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The parameter A(F) = P(X; < X2+ X3—X4; X1 < X5+ X6—X7), where
Xi,..., X7 are independent and identically distributed (iid) according to
a continous distribution F', was first considered by Lehmann (1964) in the
context of certain nonparametric methods for the two-way layout. The
parameter u(F) = P(X; < X5; X, < X3 + X4 — X;5) was first studied by
Hollander (1966), also in the context of nonparametric techniques for the
two—way layout. The best known bounds on these probabilities are

282542:89/315< \(F)<7/24~.29167,

and

3/10<u(F) < (V2 + 6)/24~.30893.

The upper bound on A(F) is due to Lehmann (1964), the lower bound on
A(F) to Spurrier (1991), the upper bound on p(F) to Hollander (1967), and
the lower bound on p(F) to Spurrier (1991). We briefly review the develop-
ment of these bounds and then present some new applications motivated by
the recent bounds due to Spurrier. The applications include studying the
extent to which the new bounds can improve large sample approximations
to certain nonparametric test statistics and providing tighter upper and
lower bounds on certain correlation coefficients involving these parameters.

1. Introduction

Consider the two—way layout with one observation per cell. Let
11) Xij=p+bi+06;+eij,i=1,..,n,5=1,....k (Zb; = X0; =0)

where the 0’s are the parameters of interest, the b’s are the nuisance pa-
rameters, and the e’s are iid according to a common continuous distribution

F. Let Yu(f,) = |Xiu — Xiv| and Rm = rank of Y,ﬁ) in the ranking from
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(

least to greatest of {Yu:;) %_,. The Wilcoxon signed-rank statistic between
treatments » and v is

Too =Y ROUY)
=1

uv — uv

where
o) = 1 if Xy < Xio
uy 0 otherwise
Hollander (1966) showed that under Hg : 6; = 6 = --- = 6, the null

correlation coefficient pg(F’) between Ty, and Ty, (v # v, u # w) is given
by

PB(F) = [(24M(F) - 6)n? + (48u(F) — T2A(F) + T)n

(1.2) +(48A(F) ~ 48u(F) + 1)][(n + 1)(2n + 1)
where

(1.3) M(F)ZP(Xl < Xo3 X4 <X3+X4—X5)

and

(1.4) /\(F)ZP(Xl <X2+X3—-X4;X1 <X5+X6—X7)
where X1,...,X7 are iid according to F.

To our knowledge this was the first appearance of the parameter u(F).
Lehmann (1964) had introduced A(F) earlier in a related context. Lehmann
considered

1
Yy = med[-2-(Xis - Xit + Xjs — Xjt)]

where the median is over all :<j, as an estimator of ; — 6;. Let G denote
the common distribution of the difference between two e’s. Then if G has a
density g satisfying the regularity conditions of Lemma 3(a) of Hodges and
Lehmann (1961), Lehmann showed that the joint limiting distribution of the
Ys:’s is the (¥)-variate normal distribution with zero mean and covariance
matrix ¥* = (0}, ,,) where the variances are given by

(1.5) Ogtst = 1/12(/‘(]2(33)d:410)2 all s,t
and the covariances by

= 0 if s,t,u,v are distinct
(MF) = 1/4} / P (a)dz)? ifs=uort=uv
{1/4 - )\(F)}/{/g2(z)d:c}2 ifs=vort=u.

o

(1.6)

%*
styuv
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The parameters p(F), A(F) try very hard to be distribution—free but just
don’t make it. To get a feel for these parameters consider first

o F) = P(X1 < X35 X1 < X3)

where X;, X5, X3 are iid according to the continuous distribution F. Of
course o F) is distribution—free being equal to 1/3, the chance that X; is
the smallest of X7, X, Xs.

Consider
;L(F) = P(X1 < X2;X1 < X3+ X4 - Xs)

and note that X3 + X4 — X5 is a little like X3 itself (because X4 — X5 is
symmetric about 0) but the variance of X3+ X4 — X5 is three times that of
X3. Thus it is slightly harder for X; to be simultaneously smaller than both
X2 and X3+ X4— X5 than it is to be simultaneously smaller than X, and X3.
Thus we should expect the value of u(F) to be pulled slightly below the 1/3
value of a(F). A similar argument indicates the values of A(F') should be
pulled down even further. That this is the case can be observed in Table 1.

F Uniform | Normal | Logistic | Exponential | Cauchy
u(F) | 0.3083 | 0.3075 | 0.3064 0.3056 0.3043
A(F) | 0.2909 | 0.2902 | 0.2898 0.2894 0.2879

Table 1. Values of u(F) and A(F') for Various Distributions

In Section 2 we review the best known bounds for u(F) and A(F), and
indicate how they were derived. Section 3 is devoted to some applications.
The bounds, motivated by the improved bounds due to Spurrier (1991),
enable us to

(i) present improved upper and lower bounds for the correlation coefficient
pE(F) defined by (1.2),

(ii) present improved upper and lower bounds for the correlation coefficient
g (F) defined by (2.3) of Section 2,

(iii) improve Hollander’s (1967) estimator of the asymptotic null variance
of his Y-test for ordered alternatives (see Section 3.3) and compare
observed levels of this modified test with their asymptotic nominal
values,

(iv) fine-tune Hsu’s (1982) selection procedure for the best treatment (see
Section 3.4) and compare observed coverage probabilities of this fine-
tuned version of Hsu’s procedure with their asymptotic nominal values.
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2. Bounds for u(F), A\(F)

The best bounds to date on p(F),A(F) are

(2.1) 3/10<u(F)<(V2 + 6)/24~.30893,
and
(2.2) 28254~89/315< \(F)<7/24~.29167.

The upper bound on p(F) is due to Hollander (1967), the lower bound on
p(F) to Spurrier (1991), the upper bound on A(F) to Lehmann (1964) and
the lower bound on A(F) to Spurrier (1991). It remains an open question
whether any of these bounds in (2.1) and (2.2) are best possible. We briefly
sketch their derivations, referring the reader to the original articles for more
details.

TueorEM 1 (Hollander (1967)) u(F)<(vV2 + 6)/24.

Proor Let X;,X,,...,X,,Y1,Ys,...,Y, beiid according to the continuous
distribution F. Let U; be the Mann—-Whitney-Wilcoxon statistic, U; =
Yoie1 =1 H(Xi,Y;) where ¢(a,b) = 1if a < b, 0 otherwise and let U, denote
Wilcoxon’s signed rank statistic applied to a random pairing of the X’s with
the Y’s. Using a representation due to Tukey, Uz can be represented as
Uz = 2 7; 0(Xi + X5, Yi +Y;) + 271 ¢(Xi,Ys) . The correlation coefficient
between U; and U, is directly obtained to be

[n2(24u(F) — 6) + n(23 — 72u(F)) + (48u(F) — 14)]

(2.3) r3(F) = (2n + D[n(n + 1)/2]'/2

and its limiting value is
r*(F) € lim 3 (F) = (24p(F) - 6)/v2.
The result follows since r*(F)<1.

THEOREM 2 (Spurrier (1991)) p(F)>3/10.

Proor  Spurrier’s method, motivated by Mann and Pirie (1982), is to
exhibit an unbiased estimator i(F') of u(F) that assumes just two values.
These values are 3/10 and 19/60 and since E(ia(F)) = u(F) it follows that
p(F)>3/10. Spurrier’s estimator is as follows. Let

MF) = Y I(Xi,...,Xi)/120
= Y I(Xgyy- -5 X(is))/120,
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where I(a,b,c,d,e) =1ifa < eand a < b+c—d; 0 otherwise, X(;) < --- <
X5 are the order statistics of X3,..., X5 and the ¥ is over all permutations
(t1,...,15) of (1,2,3,4,5). The function I is invariant under interchanges of
its second and third arguments, thus ji(F’) can be rewritten as

(2.4) AF) =Y I(Xgy)5-- -5 X(is) ) /60,

where the summation is over all permutations (41,...,1) of (1,2,3,4,5) such
that i < i3. Spurrier partitions the 60 summands of (2.4) into four groups.
Group 1 consists of 13 summands which identically equal 1, group 2 consists
of 37 summands which identically equal 0, and group 3 consists of 8 sum-
mands which can be organized into 4 pairs of summands, with the total of the
two summands in each pair equal to 1. Thus the first three groups have 58 I
functions summing to 17 w. p. 1. The last group consists of two summands
and form the random part of i(F’). At least 1 of these 2 must equal 1. Thus
either 18 or 19 of the 60 summands equal 1 and 2(F) =3/10 or 19/60.

THEOREM 3 (Lehmann (1964)) M\(F)<7/24 .

PRrooF Consider the covariance matrix defined by (1.5) and (1.6) for the
random variables Y;2, Y13, Yo3. The determinant of the matrix is propor-
tional to (1 + 7)%(1 — 27) where v = 3(4A(F) — 1). The determinant can
be nonnegative only if either ¥ = —1 in which case A = 1/6 or if y<1/2 in
which case A<7/24. The case A = 1/6 is ruled out directly as Lehmann used
Schwarz’ inequality to show A>1/4.

THEOREM 4 (Spurrier (1991)) A(F)>89/315.

Proor The proof is similar to Spurrier’s proof of Theorem 2 but is more
tedious and involves a computerized evaluation of numerous cases. Let
X(1) < -+ < X(7) denote the order statistics of X1,...,X7 and let

AF) =3 J(X(iy)s- - - X(ir)) /5040,

where J(a,b,¢c,d,e,f,g) =1ifa<b+c—dand a<e+ f— g; 0 otherwise,
and the ¥ is over all permutations (41,...,%7) of (1,2,...,7). Using invariance
and symmetry A(F) can be rewritten as

(2.5) AF) =Y J(X(iy),- - X (ir))/630,

where the summation is over all permutations (i1,...,7) of (1,...7) such that
iy < 13, 14 < 7 and 75 < ig. Spurrier partitions the 630 summands in (2.5)
into four groups. The first group contains 89 summands identically equal to
1, the second group contains 331 summands identically equal to 0, and the
third group contains 132 summands which can be partitioned into pairs such
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that one pair is 0 and the other is 1. The 552 summands in the first three
groups sum to 155. The remaining 78 summands comprise the fourth group
and they are the random component of S\(F) Using a computer, Spurrier
shows the minimum sum of those 78 is 23. Thus the minimum possible value
of A(F) is (155 + 23)/630 = 89/315. Since A(F) is an unbiased estimator of
A(F), it follows that A(F)>89/315.

3. Applications

3.1. Upper and Lower Bounds on the Null Correlation Coefficient Between
Overlapping Signed Rank Statistics

The null correlation coefficient between two overlapping signed rank
statistics pg(F’), given by (1.2), depends on F except for n = 1 when its
value is 1/3. Upper bounds pf; can be obtained by substituting the upper
bounds for x(F') and A(F') given respectively by the right-hand inequalities
of (2.1) and (2.2), into (1.2). Lower bounds p} can be obtained by substi-
tuting the lower bounds for p(F') and A\(F'), given respectively by the left—
hand-inequalities of (2.1) and (2.2), into (1.2). These bounds are displayed
in Table 2.

n 1 2 3 4 5 6 7 8 9 10
py | 3333  .3886 .4163 .4330 4441 4521 4581 4627 4665 .4695
pT | 3333 .3600 .3701 .3752 .3784 .3804 .3819 .3830 .3839 .3845
n 11 12 13 14 15 20 25 40 50 0o
py | 4720 4741 4760 4776 .4790 4840 .4871 .4918 4934 .5000
p7 | .3851 .3856 .3859 .3863 .3866 .3876 .3881 .3890 .3893 .3905

Table 2. Upper bounds pf; and lower bounds p} for pg(F)

3.2. Upper and Lower Bounds on the Null Correlation Coefficient Between
the Mann-Whitney-Wilcozon Statistic and the Randomly Paired Signed
Rank Statistic

The null correlation between U; and U, (defined in the proof of Theorem
1) is given by (2.3). The null correlation r§(F’) depends on F' except for
n = 1 and n = 2 where its values are 1 and .9238, respectively. Upper
bounds rf; can be obtained by substituting the upper bound for u(F) given
by the right-hand inequality of (2.1) into (2.3). Lower bounds 7} can be
obtained by substituting the lower bound for p(F’) given by the left-hand
inequality of (2.1) into (2.3). These bounds are displayed in Table 3.
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n 1 2 3 4 5 6 7 8 9 10
ry | 1.0000 .9238 .9231 .9306 .9382 .9448 9503 .9549 .9587  .9620
r7 | 1.0000 .9238 .8981 .8854 .8779 .8729 .8693 .8667 .8646 .8630

n 11 12 13 14 15 20 25 40 50 00
rg | 9648 9673 .9694 .9712 .9729 .9790 .9828 .9890 .9911 1.0000
r7 | .8616 .8605 .8596 .8588 .8581 .8557 .8542 .8521 .8514  .8485

Table 3. Upper bounds r; and lower bounds r} for rg(F')

3.3. Observed Levels of Hollander’s Test

For testing, in the two-way layout, Ho : 6, = 0, = --- = 0 versus the
ordered alternatives H, : 6; < 6; < --- < 6 (with at least one inequality
strict), Hollander (1967) proposed tests based on

(3.1) Y =) T,

where the Ty, are the Wilcoxon signed-rank statistics defined in Section 1.
The statistic Y, suitably standardized, is asymptotically normal but it is
not distribution—free under Hy as the finite-dimensional joint distributions
of the { Ty, } depend on F; in particular the null variance 02(Y) depends
on F as

(3.2)  02(Y)=n(n+1)(2n+ Dk(k — 1)(3 + 2(k — 2)pg(F))/144

where pg(F') is given by (1.2). Y is not asymptotically distribution—free as
the asymptotic null variance of Y depends on F' through A(F). Through a
Monte Carlo study, we determined the levels of a modification of Hollander’s
(1967) test which rejects Hp at the approximate a-level if Y >k(k — 1)n(n +
1)/8 4+ z400(Y), and accepts otherwise. Here 2, is the upper a percentile
point of a N(0,1) distribution, 63(Y) is obtained by replacing p2(F) by
pn = 12A(F) — 3 in (3.2), and A(F) is Lehmann’s estimator given in (3.3)
below provided 89/315<\(F)<7/24, otherwise we take A(F) to be 89/315 if
(3.3) goes below the lower bound or 7/24 if (3.3) goes above the upper bound.
This is a modification of Hollander’s test because we are using Spurrier’s new
lower bound for A(F) to fine-tune A(F). Results for the simulation are given
in Table 4. For the range of distributions considered, the observed levels are
reasonably close to the nominal a’s and indicate the asymptotic test can be

trusted in applications. (In Table 4, w is the number of times \ was within
bounds.)
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Lehmann’s original estimator of A(F) is A(F) given by
(3.3) n(n — 1)(n = 2)k(k — 1)(k — 2)A(F) =
Z Z 77(Xiv - Xiu + Xju - va)n(Xiw - Xiu + Xlu - Xlw)
(4,30)€Cn (u,v,w)€ECK
where 7(t) = 1 as t>0 and is otherwise 0. The sets Cy,(C}) are defined as
the collection of all permutations of three integers chosen from the first n(k)

integers.
a) Normal:

n ) 10 11 12 13 15
a\k| 3 4 8 5 7 6
.010 | .010 .006 .010 .002 .002 .010
025 | .018 .020 .018 .024 .016 .030
050 | .052 .038 .038 .040 .042 .052
.100 | .100 .078 .096 .082 .082 .092

w 161 377 499 463 497 497

b) Cauchy:

n ) 10 11 12 13 15
al\k| 3 4 8 5 7 6
.010 | .018 .016 .008 .008 .004 .004
025 | .042 .032 .024 .024 .016 .016
050 | .064 .054 .052 .052 .056 .034
100 | .122 .118 .110 .084 .090 .078

w 177 483 500 500 500 500

¢) Ezponential:

n 5 10 11 12 13 15
a\k| 3 4 8 5 7 6
.010 | .008 .004 .006 .012 .006 .006
025 | .028 .022 .020 .022 .022 .016
.050 | .060 .044 .052 .048 .050 .048
100 | .114 .094 .094 .090 .118 .108

w 164 438 500 494 500 500

d) Uniform:

n ) 10 11 12 13 15
a\k| 3 4 8 5 7 6
.010 | .018 .010 .010 .014 .004 .010
.025 | .038 .030 .024 .034 .020 .020
050 | .058 .052 .058 .044 .048 .038
100 | 120 .128 .104 .078 .090 .078

w 172 322 463 396 454 462
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e) Logistic:

n 5 10 11 12 13 15
a\k| 3 4 8 5 7 6
.010 | .020 .014 .008 .008 .004 .006
.025 | .040 .030 .024 .028 .016 .018
.050 | .070 .054 .048 .048 .046 .034
100 | .118 .116 .108 .082 .096 .072

w 185 415 500 488 499 499

Table 4. Observed levels of Hollander’s test

For the simulations of Sections 3.3 and 3.4, we generated independent
samples from the following populations : (a) normal, (b) Cauchy, (c) expo-
nential, (d) uniform, (e) logistic. Samples from the normal and exponen-
tial populations were obtained using the Zigurrat method as discussed in
Marsaglia and Tsang (1984), samples from the uniform were obtained using
a random number generator that combines, with subtraction mod 1, element
c in arithmetic sequence generated by ¢ = ¢ — cdmod(16777213./16777216.),
period 224 — 3. All these are available from the Statistics Laboratory of
the Florida State University. Samples from the remaining populations were
obtained by transforming the numbers generated from the uniform distribu-
tion. All codes were written in FORTRAN and ran using an f77 compiler on
the Sun Network system. All results were based on 500 iterations. Finally,
Lehmann’s estimator S\(F) was computed using the algorithm proposed by
Mann and Pirie (1982).

3.4. Observed Coverage Probabilities of Hsu’s Procedure

Hsu’s (1982) procedure involves simultaneous inference with respect to
a so called “best” treatment. Consider again model (1.1) where 6; is the
effect of treatment 7;. The treatment corresponding to the largest 6; is said
to be the “best” treatment. If there is more than one such treatment, then
exactly one is arbitrarily designated the “best” treatment.

Let O[3} = max;<i<k 0; and denote by (k) the unknown index of the “best”
treatment, i.e., m(x) is the unique “best” treatment. Hsu’s procedure gives
a confidence set C for m(;), and simultaneously a set of simultaneous upper
bounds D = (D1, ..., Dg) for ¢ = (Opx) — 61,0 — 02, - .., 0k — Ok)-

Let m = n(n + 1)/2 and let

A< A< <ALy

denote the ordered averages (X, — Xiy + Xju — Xjy)/2,1<i<j<n. Then
Hsu’s procedure is outlined as follows:
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For all u#v,let

Alm+1)/2] if m is odd
(A2 4 Alm/241]) 19 it m is even

T’ll/U

Foru =1,...,k ,calculate

T, = Z Tuu/k
v#u

Choose ¢, such that
P{ca<W<m—c,} =1-a

where W is the Wilcozon signed-rank statistic on n observations
and 0 < a < 1. For all u#v, calculate

Buy = (3n)2(Al 7ol — Ale)) 12,

where z,/, is the upper a2 percentile point of a N(0,1) distribu-

tion. Let
B=(5)"") Buw

u<lv

and

#2 = [1/12 4 (k = 2)(\(F) - 1/4)|B*/k

where A(F) is Lehmann’s estimator of A\(F') modified so that \(F)
is replaced by 89/315 if it is less than this lower bound and by
7/24 if it exceeds this upper bound. Take

C = {m:mnT -T;2 —(2/n)2d(k - 1,1/2, P*)#}
D; = max{rglg'ij_ —Ti + (2/n)2d(k - 1,1/2, P*)#,0}
i=1,...,k
where 0 < P* < 1 and d(h,p, P*) denotes the number such that
P(Z; > —d(h,p,P*) fori=1,...,h) = P*

where Zy,...,Zy are equally correlated N(0,1) random variables
with correlation p. Values for d(k — 1,1/2, P*) were obtained
from Gupta, Nagel, and Panchapakesan (1973).

Now define the coverage probability of a procedure R with confidence set C
for m(x) and bounds D = (D1,-..,Dg) for ¢ = (6p) — 01,-- -, 6 — 0x) by

P{ coverage|R } = P{r)€Cand Oy — 0; < D; fori = 1,...,k}
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Hsu showed that
(3.4) Jim ilelf Py{ coverage|R } = P*

where R is the procedure we described above. For our Monte Carlo study we
determined the observed coverage probability for various choices of P* and
model structures for 8;’s. Results of the simulation are given in Table 5. In
most cases the observed probability is higher, as is to be expected, than the
nominal P* and in only a few cases are the observed levels less than P*, a
direction change that can be attributed to the Monte Carlo sampling rather
than the theoretical requirement (3.4) not being met.

a) Normal:

Model 1: 6, =03 =--- =601 =0 ,0, =0.1

n 5 5 6

P* \k 4 5 4
990 | .990 .996 .998
975 | 982 994 .992
950 | .968 .980 .982
900 | .942 .938 .958
750 | .806 .848 .826

Model 2: 6; =0, 6 = 6;_; + 0.1

n 5 5 6
P*\k| 4 5 4
990 |.992 .996 1.000
975 | .988 .994 .992
950 | .974 .986 .990
900 | .948 .958 .968
750 | .826 .862 .844

Model 3: 6, =1, 0, = 20;_,

n 5 5 6

P*\kx| 4 5 4
990 | .988 .996 .996
975 | .976 .986 .990
950 | .960 .964 .972
900 |.928 .920 .940
750 | .758 .810 .784

Table 5(a). Observed coverage probabilities of Hsu’s procedure
(with ¢, = 2)
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b) Cauchy:

Model 1: 01 = 02 = .= 0k—1 = ank =0.1

n 5 5 6

P*\k| 4 5 4
990 | .996 .996 .996
975 |.992 996 .992
950 | .984 .990 .982
900 | 964 978 .974
750 | .886 .922 .906

Model 2: 6, =0, 0 = ;_1 + 0.1

n 5 5 6

P*\k| 4 5 4
990 |[.996 .998 .996
975 1.992 996 .992
950 | .984 .992 .984
900 | .968 .980 .976
750 | .898 .926 .916

Model 3: 61 = 1,0, = 26;_,

n 5 5 6

P*\k| 4 5 4
990 |[.996 .996 .996
975 [.992 996 .992
950 |.982 .990 .984
900 | .958 .976 .968
750 | .882 916 .904

Table 5(b). Observed coverage probabilities of Hsu’s procedure
(with ¢ = 2)
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c¢) Ezponential:

Model 1: 6 =0, =---=6;,_; = 0,6, = 0.1

n 5 5 6

P*\k| 4 5 4
990 | .998 .990 .996
975 1.992 .982 .990
950 | .978 .968 .980
900 | .938 .940 .954
750 | .826 .832 .832

Model 2: 6; =0, 6 = 0r_1 + 0.1

n 5 5 6

P* \k 4 5 4
990 | 1.000 .990 .996
975 | 992  .988 .990
.950 988 972 .982
.900 944 952 .968
.750 836 .852 .846

Model 3: 6, = 1, 8, = 26;_,

n 5 5 6

P* \k 4 5 4
990 |.996 .990 .996
975 | .986 976 .984
950 | .972 .962 .968
900 | .916 .922 .940
750 | .794 792 .790

Table 5(c). Observed coverage probabilities of Hsu’s procedure
(with ¢, = 2)
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d) Uniform:

Model 1: 01 = 02 = e = ok-—l = ank =0.1

n 5 5 6
P*\k| 4 5 4
990 | .994 1.000 1.000
975 |.988 .996 1.000
950 |.982 .988  .994
900 | .962 .964 .976
750 | .854 .884 878

Model 2: 6; = 0,0 = 01 + 0.1

n 5 5 6
P*\k| 4 5 4
990 | .996 .998 1.000
975 1 .990 988  .998
950 | .978 .984 .99%4
900 [ .956 .962 .978
750 | .816 .866 .856

Model 3: 6; =1, 0, = 26;_,

n 5 5 6

P*\x| 4 5 4
990 | .986 .990 .996
975 | .972 976 .986
950 | .958 .960 .978
900 | .914 912 944
750 | .786 .814 .818

Table 5(d). Observed coverage probabilities of Hsu’s procedure
(with ¢, = 2)
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e) Logistic:

Model 1: 6 =0, = --- =0r_1 = 0,6, =0.1

n 5 5 6
P*\x| 4 5 4
990 |.992 .994 1.000
975 | .986 .986 .992
950 |.972 976 .976
900 |.936 .942 .944
.750 | .818 .818 .850

Model 2: 6; =0, 8 = 61 + 0.1

n 5 5 6

P* \k 4 5 4
990 |.994 .994 1.000
975 |.988 .992 .994
950 |.974 976 .982
900 | .948 .952 .954
750 | .844 .860 .876

Model 3: 6; = 1,0, = 26;_,

n 5 5 6
P*\k| 4 5 4
990 | .988 .994 1.000
975 | 982 .986 .990
950 | .966 .964 .976
900 |.922 .936 .940
750 | .796 .800 .842

Table 5(e). Observed coverage probabilities of Hsu’s procedure
(with ¢, = 2)
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