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In this expository paper we review some of the useful notions for study-

ing stochastic inequalities in multivariate distributions. The notions have been

classified into two categories: That which involve conditions on the joint density

function of the random vector and that which involve certain positive dependence

properties of the components of the random vector. Their possible implications

and orderings are summarized, and examples of applications are given.

1. Introduction. Stochastic inequalities play an important role in
many areas of statistics and probability. In the area of multivariate anal-
ysis, inequalities have become a useful tool for obtaining conservative con-
fidence regions, establishing certain monotonicity properties of multivariate
tests, finding probability bounds in multiple comparisons and related infer-
ence problems, etc. Such applications are well known and can be found in
standard multivariate analysis books.

On the other hand, the theory of stochastic inequalities has intrinsic in-
terest and importance, and need not rely only on applications. Although
the general study of stochastic inequalities can be traced back to the days of
C. F. Gauss, A. L. Cauchy, and P. L. Cebysev, it is only recently that this area
has experienced a rapid and more comprehensive growth. In this expository
paper we discuss and review some of the mathematical notions that have been
found useful in deriving stochastic inequalities in multivariate distributions.
We will focus on a systematic treatment of the notions and "methods" instead
of a description of existing results. Consequently, no attempts will be made
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to provide a complete listing of the existing theorems in this area.
Throughout this paper, X = (Xi, ,Xn) denotes an n-dimensional

random vector with probability density function f(x) and distribution F(x),
and B denotes a Borel-measurable set either in M or in Mn (to be specified).
The probability content of B C Mn is then given by

P[X E B] = ί f(x)dx. (1)
JB

It appears that most of the existing results in the literature concerning inequal-
ities and partial orderings of the probability content in (1) can be obtained
through
(a) conditions on / (and £?), such as the notions of unimodality, Schur-

concavity, log-concavity and arrangement increasingness; or
(b) certain positive and negative dependence properties of the components of

X.
Related notions in (a) will be treated in Section 2 of this paper, and certain

positive dependence properties will be discussed in Section 3. (In order not to
overload this paper, notions of negative dependence will not be considered.)

2. Notions Concerning the Density Function.

2.1. Notion U: Unimodality. In the univariate case, the density function
/(#) of a continuous random variable X is said to be unimodal if the set
{x : f(x) > λ} is an interval for every given λ > 0. The following definition
for n-dimensional random vectors, given by Anderson (1955), seems to be a
natural generalization.

DEFINITION 1. A density function f(x) : Mn -> [0,oo) is said to be
A-unimodal if the set {x : f(x) > λ} is convex for all λ > 0.

In the univariate case, if f(x) is unimodal and symmetric about the origin,
and if B C M is an interval centered at the origin, then it is immediate that

P[X G B + α*] is nonincreasing in |α*|;

or equivalently, for every given u φ 0 we have

P[X eB + (αu + (l- α)(-u))] > P[X e B + u]

for all α E [0,1]. Anderson (1955) showed that a multivariate analog of this
statement is true:

THEOREM 2. (Anderson, 1955) Let u be any given non-zero vector
in lRn, and for α G [0,1] let uα = αu + (1 - α)(-u). If (i) f is A-unimodal
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and symmetric about the origin (i.e., f(x) = f(—x) holds for all x), and (ii)
B C Mn is convex and symmetric about the origin, then

p[x eB + uQ]> P[x eB + u] (= p[x eB- u]). (2)

There have been several versions of generalizations of this theorem (see,
e.g., Sherman (1955), Mudholkar (1966), and Eaton and Perlman (1977)), a
comprehensive discussion on this topic can be found in Dharmadhikari and
Joag-Dev (1988, Chapter 2).

An interesting question is whether the inequality in (2) also holds for
other types of symmetric properties of / and B. In particular, it is of interest
to know what can be said when / and B are both permutation symmetric
instead. This consideration leads to the important notion of majorization and
Schur functions.

2.2. Notion S: Schur-Concavity. The notion of majorization concerns
the diversity of the components of a vector. Let

a = (αi, , αn), 6 = (&i, , 6n),

denote two real vectors. Let

β [ l ] > a[2] >'"> β[n]> &[1] > b[2] > ' ' > b[n],

be their ordered components.

DEFINITION 3. a is said to majorize b, in symbols α y b, if

αW - /[^ ̂ M holds for m = 1,2, , n - 1

This definition provides a partial ordering, namely, α y b implies that
(for a fixed sum) the α 's are more diverse than the δ 's. From a geometric
viewpoint, majorization is also closely related to convex combinations of the
permutations of a vector. For a comprehensive treatment of this topic, see
Marshall and Olkin (1979, Chapters 1-3) and Hardy, Littlewood and Pόlya
(1934, 1952; Chapters 2-3).

DEFINITION 4. A function f(x) : Mn -> M is said to be a Schur-
concave function ifx y y implies f(x) < f(y) for all x,y G Mn.

(That is, f(x) is a Schur-concave function if the functional value becomes
larger when the components of x are less diverse in the sense of majorization.)
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The following fact states how Schur-concavity, permutation symmetry,
and unimodality are related:

FACT 5. (a) All Schur-concave functions are permutation symmetric,
(b) If f(x) is permutation symmetric and A-unimodal, then it is a Schur-
concave function ofx.

In one of the earlier papers on majorization inequalities in multivariate
distributions, Marshall and Olkin (1974) proved the following preservation
theorem:

THEOREM 6. Consider the integral of the form

φ(θ)= I g(θ-x)f(x)dx, θeIRn. (3)

If g and f are both Schur-concave functions defined on Mn, then φ(θ) is a
Schur-concave function (provided that the integral exists).

This theorem has a number of interesting applications. As an illustration
of the applications, we observe the following result (Marshall and Olkin, 1974):
Since the distribution function F(α) of an n-dimensional random vector X can
be expressed in the form

/
oo J — oo

f(x) dx

IA{^ — χ)f(χ) dx,

where I A is the indicator function of the Schur-concave set

A = {x : x 6 Mn,Xi > 0, i = 1, , n},

it follows from Theorem 6 that:

APPLICATION 7. If X = (Xi, ,Xn) has a Schur-concave density
function, then its distribution function F(a) is a Schur-concave function of
aeMn.

2.3. Notion L: Log-Concavity. Log-concave density functions have many
nice analytical properties, and play an important role in statistics.

DEFINITION 8. A density function f(x) : Mn -* [0,oo) is said to be
log-concave if

f(αx + (1 - α)y) > [/(»)]α;[/(3/)]1"Qί (4)

holds for all x,y G Mn and all α E [0,1].
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[If f(x) > 0 holds for all x E Mn, then an equivalent condition is

log/(as + (1 - α)y) > α logf(x) + (1 - a)log/(y).] (4')

The following result shows how the notion of log-concavity is related to
notions of A-unimodality and Schur-concavity:

FACT 9. (a) All log-concave density functions are A-unimodal. (b) If
f(x) is permutation symmetric and log-concave, then it is Schur-concave.

In many applications, ΛΊ, , Xn are i.i.d. random variables with a com-
mon density function h(x). The following fact explains how the log-concavity
of h (defined on an interval in M) and the log-concavity of f(x) (defined on
an interval in Mn) are related.

FACT 10. Ifh(x) is a log-concave function ofxζl (an interval in M),
then the joint density function f(x) = ΠΓ=i M^O J S a log-concave function of
x e I x Ix - x I.

A fundamental result for log-concave density functions, as given
by Prekopa (1971), concerns probability contents of convex combinations of
Borel sets in Mn. Let A, B be subsets of iβ n . For arbitrary but fixed α E [0,1]
we define

αA + (l-α)B = {z : z E Mn,z = αx + (l -α)y for some x E A and y E B}.

Prekopa's theorem states:

THEOREM 11. If f(x) is log-concave and A, B, and αA + (1 - α)B
are all Borel measurable, then

P[X E (αA + (1 - α)B)} > {P[X E A]}α{P[X E B]}1^ (5)

holds for all α E [0,1]. If the probability contents are all positive, then

log P[X E (αA + (1 - α)B)] > α l o g P [ X eA] + (l- α ) l o g P [ X E B] (5')

holds for all α E [0,1].

Related results and generalizations of Theorem 11 include Borell (1975),
Rinott (1976), and Das Gupta (1980), and a comprehensive review can be
found in Eaton (1987, Chapter 4). Some specific applications of this theorem
will be illustrated in Section 2.6.
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2.4. Notion AI: Arrangement Increasingness. Let x = ( # i , . . . , # n )

and μ = (μi, ,μn) be two real vectors in Mn. Let π = (πi, ,π n ) be a
permutation of the set of integers {1,2, , n} and denote

(μ π i , , μ π j

Consider a function / of 2n variables of the form

f(x,μ) : lRn X Mn -> 1R.

We say that / is an arrangement permutation symmetric function of (cc,μ) if
for every permutation TΓ we have

/(π(*),π(μ)) = /(*,μ) for aU x,μeMn. (6)

To observe a more general result, a notion of the partial ordering of per-
v

mutations is needed. Let μ and v be two real vectors. We define "μ < i/" to
mean that for some indices i, j , 1 < i < j ' < n,

μ^ = ι/i < ι/j = μi a n d μ^ = ^ for all k φ i,k φ j .

That is, i/ can be obtained from μ by interchanging μi and μ̂  such that they
are now rearranged in an ascending order while all other components in μ are

held fixed. Furthermore, we define "μ < i/" to mean that there exists a finite
number of vectors Vι, , μw such that

p v v v
μ — v\ < ι/2 < - - < VN-1 < VN = v.

This is to say that v can be obtained from μ by rearranging two components
at a time in this fashion in a finite number of operations.

DEFINITION 12. /(cc, μ) : MnxMn -> M is said to be an arrangement
increasing (AI) function of (cc,μ) iff is arrangement permutation symmetric
and if

f(x | , μ ) ^ f(χ ΐ?^) Aoids for ali as and aii μ,i/ in JRn sucΛ tΛat μ < i/,

wAere a? | = (xπ i, , x^n) is such that xπi < < xπn.

Many useful functions are known to be arrangement increasing (see e.g.,
Hollander, Proschan and Sethuraman (1977) and Marshall and Olkin (1979,
Section 6.F)). In particular, it is easy to see that
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FACT 13. Let f{x\μ, Σ) be the density function of an elliptically
contoured distribution with location parameter vector μ. If Σ is of the form
σ2R where R is a correlation matrix such that pij = p 6 (-1/n - 1,1) for all
i φ j and σ2 > 0 is arbitrary but fixed, then f is an arrangement increasing
function of (a?,μ).

The following result, due to Hollander, Proschan, and Sethuraman (1977),
illustrates how certain arrangement increasing functions and Schur-concave
functions are related:

FACT 14. Assume that f(x,θ) : Mn X Rn -> [0,oo) is of the form
/(se, θ) = g{x—θ) for someg : Mn —> [0, oo). Then f is arrangement increasing
on Rn x Mn iffg is Schur-concave on Mn.

Hollander, Proschan and Sethuraman (1977) proved a fundamental preser-
vation theorem for the integral of an arrangement increasing function. Apply-
ing their theorem, Boland, Proschan and Tong (1988) obtained the following
result:

THEOREM 15. Let g\,g<ι : Mn X Mn —> M be arrangement increasing
functions, and let hι,h,2 : JR -> M be nondecreasing. If X has a permutation
symmetric density function f : Mn —» [0, oo), then

φ(α, b) = E[h1(9l(α, X))h2(g2(X, &))] (7)

is an arrangement increasing function of (α,6).

A number of stochastic inequalities for permutation symmetric random
variables have been obtained from this result. For details, see Boland, Proschan,
and Tong (1988) or Tong (1990, pp. 172-173).

2.5. A Summary of the Implications. In Figure 1 below we summa-
rize the directions of implications of the classes of density functions that are
A-unimodal (U), Schur-concave (5), and log-concave (£), respectively. For
convenience we let P denote the class of density functions that are permuta-
tion symmetric. The following figure is a summary of Facts 5 and 9; Fact 14
concerns a subclass of arrangement increasing density functions, and is not
represented in the figure.
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Figure 1. Summary of Implications

2.6. Examples of Applications and Some Open Problems. In the
following we list some examples of applications of the mathematical notions
treated above. The examples are for the purpose of illustration and, of course,
they are not exhaustive.

EXAMPLE 16. (Concentration Inequalities). As discussed in Anderson
(1955), Theorem 2 has some nice applications to concentration inequalities.
One specific result concerns the multivariate normal distribution, and it states
that: Let X ~ Afn(μ, Σ), and let B C Mn be a convex set that is symmetric
about the origin; let Σχ,Σ2 be two possible covariance matrices. If Σ2 — Σi
is positive semidefinite, then

-μ)eB]> - μ) E B]. (8)

Inequality (8) has a number of applications in multivariate analysis, including
results on the monotonicity property of certain tests under the assumption of
normality.

EXAMPLE 17. (Probability Contents of Asymmetric Geometric Re-
gions). For a large class of geometric regions in 7Rn, a partial ordering of the
degree of asymmetry may be obtained via the majorization ordering of the
parameter vectors. For example, if we let

= {u : u e Mn,u < α) (9)

be a one sided n-dimensional rectangle, then α y b implies that B\ (6) is closer
to being symmetric; and Application 7 states that if f(x) (the density function
of X) is Schur-concave, then α y b implies P[X G 2?i(α)l ^ p[χ € Bχ[b)].
By the same token, if we consider two-sided rectangles of the form

B2(α) = {u:ue Mn, \u\ < α}, α > 0 (10)
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or ellipsoids of the form

C(a2) = \u:ueM (11)

for α 2 = (α2, , α2) > 0, where λ > 0 is arbitrary but fixed, then it seems
reasonable to expect that similar results may hold. This was the motivation
given by Tong (1982), and he showed that under the assumption that f(x) is
Schur-concave, (i) a y b implies P[X G B2(a)] < P[X G B2(b)], (ii) a2 y b2

implies P[X G C(a2)] < P[X G C(b2)]. A more general result was given by
Karlin and Rinott (1983), and a comprehensive review on this topic may be
found in Tong (1989) or Tong (1990, Section 7.4).

EXAMPLE 18. (Peakedness in Multivariate Distributions). Let
be a sequence of i.i.d. univariate random variables with density function /*
and mean μ, and for each fixed N consider the probability content

βN = P[(XN - μ) G [-λ, λ]] = P[\XN - μ \< λ], N - 1,2,... ,

where Xjγ — N * Σi=i χi a n ( ^ λ > 0 is arbitrary but fixed. The problem
of interest, as considered by Proschan (1965), is when does {PN} converge
to one monotonίcally in N. (Note that the weak law of large numbers does
not yield this monotonicity property.) By realizing that XN-I = Σ*Li aiχi->
XN — Σi=i biXii where

= (N - 1

Proschan (1965) proved the following majorization inequality: If f*(x) : M
[0, oo) is symmetric about μ and log-concave, and if a y 6, then

N

i-μ

N

< λ for aU λ > 0. (12)

A multivariate generalization of this result along two different directions was
given by Olkin and Tong (1988), and some related results were obtained in-
dependently by Chan, Park, and Proschan (1989). The first Olkin-Tong re-
sult asserts that (12) holds when the joint density function of (Xi, —XN)
is permutation symmetric and satisfies some weaker conditions, but the X^s
are not necessarily i.i.d. The second result deals with a multivariate version
of Proschan's (1965) result: If {Xi}fl1 is a sequence of i.i.d. n-dimensional
random vectors with density function f(x) that is symmetric about μ and
log-concave, and if a y 6, then

eB\ <P
N

6B\ (13)
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holds for all convex sets B C Mn that are symmetric about the origin. The
proof of this result depends on an application of Anderson's Theorem (Theo-
rem 2), and is different in spirit from Proschan's original proof of the univariate
case.

EXAMPLE 19. (Probability Contents for n-Dimensional Rectangles not
Necessarily Centered at the Origin). Let

n r12 ••• rln\ ^ /VΛ g _ ίsu su ••• *inλ Λ*Λ
\r21 r22 ••• r2n) ~ \r2)' \s2ϊ s22 ••• s2n) " \s2)

be two 2 X n real matrices such that

rij < r2j, sij < s2j for j = 1, , n.

Let B(R) be an n-dimensional rectangle given by

B(R) = {u : u G iR71,^- < ttj < r 2 j for j = 1, - - ,n},

and let 5(5) be defined similarly. Note that B(R) is not centered at the
origin unless r\j = —r2j for all j . Further, note that if there exists a doubly
stochastic matrix Q such that

S = RQ (14)

holds (which is stronger than saying that v\ y si and r2 y s2), then B(S)
is closer to being a cube. Karlin and Rinott (1983) and Tong (1983, 1989)
independently proved the following result: If the density function / : Mn -»
[0,oo) of X is permutation symmetric and log-concave, and if (14) holds for
some doubly stochastic matrix Q, then

p[x e B(R)] < P[x e B(S)]. (15)

The proof of Inequality (15) depends on a repeated application of Prekopa's
theorem (Theorem 11).

OPEN PROBLEM 20. A conjecture given in both Karlin and Rinott
(1983) and Tong (1983, 1989) is the following: If in Example 19 / is a Schur-
concave function (which is weaker than saying that it is permutation symmet-
ric and log-concave), and if (14) holds for some doubly stochastic matrix Q,
is Inequality (15) still valid? To our knowledge, this problem has not yet been
solved.

OPEN PROBLEM 21. This open problem concerns a possible preserva-
tion property of Schur-concave density functions. Let n = mk where m > 2,
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k > 2 are arbitrary but fixed integers. Let X = (Xi, ,Xn) have density
function / that is absolutely continuous w.r.t. Lebesgue measure, and define

k 2k n

YX = ΣXi, Y2= Σ Xu 9Ym=
»=1 i=k+l i=

Let g(y) : Mm -» [0,oo) be the density function of Y = (Yi, ,Ym). The
problem of interest is this: If / is a Schur-concave function in Mn, is g(y) also a
Schur-concave function in JRm? When / and 5 are absolutely continuous w.r.t.
the counting measure, a counterexample has already been obtained (Boland,
Proschan, and Tong (1991)), but an answer to the question stated above has
not yet been found by the author.

3. Notions of Positive Dependence. Notions of dependence have
played a leading role in the study of stochastic inequalities in multivariate
distributions, and they have been treated comprehensively in several books and
monographs (see, e.g., Barlow and Proschan (1975, Section 2.2 and Chapter
5) and Tong (1980, Chapter 5; 1990, Chapter 5)). In this section we provide
a brief survey of some of the notions and their implications.

3.1. Notion A: Association of Random Variables. This notion involves
the positive dependence property resulted from monotone transformations of
random variables. We first observe a classical result due to Cebysev (1882,
1883):

THEOREM 22. Let X be a univariate random variable. Then Corr(gι
(X), g2(X)) > 0 (i. e., Eg1(X)g2(X) > Eg1(X)Eg2(X)) holds for all nonde-
creasing functions g\ and g<ι such that the expectations exist.

Intuitively speaking, if 51,52 a r e both nondecreasing. Then
tend to take larger values together or smaller values together, thus are non-
negatively correlated. A multivariate generalization of this result involves the
following definition of association of random variables:

DEFINITION 23. (Esary, Proschan, and Walkup, (1967)). Random
variables X\, , Xn are said to be (positively) associated (A) if

Xιr-9Xn) (17)

holds, or equivalently,

Corr(gi(Xu 9Xn)9g2(Xl9 • ,Xn)) > 0

holds, for all nondecreasing functions g\ and 52.
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The following theorem, due to Esary, Proschan, and Walkup (1967), is a

multivariate generalization of Theorem 22.

THEOREM 24. (a) A set consisting of a single random variable is
a set of associated random variables, (b) Independent random variables are
associated.

3.2. Notion MTP2: Multivariate Totally-Positive-of-Order-Two Density
Functions. The following definition can be found in Karlin (1968, p. 11) and
Karlin and Rinott (1980).

DEFINITION 25. f(x) is said to be multivariate-totally-positive-of-
order-two (MTP2) if the inequality

/(V)/(V ) < / W O O (18)

holds for all y = (j/χ, , yn ) and y* = (yj, , y*) in the domain off where

x* = mm{yi,y*}, x{ = max{yi,y*}

for i = 1, , n and x = (xι, ,a?n), x* — (arj, , #*).

Intuitively speaking, if the joint density function has the MTP2 property,
then the likelihood function takes a larger value when the components of the
random vector X take smaller values together and larger values together. Note
that this definition depends on a condition on the density function, while the
notion of association in Definition 23 involves the expectations of functions
of random variables. The following theorem, known as the FKG inequality,
states how the two notions are related:

THEOREM 26. If the density function of (Xλ, , Xn) has the MTP2

property, then Xi, ,Xn are associated random variables.

3.3. Notion OD: Orthant Dependence. In one of the earlier papers
on stochastic inequalities in multivariate distributions, Lehmann (1966) intro-
duced the following definition of orthant dependence (which depends only on
the orthant probabilities):

DEFINITION 27. Random variables X\, , Xn are said to be positively
upper orthant dependent (PUOD) if P[Πf=1{Xi > o j ] > ΠΓ=i P\χi > αi]
holds for all α = (αi, ,α n ). There are said to be positively lower orthant
dependent (PLOD) if P[Π?=1 {X{ < α<}] > ΠΓ=i p[χi < αi] holds for all α.

3.4. Notion NC: Nonnegatively Correlated Random Variables. The
weakest condition on positive dependence may be given in terms of the corre-
lation coefficients. Thus we observe the trivial definition:
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DEFINITION 28. Xly... ,Xn are said to be nonnegatively correlated

random variables if Corr(X{,Xj) > 0 for all i φ j .

3.5. Ordering of the Notions. The next theorem summarizes the

orderings of the notions of positive dependence stated above.

THEOREM 29. For the notions defined in Definitions 23, 25, 27, and

28, we have

Note that the statement "MTP 2 => A" is just Theorem 26 and the state-

ments "PUOD =» NC," "PLOD => NC" were proved by Lehmann (1966).

The other two implications follow immediately by taking gι ,g2 to be indicator

functions of nondecreasing sets in Mn.

3.6. Notion E: Exchangeability. Another form of positive dependence

exists among exchangeable random variables. To see how exchangeability

involves positive dependence, we first observe a definition of exchangeability

for an infinite sequence of random variables:

DEFINITION 30. Let {Yi}^ be an infinite sequence of univariate

random variables. It is said to be a sequence of exchangeable random vari-

ables if, for every finite n and every permutation {TΓI , . . . , τrn} of {1, . . . , n},

(Y\, , Yn) and (Yπi, , YηTn) are identically distributed.

This definition leads to the next definition for an n-dimensional random

vector X = (-XΊ, ^Xn)'

DEFINITION 3 1 . Xi, ,X n are said to be exchangeable random

variables if there exists a sequence of exchangeable random variables { X * } ^ 1

such that (-XΊ, , Xn) &nd (Xί, ,Xn) a r e identically distributed.

The key result for exchangeable random variables is de Finetti's theorem

(see, e.g., Loeve (1963, p. 365)), which says that exchangeability is equiva-

lent to a mixture of conditionally i.i.d. random variables. This mixing pro-

cess then creates a positive dependence property among the random variables

Xι, , X n 5 and a number of results based on this dependence property have

been developed. Further, the notion of exchangeability plays a key role in

many applications. For example, the impacts of exchangeable random vari-

ables in Bayes theory and reliability theory are well known.

3.7. Examples of Applications. We now list some examples of applica-

tions of notions treated in Section 3.
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APPLICATION 32. The important applications of the notion of associa-
tion in reliability theory can be found in Barlow and Proschan (1975, Section
2.2).

APPLICATION 33. Exchangeability has an important application in
reliability theory when the life length variables of the components of a system
are exchangeable but not independent. This situation may arise, for example,
when the components are subject to a common source of stress. Detailed
results can be found in Barlow and Proschan (1975, Chapter 5) and Shaked
(1977), and references for some recent applications can be found in Tong (1990,
pp. 219-228).

APPLICATION 34. Multivariate probability and moment inequalities
for exchangeable random variables via majorization ordering of the dimension
vectors were given by vSidak (1973) and Tong (1970, 1977, 1989). Some
applications of these results can be found in Tong (1990, pp. 197-198).

APPLICATION 35. If X = (Xi,... ,Xn) has a multivariate normal
distribution with mean vector μ, covariance matrix Σ, and correlation matrix
Λ, then the conditions of MTP2 and association can be made to depend on
Σ or R. Many authors have made important contributions to this area, and
a convenient reference for the existing results is Tong (1990, Sections 5.1, 7.2,
and 7.3).
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