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A NONPARAMETRIC TEST FOR HOMOGENEITY:
APPLICATIONS TO PARAMETER ESTIMATION

BY K. GHOUDI AND D. MCDONALD

Universite Laval and University of Ottawa

Testing for homogeneity has many applications in statistical analysis. For

example, regression analysis may be viewed as determining the set of parameters

that makes the residuals homogeneous. Assume for each i = 1, , q a small

sample n{l) observations is collected. Let N = χ2i=i ^ ( 0 » ^ ^% ^ e *^ e e m ~

pirical distribution function of the ith sample and let the empirical distribution

function of all the samples taken together be F. The problem is to test if these

samples are homogeneous. Lehmann (1951) considered the problem of testing

the equality of the distributions of q samples. He proposed the statistic

2 = 1

The asymptotic properties of Cramer-Von Mises statistics like the above were

studied by Kiefer (1959). He considered the case where n{%) —* 00 while q

stayed fixed. McDonald (1991) considered the situation where q —> 00 and 7l{l)

stays fixed for univariate observations for a more general family of statistics called

randomness statistics. In case of multivariate observations similar asymptotics

are discussed in Ghoudi (1992).

Here we present an application of the above statistics to the estimation of

the parameters of regression models with independent additive errors. The main

novelty of our approach is the use of blocking to contrast the empirical distribu-

tion of the residuals of observations whose independent variables are in the same

block with the empirical distribution of all the residuals taken together. Our

estimated regression surface is the one whose residuals minimize a randomness

statistic like Lehmann's. Confidence intervals and a test for the model follow

without assumptions on the error distribution.

Introduction. Consider a multivariate linear regression model. Obser-
vations of a dependent vector y = (#1,^2, ,!fa) and independent variables
x = (xι, X2i - - , xp) are indexed by t = 1, , N and are governed by the model
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with p unknown parameters {$) — (/?χ,/32, ,/?p)' We assume throughout
that the errors €t are independent identically distributed d dimensional vectors
with unknown distribution F.

In many experimental designs there are replicate experiments for a fixed
value of x*. In this case, group into blocks i = 1, ,<? all the observations
having the same independent variables (αj, x\, , &?)'. Index the observations
in block i by j = 1, , n(i). The n(i) observations in block i satisfy

where (x tj)' = {x}, x\, , £?)'. Even if there are no replicates we may simply

pave the parameter space of the dependent variables with contiguous blocks

indexed by i = 1, ,ςr. For any choice of β we may calculate the residuals

of the dependent vector. Denote the j t h residual in the zth block by E/y. The

true (unknown) value for /3, say βo, makes the residuals i.i.d. hence the best

fit or best choice of β is the one that makes these residuals homogeneous.

Throughout we consider Lehmann's statistic (but any randomness statis-

tic would do):

= f^ ί
ι'=l J

In principle the above statistic should be small when the residuals are homo-

geneous since the empirical distribution of the residuals of each group would

then have the same empirical distribution as the entire sample. The best es-

timate for β should then be the value that minimizes the above randomness

statistic of the residuals.

In Section 2 we exploit an efficient algorithm for finding the value β

minimizing the statistic 3ft(/3) as a function of β which compares well with the
standard least squares estimator. Since the statistic 3ft(/3) is based on empirical
distributions it works well when the errors are not normal and even if outliers
are present. The estimate β can be shown to be a consistent estimator of β.

Having found β we calculate the N residuals. If β is close to βo these

residuals should be homogeneous. More precisely, since β is a consistent esti-

mator of β it can be shown the empirical distribution of the marginals, denoted

by FA, converges to the true sampling distribution F. We now consider all N\

permutations of the N residuals and for each permutation we reconstruct the

blocks {τι(i) : i = 1,2, , q} and we call this a permutation sample. We now
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recalculate 3t for each permutation sample. The distribution of these 3? val-

ues is called the permutation distribution V($t, Fz) (In practice we sample at

random from the set of permutation samples to approximate V($ty FA)). If the

regression model is valid, it follows from the asymptotic normality of random-

ness statistics and the consistency of β that the quantiles of the permutation

distribution 7 (̂9?, F&) converge to those of the distribution of $t(βo)-

If, in fact, homogeneity is violated one would expect $t(β) to lie in the

upper percentiles of the permutation distribution V(U, FA). If this proves to

be the case we reject homogeneity and hence the regression model. Numerical

studies in Section 2 show this procedure has good power for detecting devia-

tions from the regression model. Finally if the linear model is accepted, the

95% confidence region for /30 is simply the set of β such that 3ΐ(/3) is less than

the 95% percentile of the permutation distribution P(9ft, FA). Note that in

the univariate case the quantiles of the distribution $t(βo) may be calculated

exactly since they are distribution free. In the multivariate case the permuta-

tion procedure is the only one possible. In fact it is always advisable to use

the quantiles of P($ϊ, FA) since the model may have some undetected nonlin-

ear term so using the theoretical quantiles based on the distribution of $t(βo)

might lead to an unjustifiably tight confidence interval.

Nonparametric regression has been treated by Adichie (1967), Jureckova

(1971), Jaeckel (1972), Hettmansperger and McKean (1977), Koenker and

Bassett (1978, 1982) and Gutenbrunner and Jureckova (1992).

2. Numerica l Resul ts . In this section we present an algorithm for

computing the estimate β described above. Consider all possible subsamples

of p different points and index them by J; J = l , . . . , ( n ) . Let βj be the

vector of coefficients of the regression surface passing through the p points

of subsample J. The computation of such a βj amounts to the solution of

a linear system of p equations with p unknowns. The search procedure goes

as follows: for each βj we compute the corresponding residuals and then the

corresponding statistics $t(βj) which allows us to determine the argument β

giving the minimum of &(/?) and it provides us also with the curve of $t(β) as

a function of β.

Note that the number of β's that should be examined is ("). Rousseeuw

and LeRoy (1984) reduce computation by randomly selecting m subsamples

where m is chosen in a way to insure a high probability of selecting a "good

subsample". We can do the same.

We first consider the case d = 1 of univariate dependent variables. First

we consider the model y = Ax + e where e is normal with mean 0 and variance

1. We make 5 observations {yij : j = 1,2, ,5} at X{ — i i = 1,2, •••,10.
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The graph of 3ft(/3) is given in Figure 1 and the minimum $t(β) = 1.12111 is

obtained at β = 3.9033.

- 1 0 1 2 3 4 5 6 7

Figure 1: 3? as a function of β

Next we calculate the residuals yij — βx{. We then sample at random

from the set of permutations of these residuals and then arrange these values

in 10 blocks of 5 and recalculate 3ft. The histogram of these resampled values of

3ft is given in Figure 2. The distribution obtained in this way is approximately

the same as the permutation distribution

1 2

Figure 2: Histogram of the resampled values of 3ft

We notice that the value 3ft(/3) = 1.12111 obtained above is in the center of

this histogram (at 33.6 percentile) so we conclude the linear model is compat-

ible with our results. Finally the 95th percentile of the estimated permutation

distribution, Zo.os = 1.88111, is plotted on Figure 1 and the associated confi-

dence interval is [3.647,4.096]. The corresponding least squares estimate and

confidence interval are 3.892 and [3.782,4.001]. We repeated this experiment

50 times and the histogram of the values of β is given in Figure 3.
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Figure 3: Histogram of the values of β

Suppose the above model is modified to y = 4x + 0Λx2+e but we continue
to fit the model: y = βx + e. We repeat the above experiment 50 times and
each time we calculate the percentile of $t(β) in the estimated permutation
distribution. The result is summarized in Figure 4 which shows the linear
model is (correctly) rejected in each experiment at least at the 80% level.

0.80 0.85 0.90 0.95 1.00

Figure 4: Histogram of the percentile of the observed value of

Now modify the first model by changing the distribution of the error e
from a standard normal to a standard Cauchy distribution. Figure 3 gives the
histogram of the observed values of β for 50 replications of the experiment. It
is clear that our nonparametric procedure is much more successful than the
traditional least squares procedure which in some of the above experiments
gave estimates like -30.

Consider the model (y(l), y(2)) = (4, l)x + (e(l), e(2)) where the compo-
nents of e are normal with mean 0 and variance 1 and the correlation is 0.5. We
make 5 observations {(y t j(l), yiά{2)) : i = 1,2, - - , 5} at sf- = i; i = 1,2, , 10.
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Figure 5: Histogram of the values of β

The graph of »(/3) is given in Figure 6 and the minimum $t(β) = 4.78 is ob-
tained at β = (4.07,1.08).

Figure 6: 5ί as a function of /?

Next we calculate the residuals (yij(l),yij(2)) ~ #*;. We then sample at
random from the set of permutations of these residuals and then arrange these
values in 10 blocks of 5 and recalculate !β. The histogram of these resampled
values of 3? is given in Figure 7. We notice that the value ίtφ) = 4.78 obtained
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above is in the center of this histogram so we conclude the linear model is
compatible with our results. Finally the value X0.05 = 6.552, the 95</ι percentile
of the histogram in Figure 7, is plotted on Figure 6 to give a confidence region
for (/?i,/?2) The comparable least squares estimate for the slope is (4.08,1.07).

3 4 5 6 7 8 9

Figure 7: Histogram of the resampled values of 3?
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