Section 2 and proved in Section
3. James (1954) considered this problem via an analytic approach, and this
paper completes his result. Also, the results reduce to those in Watson (1983a,
Sections 2 and 3.4), for k= 1.

The results presented in Section 2 are of interest and wide use in multivariate
analysis. Various distributional results concerning the component matrices in
the decompositions of X can be derived. Section 4 gives a method for deriving
the distribution of the ccc’s between two random matrices of ”general” dimen-
sions, with illustrations provided for the multivariate normal distribution and



YASUKO CHIKUSE 179

for a “conditionally matrix Langevin” distribution. Section 5 is concerned
with high dimensional limit theorems for the distributions depending on P, X
only.

2. Decompositions of a Random Matrix and the Invariant Measure
on the Stiefel Manifold. Let X be an m X k random matrix on Vi,
and let v and v+ be a fixed subspace of R™ of dimension p and its orthogonal
complement (of dimension m — p), respectively. There are four cases to be
considered in this paper, putting p; = m — p;

Case (i) k<p and k<p,

Case (ii) p<k<pm,

Case (ili)) p1 <k < p, and

Case (iv) p<k and p <k. (2.1)

We need to introduce some notation. Let Vk,m denote the 2%th part of Vi,m
consisting of matrices X; whose elements of the first row positive with the
normalized i.m. [dX;] = 2%(X]dX;)/w(k,m). A'/? is defined as the unique
square root of a positive definite matrix A. O, . and O, are the ¢ x r and gx ¢
matrices of zero elements, respectively.

THEOREM 2.1. Case (i). (Chikuse (1991a)) X may be uniquely decom-
posed as the sum of mutually orthogonal svd’s in v and v,

X = ClﬂlTkQ-i-CzUl(Ik—T;f)l/?Q, (2.2)

where Cy and Cy are m X p and m X py constant matrices in Vp,m and Vp, m,
respectively, such that C{Cy = 0,Hy € Vi p, U1 € Vip,,Q € O(k), and T, =
diag (t1,--- ,tx),0 < t; < --- < tx < 1. The decomposition (2.2) leads to

[dX] = [dH][dUL][dQ][dT¥], (2.3)
where [dT}] is the normalized measure of Ty (or ty,--- ,tx) given by
[dTk) = (dT%)/K(m,k,p), with (2.4)
k k
- m—k—p—1)/2 k
(am) = [T~ (- )" "D (2 - 8) Nat, (25)
i=1 1<j =1

and the normalizing constant K (m,k,p) = [(dTy) being
K (m, k,p) = Tx((m — p)/2)Tk(p/2)Tk(k/2) /27 *Ti(m/[2).  (2.6)

Case (ii). X may be uniquely decomposed as

X = C1[H2:0, k-p)diag (Tp, Ox—p)Q
+ CyUhdiag (I, — ;)" i) Q5 (2.7)
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where C1,Cy, Uy and Q have been defined in Case (i), Hy € O(p), and
T, = diag (t1,--,1p),0 < t; < --- <t, < 1. The decomposition (2.7) leads

to
[dX] = [dH>][dU11][dU12.][dQ][dT), (2-8)

where we have the partition Uy = [Uyy:Uya] with Uy € V, p,, the (p1 — p) X
(k — p) matrix Uyox € G—pp,—k is defined such that Uy = G(U11)Uy2« for

G(Uy1) being chosen so that [Uy:G(Uy1)] € O(p1), and [dT}) is the normalized
measure of T}, given by

[dT,] = (dTp)/K(m,p,k), K being defined by (2.6) with
(2.9)

p p

_ e b P
(Tp) = [T [eF"( = ) om=r =+ [T (& - ) N\ ats.
=1 i<j 1=1 (2.10)

Case (iii). X may be uniquely decomposed as
X =C1Hydiag (Ty,, Ix—p, )@
+ C3[U:0p, k—p, diag (In, — T2 )%, 0k-p,)Q, (2.11)
where C1,Cy and Q have been defined in Case (i), Hy € Vip,Us € O(p1),

and Tp, = diag(t1, - ,1p,),0 <ty <--- < t, < 1. The decomposition (2.11)
leads to

[dX] = [dH11][dH12.])[dU,])[dQ)[dT, ], (2.12)
where we have the partition Hy = [H115H12] with Hyy € Vp, p, the (p — p1) X
(k — p1) matrix Higx € Gi—p, p—k Is defined such that Hia = G(Hy1)H1a4 for

G(H11) being chosen so that [Hyy:G(Hi1)] € O(p), and [dT}, ] is the normalized
measure of T, given by

[dTp,] = (dT},)/ K (m,py1, k), with (2.13)
P1 P1
- I pP1
(dTp,) = H[tf k(l __t?)(k+p 1)/2]1'11 (t§ — ) /\dt,—.
i=1 i<j i=1 (2.14)

Case (iv). X may be uniquely decomposed as

X = C1[Hy:0p k—p| diag (Tr, Ip—r, Ox_p)Q

+ 02 [U21 SOpl,p—rEU22]

x diag (I, = T}/, 0pr, It—p)Q, with r=m -k,
(2.15)
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where C1,C, and @ have been defined in Case (i), H; € 5(p),[U215U22] €
0(])1) with Uyp € Vr,pl, and T, = diag(tl,-- . ,tr),O <t <---<t.<1. The
decomposition (2.15) leads to

[dX] = [dH2][dU2][dQ][dT ), (2.16)

where we have the partition Hy = [H215H22] with Hyp € 17,,,,, and [dT,] is the
normalized measure of T, given by

[dT;] = (dT;)/K(m,7,p), with (2.17)
(dT,) = f[[tf"’(l ) hiand) | NGRS /\ dt;.
i=1 i<j i=1 (2.18)

COROLLARY 2.1. In particular when v is the subspace M(T') foran mXxp
constant matrix I' in V r,, Theorem 2.1 holds with T' replacing C.

It is noted that there are singular situations such as when the projection of
a column of X onto v or v+ is zero, or when some of the ¢; are equal, but that
such singular situations have zero i.m.. Hence, Theorem 2.1 and Corollary 2.1
hold with one i.m..

The problem of deriving the decomposition of the i.m. on Vi, was con-
sidered by James (1954) via an analytical approach. In his method, those
decompositions, except that of the i.m. for Case (i), are not explicitly given.
Theorem 2.1, thus, may be a completion of his result.

We note the geometrical interpretation of Theorem 2.1, with the aid of
James (1954, Section 7). The columns of Cy and C3, which are both not
explicit in James (1954), are the orthonormal bases of the subspaces v and
vt, respectively. The 6;, where cos 6; = t;, are the critical angles between the
random subspace M(X) in Gk m—x and the subspace v in Gp m—p, while the

t; are called the canonical correlation coefficients (ccc’s).

3. Proofs of Theorem 2.1. The results for Case (i) have already been
given and proved (Chikuse (1991a)). The proof for each case involves its own
aspects, and we shall start giving the outline of the proof for Case (ii).

Proof for Case (ii). X is written as

X =P,X+P,.X. (3.1)
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A svd of P,X in v of dimension p is

P,X = Ci[Hy:0p-p|TQ, (3.2)

where Cj is an m X p constant matrix in Vp m,Hy € O(p),@ € O(k), and
T = diag (Tp, Ok-p), with T, = diag(t1, -+ ,1),0 <t; < 1,i=1,---,p. For
uniqueness, we assume that H2 € O(p) and 0 < t; < --- <1, < 1.

Next, putting Z = (P,.X)Q' and substituting (3.2) into (3.1), we have
I. = (XQ")YXQ' =T? + Z'Z, and, hence, in view of the fact Z € vt,

Z = CylUrdiag (I, — T2)Y?, It—p), with Uy € Vip,, (3.3)
where C5 is an mxp; constant matrix in Vj, m such that C{Cy = 0. Combining
(3.1) - (3.3) establishes the desired result (2.7).

Writing (2.7) as

X =GQ, with G=(g1--9gk), (3.4)

and differentiating (3.4), we obtain, in use of the notation in (1.1),

m—k k
(X'dX) = (B'dG)(Q'dQ), with (B'dG)= A N bdg;, (3.5)

j=1 i=1
(James (1954, (5.22))), and the i.m. (B'dG) on G m—k is now to be decom-
posed further.
With G in (3.4), putting Hy = (hq---hy) and Uy = (uq - - - ug), we have
gi = t:Cihi + (1 — )2 Cyu, i=1,---,p,
gi = Cau;, i=p+1,---,k, (3.6)
hih; =é;;, 4,5=1,---,p, and wuj =6, 1,j=1,---,k.

We now choose by, ,b,,_} as

{ b]- = —(]_ - t§)1/2clh], + tj02'le, j=1,---,p and

. 3.7
bj = Cotk—p+j, j=p+1,--- ,m—k, (37

where Uz = (k41 - Up, ) is chosen so that [U:U;3] € O(py).
A method similar to James (1954, Sections 5.3 and 7), with the conditions
(3.6) and (3.7), leads to, after some differential calculation,

pP1 k
(B'dG) = (H;dH,)(U}1dUn)(dTp) -, with a= A A ujdu;, (3.8)
j=k+1i=p+1
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where we recall Hy € 5(p),U11 € Vpp, is defined by U; = [Uyy :Uys], and
(dT},) is given by (2.10). « is now to be evaluated, utilizing the argument of
Muirhead (1982, Lemma 9.5.3). For fixed Uy1, we can write the p; X (p1 — p)

matrix V = [U1z:Us] as V = G(U11)Vi, where G(Un1) is any fixed matrix

chosen so that [U1; EG(UH)] € O(p1), and V, = [Uya~ 1Uyse] € O(p1 — p) with
U2~ being (p1 — p) X (k — p); the relationship between V' and Vi is one-to-one.
Putting Vi = (v1+--vp,—p), a is expressed as

p1—p k-p
a= N\ N vidvi = (U3.dU1.), (3.9)
j=k—p+1 i=1

which is the i.m. on Gx—p p, k-

From (3.5), (3.8) and (3.9), we obtain the decomposition of (X'dX) as
(X'dX) = (H;dHy)(U11dU11)(U13,dU124)(Q'dQ)(dT)- (3.10)

Integrating both sides of (3.10) yields

[ @) = 27, m) (e, D)o, r)oCk = 9,11~ P b
= K(m,p, k). (3.11)

Proof for Case (iii). The method for Case (ii) can be applied to this case,
due to its symmetry with Case (ii). This fact leads to the decomposition of
X in the form (2.11), with (Ip, — S2)'/%(Sp, = diag(s1, " ,8p,),0 < 8p, <
..+ < 81 < 1) replacing Tp, , and, hence, putting t; = (1-s2)1/2,i=1,---,py,
establishes the desired result (2.11). The decomposition (2.12) of [dX], thus,
follows, where we have

/ (dTy,) = 272 w(k, m)/w(py, p)v(k — p1,p — p1)w(pr, p1)w(k, k)
= K(m,p1, k). (3.12)

Proof for Case (iv). We can write the unique svd of P, X in v as

P,X = C1[Hy:0p—p|TQ, (3.13)

where C; and @ follow the same conditions as in Case (i), Hy € 5(p), and
T = diag(Ty, Iy—r,Ok—p), with T, = diag(ty, - ,t,),0 <t < --- <t < 1,
since T is of rank p and we have 7(< p and < p;) ccc’s; the value of 7 is yet
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to be known. From Iy = T? + Z'Z, with Z = (P,. X)Q', we can write Z'Z,
being of rank ”p,”, as

7'7Z = diag(I, — T2, 0p—r, Ir—p), (3.14)

which is of rank “r 4+ k — p”, thus leading to “r = m — k”.

From (3.14) and the fact Z € v, we readily see that
Z = CyUdiag((Ir — TH)Y?,0p—r, Ix—p), (3.15)

where C; follows the same condition as in Case (i), and the p; X k matrix U

is expressed as U = [Uyn EO,,M,_TEUQQ], with [Uyy : Usa] € O(p1), Usy being
p1 X r. Combining the above results establishes the desired result (2.15).

Writing (2.15) in the same form X = GQ as in (3.4), and putting H; =

[Hyy:Hzol = (hy---he by hp),Us1 = (w1 -+ u,),and Usy = (Uptr -+ - uk),
we have

gi = tiCihi + (1 = t})2Couy, i=1,---,m,

gi:clhi’ i:T+l,"',pa
g; = Cou,, it=p+1,---,k, (3.16)
hih; = 6;;, i,j=1,---,p, and
uguj_—:é,-j, ,j=1,---,r,p+1,--- k.
Now, we choose by, - - ,b,,_x as, noting r = m — k,
bj = —(1—t)Y2C1hj +1;Couj, j=1,---,m—k. (3.17)

Then, similarly to Case (ii), we obtain
(B'dG) = (HjydH21)(Uyy dU21 )(dT}), (3.18)

where we recall Hy; € Vr,p and Uy € V;p,, and (dT;) is given by (2.18).
Integrating both sides of (3.5), with (3.18) being substituted, yields

/(dTT) = 2"w(k, m)/w(r, p)w(r,p1)w(k,k) = K(m,r,p). (3.19)

4. Distributions of Canonical Correlation Coefficients of General
Dimensions.

4.1. Canonical Correlation Coefficients of General Dimensions. It is already
known that the angle § between the two m X 1 vectors  and y is defined by

cos = ylz., ie., (cosf)? =yl Pyy., (4.1)
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where z, = z/||z||,y« = y/||yll, with ||z|| = (z'2)'/? being the length of =,
and P, = .z, is the orthogonal projection matrix onto the space M(zx).

We extend the definition (4.1) for vectors to that for matrices. Given m x k
and m X p matrices X and Y (m > k and m > p), let us write the unique polar
decomposition of X and Y as

{ X = HxTY?, with Hx =X(X'X)"/? and Tx = X'X, and
Y = HyTY?, with Hy =Y(Y'Y)"Y/2 and Ty =Y'Y,

(4.2)
respectively. Hx indicates the “orientation” of the matrix X, extending the
notion of direction for k = 1, and T'x the inner products of columns of X (see
Downs (1972) and Chikuse (1990)). The "angles” between X and Y may be
defined by the (nonzero) latent roots of

VZH;/Hx, i.e., W:VVI=H£/Pxﬂy, (43)

where Px = H x HY is the orthogonal projection matrix onto the space M(X).

The matrix W in (4.3) is rewritten as
W= Y'Y) Y X(X' X)) XY (YY) V2 (4.4)

Usually, in multivariate analysis, m is the sample size and k+p is the dimension
of the population, and the (nonzero) latent roots of W are well known to give
the squares of the (sample) ccc’s between the two observation matrices X
and Y. Assuming m > k + p, the pdf of the ccc’s has been obtained from
the distribution of the sample covariance matrix § = (55;),%,7 = 1,2, where
S = X'X,812 = 54 = X'Y, and Sy3 = Y'Y, for the multivariate normal
population (see e.g., James (1964, (76)) and also Muirhead (1982, Theorem
11.3.2)).

We give a method, based on the definition (4.3) utilizing the results in Sec-
tion 2, for deriving the distributions of ccc’s of “general” dimensions, relaxing
the assumption m > k + p. For two random orientation matrices X € Vi,
and Y € Vjp m, the ccc’s given Y are the (nonzero) latent roots t; of Y'X,
utilizing Corollary 2.1, with Y replacing I'. The conditional distribution of
the ccc’s given Y is obtained by integrating unnecessary variables out of the
conditional distribution of X given Y, utilizing the decompositions of X and of
the i.m. [dX] for each of Cases (i)-(iv), and then the (marginal) distribution,
by taking expectation over Y € V, .. The method is now illustrated for two
multivariate distributions.

4.2. Multivariate Normal Distribution. First an m X k (rectangular) ran-
dom matrix Z is defined to have the m x k matrix- variate normal N, x (M, 1
®33) distribution, if its pdf is (2m)~*m/2 |S1|5/2| 5|~ ™/2 etr [-271(Z — M)
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£;4(Z — M)'/2], where etr A = exp ( tr A), M is an m X k matrix, and %,
and ¥, are, respectively, m X m and k X k positive definite matrices.

Let Z = [X EY], with X and Y being m X k and m X p, respectively, be
distributed as Npxq(0,1m ® £)(¢ = k + p). Then, from the conditional pdf
of X given Y (e.g., Muirhead (1982, Theorem 1.2.11)), utilizing Herz (1955,
Lemma 1.4) (see also James (1954, (8.19))), the pdf of Hx given Y is obtained
as

e(Y) etr [—%21‘11_2TX+M’(Y)HXT)1(/2 |Tx|(m=F=D/2(dTx), (4.5)
Tx >0

where ¢(Y') is the normalizing constant, depending on Y, we have the partition
Y = (Zij),i,j = 1,2, with 211 being k x k,Ell.z = 211 — 21222_21221, and
MY)=Y25 Sl

Noting the decomposition [dHx] = [dGx][dQx] based on the matrix de-
composition Hx = GxQx, where Gx € Gim-k and @x € O(k) (see the
Introduction), we integrate (4.5) over Q@ x € O(k), utilizing the integral defi-
nition (e.g., James (1964, (27))) of the o F1 hypergeometric function of matrix
argument (see the Appendix for the hypergeometric function of matrix argu-
ment). Then, making the transformation S = 21—11,42TX 21_11,42 /2, utilizing the
Laplace transform (e.g., James (1964, (28))) of the hypergeometric function
of matrix argument, and evaluating the normalizing constant, we obtain the

pdf of Gx given Y as
etr (—=OTy /2), F1(m/2;k/2;YOY'Gx G /2), (4.6)

where
0 =X Y N T T (4.7)

For given Y, we recall Corollary 2.1, with Hx € Vi ., and Hy € V,, ,, replacing
X and T, respectively, and utilize the decompositions of Hx (and, hence, of
Gx) and of [dGx], for each of Cases (i)—(iv).

Case (i). It is seen from (4.6) that the pdf of T) given Y, with respect to
the normalized measure [dT}%] given by (2.4), is

fl(Tle) = etr( - %OTy) /{}k . 1F1 <%—m, %k, —;—TXI/NOT}I,/ZHIT,?H{) [dHl],

' (4.8)
which depends only on Ty; we may write f;(Tx|Ty) instead of f1(T%|Y).
Making the transformation Hy — HH,,H € O(p), and then integrating over
H € O(p) yields

fi(Tk| Ty) = etr(—=OTy /2, FP)(m/2; k/2; 0Ty /2, T?), (4.9)
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where 1F1(p ) is the hypergeometric function of two matrix arguments (see the
Appendix).
Now, the (marginal) Npyxp(0, [m ® X22) distribution of Y, in view of Herz
(1955, Lemma 1.4), yields the pdf of Ty
9(Ty) = etr(—=X5,' Ty /2) |Ty|(m=P~1/2 /2P 2T (m [2) |Sa0|™/2.  (4.10)
The (marginal) pdf of Tk, f1(T%) = ny 50 fi(Tk | Ty )g(Ty )(dTy ), with respect
to [dT}], is obtained by making the transformation § = (@ + Z3,')'/2Ty (0 +
%57 )/%/2 and utilizing the Laplace transform (James (1964, (31))) of the
hypergeometric function of two matrix arguments, as
(Tk) = |1, = P P (m)2,m[2;k/2; P2, TY),
With P2 = 22_21/222121_11 2122;21/2. (4.11)
Noting that 2F1(p)((11 ,a2;k/2;A,B) = gFl(k)(al ,a2;p/2; A, B), we establish the
distribution of t2,--- ,#2(= T?) as

2=k K=Y (m, k, p)|I, — P*|"*,F® (m/2,m/2;p/2; P?,T?)

k
o k

X [T£|(p_k.—l)/2|1k - lel(m k-p 1)/2H1(t§ _ tf) /\ dt?,

i<j i=1 (4.12)
where K(m,k,p) is given by (2.6).

Noting that replacing I, — P? and P? by I;—P? and P? = £7/*%;,55)
Y1 21_11/ 2, respectively, does not change the result in (4.12), it is seen that

(4.12) is exactly the same as the known result (James (1964, (76))).

Case (ii). Integrating (4.6) over Hy € O(p) yields the pdf of T, given Ty,
with respect to [dT,] given by (2.9), as etr (—OTy /2), FP)(m/2;k/2; 0Ty /2,
T?). Thus, the similar method leads to the distribution of #%,- - - ,t?, as

2P K~ (m, p, k)|I, — P*|™/%, FP)(m/2,m/2; k/2; P%, T2)

P
—pe ke P
x [T2|6=p=0/2| 1, — p2(mer kD2 TT0 2 - 2) a2,
i<j i=1 (4.13)
which is exactly the same as (4.12) interchanging p and k; this is the known
result.

Case (iii). The pdf of T}, given Ty, with respect to [dT),,] given by (2.13),
is

f5(Ty I Ty) = etr (~OTy /2) /V /G VFy(m)2; /2

P1,P k—p1,p—Fk

T4/ OTy/* Hydiag (T2, Ii—p, ) H} /2)[dH1zu][dHy],

1?

where Hy = [Hy1:G(Hy1)Higs] € Vi (4.14)
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From the invariance of [dH11] and [dHq2], making the transformation H, —
HH,, H € O(p), and then integrating over H € O(p) yields

1 1 1.1 .

f3(Ty,|Ty) = etr (—5OTy ), F{P (im; ks 5OTy, diag (T2, Li—p, )). (4.15)

The similar method leads to the distribution of t},--- ,t2 as
—p1 -1 2(m/2 k) (1 1 '1'P2d' T2 T
2 K (m’pl,k)|Ip— P I 2F1 <§m’ ima §p, ) la‘g( p1° k—pl))
P1

X T2, (=602, — 72 (ebomm= D2 [T — i) Nde?. (4.16)

1<j i=1

Case (iv). The integration of (4.6) over Hy; € f/"r,p is evaluated by mak-

ing the transformation Ho(= [Hoy ;HZQ]) — HH,, H € O(p), and then in-
tegrating over H € O(p), so that the pdf of T, given Ty, with respect to
[dT,] given by (2.17), is obtained as etr (—@Ty/?)lFl(p)(m/2; k/2;0Ty /2, diag
(T2, I,-,)). Thus, the similar method leads to the distribution of t2,--- ,t2 as

1 1 1
2= K=Y (m,r,p) |I, — P2|™/?, F® (§m, Sm; 5k; P?, diag (T2, I—))
x [T2|(k=P=1/2| [ _ 2|(ktp=m=1)/2 Hl(tj. — %) /\1 dt?. (4.17)
1<j =

4.3. Conditionally Matrix Langevin Distribution. For random matrices X
and Y on Vi, and Vp n, respectively, let the conditional distribution of X
given Y be the matrix Langevin L(m,k;Y A), (see (A.4)), with A beinga pxk
constant matrix, while Y has “any” marginal distribution. Hence, the mode
of the conditional distribution of X given Y is in the orientation of Y.

Case (i). The distribution of T} given Y, with [dT] given by (2.4), is
c%' / etr(A'H1TxQ)[dQ)[dH1][dTx), with ¢= F ' (m/2;A'A/4),
Vi,p JO(k)

—c [ R/ B TR AR [4)dH AT

k,p

= ¢, FP(k)2; A'AJ4, TD)ATy] = c, F¥ (p/2; A'AJ4, T)[dTY], (4.18)

which is independent of Y, and, hence, gives the (marginal) distribution of
trye otk

Similarly, integrating the conditional pdf of X given Y over the common
Q € O(k), gnd (ll) H, € O(p), (lll) Hys, € Gk—pl,p—k and Hy; € VP1,p’ and
(iv) Hy1 € V;p, respectively, yield
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Case (ii). the distribution of ¢y,--- ,t,, with [dT),] given by (2.9), as

¢o P (k/2; AA'[4,T2)[dT;), (4.19)
Case (iii). the distribution of t1,--- ,¢,,, with [dT),,] given by (2.13), as
coF{M (p/2; A'A/4, diag (T2, Ii—p,)) [dTp,), (4.20)

and

Case (iv). the distribution of ¢1,--- ,t,, with [dT}] given by (2.17), as

o FP) (k/2; AA'[4, diag (T2, I,_,))[dT,)]. (4.21)

5. High Dimensional Limit Theorems. Let X be a random matrix
on Vim and v a subspace of R™ of dimension p. In this section, we utilize
the results in Theorem 2.1 for Cases (i) and (ii) (i.e., for £ + p < m), since
our interest is in the limiting behaviours, as m — oo, of random matrices.
Theorems 5.1 and 5.2 which follow can be proved by comparing the limiting
joint distributions of Hy,m!/?Ty,Q and of Ha, m'/?T,, Q for Cases (i) and (ii),
respectively, with the joint distribution of the svd of a random Npxi(M, X1 ®
Ii) matrix, extending Chikuse (1991a). The results extend Watson (1983b)
for k = 1, and are useful for inferential problems on Vi, for large m.

5.1. The Distribution Depending on P,X Only. We consider the case
when X has the distribution whose pdf is of the form f(P,X), for a suitable
function f( - ) being continuous at the origin 0.

THEOREM 5.1. The random matrix m'/?C{X( = m'/2C{P,X) is
Npxk(0, I, ® It), and, hence, m'/?P,X is “degenerate” N,xx(0,P, ® I}),
in the limit as m — oo.

EXAMPLES. Let us consider the two cases when X is distributed as the
matrix Langevin L(m,k; F') and the matrix Bingham B(m, k; D), having the
svd’s, with T', (A.5) of F and (A.7) of D, respectively. Then, the m!/2I"X are
Npx (0,1, ® Iy) in the limit as m — oo. Since the case F' (or D) = 0 reduces
to the uniform distribution [dX] on Vi, the limiting normality of m!/2T'X
holds, for a uniform X on Vi ,, and any m X p constant matrix I' € V, p,

5.2. The Distribution Depending on m!'/2 P,X Only. ~When we investi-
gate high dimensional behaviours for the distribution depending on P, X, it
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would be natural to let the pdf be of the form f(m!/2P,X); otherwise, the
distribution seems to become flat as m — co. Two cases are considered.

THEOREM 5.2. For the matrix g — L(m, k; p,v; m!/*F) distribution (see
(A.8)), m'2C} X is Npxi(CiF,I, ® I}), and, hence, m'/2P, X is degenerate
Npxk(F, P, ® Iy), in the limit as m — oco.

THEOREM 5.3. For the matrix ¢ — SW(m,k;p,v;mD) distribution
(see (A.9)), where I, — 2C}DC} is positive definite,m*/>C}X is Npx(0, (I,
—-2C{DC1) ' ® 1), and, hence, m'/?P,X is degenerate Nnxi(0, Ci(I,
—2C{DCy)~1C} ® I), in the limit as m — oo.

APPENDIX

A.1. Hypergeometric Functions of Matrix Arguments. The hy-
pergeometric function ,Fy(ay,---,ap;by, -+ ,bg; A) with a k X k symmetric
matrix A has a series representation

>0 {(ar)a--+(ap)a/(b)a- - (bg)Al!]CA(A). (A1)
A

=0

Here, A ranges over all ordered partitions of I, i.e.,, A = (Iy,--+,lk),l1 >
e >l > O,Zi;l li=1ay,---,ap,b1,---,by are real or complex constants,
(@)r = [IE,(a — (i — 1)/2);,, with (a); = a(a+1)---(a + [ — 1), and Cx(A)
is a zonal polynomial. The zonal polynomials C)(A) were defined by the
theory of group representations of the real linear group on the vector space
of homogeneous polynomials of degree [ on the space of symmetric matrices,
and constitute a basis of the space of all homogeneous symmetric polynomials
in the latent roots of A. The hypergeometric function with two symmetric
matrices A and B is defined by

qu(k)(ala"' aap;bh'" abq;AvB)
:/O(k) JF (a1, apiby,- - by AHBH')dH], (A.2)

and has a series representation

M8

> [@)a - (ap)a/(51)x -+ (b)Al ICA(Ik)] CA(A)CA(B). (A-3)

i A

I
[S)

See James {1964) and Constantine (1963) for a more detailed discussion of
the zonal polynomials and hypergeometric functions of matrix arguments.
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A.2. Some Population Distributions on Vi p,.

A.2.1. The Matrix Langevin Distribution. A random matrix X € Vi p, is
said to have the matrix Langevin (or von Mises-Fisher) L(m, k; F') distribution,
if its pdf is given by (Downs (1972))

etr (F'X)/oFi(m/2; F'F[4), (A4)

Where F'is an m X k matrix (see also Chikuse (1990) and Khatri and Mardia
(1977)). Writing the svd of F, being of rank p(0 < p < k), as

F =TAQ', where ' € V, ,,0 € Vp i, and A = diag(A1,---,Ap), Ai > 0,
(A.5)
I’ and O indicate “orientations”, extending the notion of directions for & = 1,
and the \; are “concentration” parameters in the p directions determined by
I'and ©. M =T0’ gives the “modal orientation” of the distribution (Chikuse
(1991b)).

A.2.2. The Matrix Bingham Distribution. = The matrix Bingham
B(m, k; D) distribution has the pdf

etr (X'DX)/1Fi(k/2;m/2; D), (A.6)

where D is an m X m symmetric matrix, with a restriction, e.g., tr B = 0 (see
Bingham (1974) (for k = 1), Jupp and Mardia (1976), and Prentice (1982)).
We write the svd of D, being of rank p(0 < p < m), as

D =TAI', where T€V,,, and A isa pxp diagonal matrix.
(A7)

A.2.3. Generalized Distributions. Letting v be a given subspace of R™
of dimension p, we generalize the above two distributions. It is noticed that
putting v = M(T') yields the distributions (A.4) and (A.6).

The matriz generalized Langevin distribution (9 — L(m, k;p,v; F)) has the
pdf, with F being an m X k matrix,

etr (F'P,X)/oFi(m/2; P,FF'[4). (A.8)

The matriz generalized Scheiddegger-Watson distribution (9—SW (m, k;
p,v; D)) has the pdf, with D being an m X m symmetric matrix,

etr[(P,X)DP,X]/1Fi(k/2;m[2; P,D), (A.9)

generalizing that of Watson (1983a, Section 3.4) for k£ = 1.
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