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The parameter λ(F) = P(Xι < X2+X*-XA\XI < Xs+Xβ-Xr), where
X\,..., X? are independent and identically distributed (iid) according to
a continous distribution F, was first considered by Lehmann (1964) in the
context of certain nonparametric methods for the two-way layout. The
parameter μ(F) = P(Xλ < X2\X\ < X3 + XA - ^5) was first studied by
Hollander (1966), also in the context of nonparametric techniques for the
two-way layout. The best known bounds on these probabilities are

.28254«89/315<λ(F)<7/24«.29167,

and
3/10</ι(F) < (\/2 + 6)/24«.30893.

The upper bound on λ(F) is due to Lehmann (1964), the lower bound on

X(F) to Spurrier (1991), the upper bound on μ(F) to Hollander (1967), and

the lower bound on μ(F) to Spurrier (1991). We briefly review the develop-

ment of these bounds and then present some new applications motivated by

the recent bounds due to Spurrier. The applications include studying the

extent to which the new bounds can improve large sample approximations

to certain nonparametric test statistics and providing tighter upper and

lower bounds on certain correlation coefficients involving these parameters.

l Introduction

Consider the two-way layout with one observation per cell. Let

(1.1) Xij = μ + bi + θj + eij9i = l, . . . ,n, j = 1,...,* (Σ6f = Σθj = 0)

where the 0's are the parameters of interest, the 6's are the nuisance pa-

rameters, and the e's are iid according to a common continuous distribution

F. Let Yuυ = \Xiu - Xiυ\ and Rul = rank of Y<dυ in the ranking from

1 Research supported by U.S. Air Force Office of Scientific Research Grant 91-0048.
AMS 1991 subject classifications. 60E15, 62G99.
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selecting the best treatment.
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least to greatest of {YuυjjLi The Wilcoxon signed-rank statistic between
treatments u and v is

where

φ(t) _ ί 1 if -XVtt < Xiυ
uv \ 0 otherwise

Hollander (1966) showed that under Ho : θx = θ2 = --- = θky the null
correlation coefficient Po(F) between Tuυ and Γ ^ {u φ v, u φ w) is given
by

= [(24λ(f) - 6)n2 + (4Sμ(F) - 72λ{F) + 7)n

(1.2) +(48λ(JP) - 48^^) + 1)][(» + l)(2n + I)]" 1

where

(1.3) μ(F) = P{XX < X2;Xi < X3 + Xt - X5)

and
(1.4) λ(F) = P(X1 <X2 + X3- X4; X^Xs + Xe- X7)

where Xχ?... ,X7 are iid according to F.
To our knowledge this was the first appearance of the parameter μ(F).

Lehmann (1964) had introduced λ(F) earlier in a related context. Lehmann
considered

Yst = m e d φ x , s - XH + Xjs - Xjt)]

where the median is over all z<j, as an estimator of θs — θt. Let G denote
the common distribution of the difference between two e's. Then if G has a
density g satisfying the regularity conditions of Lemma 3(a) of Hodges and
Lehmann (1961), Lehmann showed that the joint limiting distribution of the
Yst's is the (i[)-variate normal distribution with zero mean and covariance
matrix Σ* = (σ*t uυ) where the variances are given by

(1.5) a*st>st = 1/12(Jg2(x)dx)2 all s,t

and the covariances by

σsί,tn; = 0 if s,t,u,υ are distinct

(1.6) = {λ(f) - l/4}/{ (g2{x)dx}2 if s = u or ί = υ

= {1/4 - λ(F)}/{ f g2(x)dx}2 if s = v or t = u .
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The parameters μ(-F), X(F) try very hard to be distribution-free but just
don't make it. To get a feel for these parameters consider first

= P(X1<Xy,X1<X3)

where Xi, X2? X3 are iid according to the continuous distribution F. Of
course a(F) is distribution-free being equal to 1/3, the chance that X\ is
the smallest of Xi, X2? -̂ 3

Consider

μ(F) = P(Xi < X2;Xi < Xs + X4 - XB)

and note that Xs + X4 — X5 is a little like X3 itself (because X4 — X5 is
symmetric about 0) but the variance of Xs + X4 - X5 is three times that of
X3. Thus it is slightly harder for X\ to be simultaneously smaller than both
X2 and X3+X4-X5 than it is to be simultaneously smaller than X2 and X3.
Thus we should expect the value of μ(F) to be pulled slightly below the 1/3
value of a(F). A similar argument indicates the values of λ(F) should be
pulled down even further. That this is the case can be observed in Table 1.

F

X(F)

Uniform

0.3083
0.2909

Normal

0.3075
0.2902

Logistic

0.3064
0.2898

Exponential

0.3056
0.2894

Cauchy

0.3043
0.2879

Table 1. Values of μ(F) and λ(F) for Various Distributions

In Section 2 we review the best known bounds for μ(F) and λ(iΓ>), and
indicate how they were derived. Section 3 is devoted to some applications.
The bounds, motivated by the improved bounds due to Spurrier (1991),
enable us to

(i) present improved upper and lower bounds for the correlation coefficient
p%(F) defined by (1.2),

(ii) present improved upper and lower bounds for the correlation coefficient
defined by (2.3) of Section 2,

(iii) improve Hollander's (1967) estimator of the asymptotic null variance
of his Y-test for ordered alternatives (see Section 3.3) and compare
observed levels of this modified test with their asymptotic nominal
values,

(iv) fine-tune Hsu's (1982) selection procedure for the best treatment (see
Section 3.4) and compare observed coverage probabilities of this fine-
tuned version of Hsu's procedure with their asymptotic nominal values.
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2. Bounds for μ(F), λ(F)

The best bounds to date on μ(F),\(F) are

(2.1) S/10<μ(F)<(V2 + 6)/24«.30893,

and

(2.2) .28254«89/315<λ(F)<7/24«.29167.

The upper bound on μ(F) is due to Hollander (1967), the lower bound on
μ(F) to Spurrier (1991), the upper bound on \(F) to Lehmann (1964) and
the lower bound on λ(F) to Spurrier (1991). It remains an open question
whether any of these bounds in (2.1) and (2.2) are best possible. We briefly
sketch their derivations, referring the reader to the original articles for more
details.

THEOREM 1 (Hollander (1967)) μ(F)<(y/2 + 6)/24.

PROOF Let Xι, X^ ? ^n? Yii Yi, ? Yn be iid according to the continuous
distribution F. Let U\ be the Mann-Whitney-Wilcoxon statistic, U\ =
Σ?=i Σj=i Φ(Xi>Yj) w h e r e Φ(a, δ) = 1 if α < 6, 0 otherwise and let U2 denote
Wilcoxon's signed rank statistic applied to a random pairing of the JΓ's with
the y's. Using a representation due to Tukey, U2 can be represented as
U2 = ΣΓ<j Φ{X% + XjiYi + Yj) + Σ?=i Φ(Xi,Yi) - The correlation coefficient
between ί/χ and U2 is directly obtained to be

- 6) + n(23 - 72μ(F)) + (48μ(F) - 14)]

and its limiting value is

r*(F) t f ]imr%(F) = (24/x(F) - 6)/Λ/2.

The result follows since r*(F)<l.

THEOREM 2 (Spurrier (1991)) /i(F)>3/10.

PROOF Spurrier's method, motivated by Mann and Pirie (1982), is to
exhibit an unbiased estimator μ(F) of μ(F) that assumes just two values.
These values are 3/10 and 19/60 and since E(μ(F)) = μ(F) it follows that
μ(F)>3/10. Spurrier's estimator is as follows. Let

μ(F) =
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where /(α, 6, c, d, e) = 1 if a < e and a <b + c-d 0 otherwise, X(X) < <
X(5) are the order statistics of X\,... ,X5 and the Σ is over all permutations
(ii, . . . ,iδ) of (1,2,3,4,5). The function / is invariant under interchanges of
its second and third arguments, thus μ(F) can be rewritten as

(2.4)

where the summation is over all permutations (z'i,..., is) of (1,2,3,4,5) such
that %2 < ίβ. Spurrier partitions the 60 summands of (2.4) into four groups.
Group 1 consists of 13 summands which identically equal 1, group 2 consists
of 37 summands which identically equal 0, and group 3 consists of 8 sum-
mands which can be organized into 4 pairs of summands, with the total of the
two summands in each pair equal to 1. Thus the first three groups have 58 /
functions summing to 17 w. p. 1. The last group consists of two summands
and form the random part of μ(F). At least 1 of these 2 must equal 1. Thus
either 18 or 19 of the 60 summands equal 1 and μ(F) = 3/10 or 19/60.

THEOREM 3 (Lehmann (1964)) λ(F)<7/24 .

PROOF Consider the covaxiance matrix defined by (1.5) and (1.6) for the
random variables Y12, Y13, Y23 The determinant of the matrix is propor-
tional to (1 + 7)2(1 - 27) where 7 = 3(4λ(F) - 1). The determinant can
be nonnegative only if either 7 = — 1 in which case λ = 1/6 or if 7<l/2 in
which case λ<7/24. The case λ = 1/6 is ruled out directly as Lehmann used
Schwarz' inequality to show λ>l/4.

THEOREM 4 (Spurrier (1991)) λ(F)>89/315.

PROOF The proof is similar to Spurrier's proof of Theorem 2 but is more
tedious and involves a computerized evaluation of numerous cases. Let
X(i) < < X(7) denote the order statistics of Xi,... ,Xγ and let

where J(a, 6, c, d, e, /, g) = 1 if a < b + c- d and a < e + f — g; 0 otherwise,
and the Σ is over all permutations ( ή , . . . , it) of (1,2,...,7). Using invariance
and symmetry λ(F) can be rewritten as

(2.5) X(F) = £ J(X ( l l ),...,X ( i 7 ))/630,

where the summation is over all permutations (i i , . . . , iγ) of (1,...7) such that
H < 3̂? H < *V and is < IQ. Spurrier partitions the 630 summands in (2.5)
into four groups. The first group contains 89 summands identically equal to
1, the second group contains 331 summands identically equal to 0, and the
third group contains 132 summands which can be partitioned into pairs such
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that one pair is 0 and the other is 1. The 552 summands in the first three
groups sum to 155. The remaining 78 summands comprise the fourth group
and they are the random component of λ(F). Using a computer, Spurrier
shows the minimum sum of those 78 is 23. Thus the minimum possible value
of λ(JP) is (155 + 23)/630 = 89/315. Since \(F) is an unbiased estimator of
λ(F), it follows that λ(F)>89/315.

3. Applications

3.1. Upper and Lower Bounds on the Null Correlation Coefficient Between
Overlapping Signed Rank Statistics

The null correlation coefficient between two overlapping signed rank
statistics Po(F), given by (1.2), depends on F except for n = 1 when its
value is 1/3. Upper bounds p^ can be obtained by substituting the upper
bounds for μ{F) and X(F) given respectively by the right-hand inequalities
of (2.1) and (2.2), into (1.2). Lower bounds p\ can be obtained by substi-
tuting the lower bounds for μ(F) and λ(F), given respectively by the left-
hand-inequalities of (2.1) and (2.2), into (1.2). These bounds are displayed
in Table 2.

n

Pΰ

Pi
n

Pΐr
Pi

1

.3333

.3333

11

.4720

.3851

2

.3886

.3600

12

.4741

.3856

3

.4163

.3701

13

.4760

.3859

4

.4330

.3752

14

.4776

.3863

5

.4441

.3784

15

.4790

.3866

6

.4521

.3804

20

.4840

.3876

7

.4581

.3819

25

.4871

.3881

8

.4627

.3830

40

.4918

.3890

9

.4665

.3839

50

.4934

.3893

10

.4695

.3845

oo

.5000

.3905

Table 2. Upper bounds p^ and lower bounds />2 for PQ(F)

3.2. Upper and Lower Bounds on the Null Correlation Coefficient Between
the Mann- Whitney- Wilcoxon Statistic and the Randomly Paired Signed
Rank Statistic

The null correlation between U\ and U<ι (defined in the proof of Theorem
1) is given by (2.3). The null correlation ^(F) depends on F except for
n = 1 and n = 2 where its values are 1 and .9238, respectively. Upper
bounds r'jj can be obtained by substituting the upper bound for μ(F) given
by the right-hand inequality of (2.1) into (2.3). Lower bounds r\ can be
obtained by substituting the lower bound for μ(F) given by the left-hand
inequality of (2.1) into (2.3). These bounds are displayed in Table 3.
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n

rl
r£
n

rl

1

1.0000

1.0000

11

.9648

.8616

2

.9238

.9238

12

.9673

.8605

3

.9231

.8981

13

.9694

.8596

4

.9306

.8854

14

.9712

.8588

5

.9382

.8779

15

.9729

.8581

6

.9448

.8729

20

.9790

.8557

7

.9503

.8693

25

.9828

.8542

8

.9549

.8667

40

.9890

.8521

9

.9587

.8646

50

.9911

.8514

10

.9620

.8630

oo

1.0000

.8485

Table 3. Upper bounds rfy and lower bounds r£ for ^

3.3. Observed Levels of Hollander's Test

For testing, in the two-way layout, Ho : 0χ = θ2 = = 0* versus the
ordered alternatives Ha : θ\ < θ2 < < 0* (with at least one inequality
strict), Hollander (1967) proposed tests based on

u<v

where the Tuv are the Wilcoxon signed-rank statistics defined in Section 1.
The statistic Y, suitably standardized, is asymptotically normal but it is
not distribution-free under Ho as the finite-dimensional joint distributions
of the { Tuv } depend on F\ in particular the null variance CTQ(Y) depends
on F as

(3.2) σ2

Q(Y) = n(n + l)(2n

where Po(^) ι s given by (1.2). Y is not asymptotically distribution-free as
the asymptotic null variance of Y depends on F through λ(F). Through a
Monte Carlo study, we determined the levels of a modification of Hollander's
(1967) test which rejects Ho at the approximate α-level if Y>k(k - l)n(n +
l)/8 + zaσo(Y)j and accepts otherwise. Here za is the upper α percentile
point of a iV(0,1) distribution, σ%{Y) is obtained by replacing po(F) by
pn = 12λ(F) - 3 in (3.2), and X(F) is Lehmann's estimator given in (3.3)
below provided 89/315<λ(F)<7/24, otherwise we take X(F) to be 89/315 if
(3.3) goes below the lower bound or 7/24 if (3.3) goes above the upper bound.
This is a modification of Hollander's test because we are using Spurrier's new
lower bound for X(F) to fine-tune X(F). Results for the simulation are given
in Table 4. For the range of distributions considered, the observed levels are
reasonably close to the nominal α's and indicate the asymptotic test can be
trusted in applications. (In Table 4, w is the number of times λ was within
bounds.)
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Lehmann's original estimator of λ(F) is λ(F) given by

(3.3) n(n - l)(n - 2)k(k - l)(k - 2)X(F) =

- -̂ ίtt + Xju - Xjv)η(Xiw - Xiu +

where 7/(2) = 1 as />0 and is otherwise 0. The sets Cn{Ck) are defined as
the collection of all permutations of three integers chosen from the first n(k)
integers.

a) Normal:

n

a \k

.010

.025

.050

.100

w

5

3

.010

.018

.052

.100

161

10

4

.006

.020

.038

.078

377

11

8

.010

.018

.038

.096

499

12

5

.002

.024

.040

.082

463

13

7

.002

.016

.042

.082

497

15

6

.010

.030

.052

.092

497

b) Cauchy:

n

a \k

.010

.025

.050

.100

w

5

3

.018

.042

.064

.122

177

10

4

.016

.032

.054

.118

483

11

8

.008

.024

.052

.110

500

12

5

.008

.024

.052

.084

500

13

7

.004

.016

.056

.090

500

15

6

.004

.016

.034

.078

500

c) Exponential:

n

a \k

.010

.025

.050

.100

w

5

3

.008

.028

.060

.114

164

10

4

.004

.022

.044

.094

438

11

8

.006

.020

.052

.094

500

12

5

.012

.022

.048

.090

494

13

7

.006

.022

.050

.118

500

15

6

.006

.016

.048

.108

500

d) Uniform:

n

a \k

.010

.025

.050

.100

w

5

3

.018

.038

.058

.120

172

10

4

.010

.030

.052

.128

322

11

8

.010

.024

.058

.104

463

12

5

.014

.034

.044

.078

396

13

7

.004

.020

.048

.090

454

15

6

.010

.020

.038

.078

462
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e) Logistic:

n

α \k

.010

.025

.050

.100

w

5

3

.020

.040

.070

.118

185

10

4

.014

.030

.054

.116

415

11

8

.008

.024

.048

.108

500

12

5

.008

.028

.048

.082

488

13

7

.004

.016

.046

.096

499

15

6

.006

.018

.034

.072

499

Table 4. Observed levels of Hollander's test

For the simulations of Sections 3.3 and 3.4, we generated independent
samples from the following populations : (a) normal, (b) Cauchy, (c) expo-
nential, (d) uniform, (e) logistic. Samples from the normal and exponen-
tial populations were obtained using the Zigurrat method as discussed in
Marsaglia and Tsang (1984), samples from the uniform were obtained using
a random number generator that combines, with subtraction mod 1, element
c in arithmetic sequence generated by c — c - cdmod(16777213./16777216.),
period 2 2 4 — 3. All these are available from the Statistics Laboratory of
the Florida State University. Samples from the remaining populations were
obtained by transforming the numbers generated from the uniform distribu-
tion. All codes were written in FORTRAN and ran using an f77 compiler on
the Sun Network system. All results were based on 500 iterations. Finally,
Lehmann's estimator λ(F) was computed using the algorithm proposed by
Mann and Pirie (1982).

3.4. Observed Coverage Probabilities of Hsu's Procedure

Hsu's (1982) procedure involves simultaneous inference with respect to

a so called "best" treatment. Consider again model (1.1) where θj is the

effect of treatment πj. The treatment corresponding to the largest θj is said

to be the "best" treatment. If there is more than one such treatment, then

exactly one is arbitrarily designated the "best" treatment.

Let 0[£] = maxi< t <fc 0% and denote by (k) the unknown index of the "best"

treatment, i.e., π ^ is the unique "best" treatment. Hsu's procedure gives

a confidence set C for 7Γ(/φ and simultaneously a set of simultaneous upper

bounds D = (£>!,. ..,Dk) for φ = (θ[k] - θuθ[k] - β2, • - .,*[*] - **)•
Let m = n(n + l)/2 and let

_i * *uυ — — u

denote the ordered averages (Xiu — X
Hsu's procedure is outlined as follows:

Xju- Xjv)/2,l<i<j<n. Then
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For all uφv,let

Tuυ = 4 ( Γ + 1 ) / 2 ] if mis odd

= ( 4 ϊ / 2 l + 4v / 2 + 1 I)/2 if mis even

For u = 1,..., k ,calculate

υ φ-u

Choose ca such that

P {

where W is the Wilcoxon signed-rank statistic on n observations
and 0 < α < 1. For all uφv, calculate

At])//2Buυ = {Znf'\At+λ-Ca] - At])/za

where za/2 is the upper α/2 percentile point of a N(O,1) distribu-
tion. Let

B = (2Γ1 Σ Buv

and

f2 = [1/12 + (jfc - 2)(X(F) - l/4)]B2/k

where X(F) is Lehmann's estimator ofλ(F) modified so that λ(F)
is replaced by 89/315 if it is less than this lower bound and by
7/24 if it exceeds this upper bound. Take

C = {π; : minΓ; - Γ, > ~(2/n)1/2d(k - l,l/2,P*)f}

j . - TL + (2/n)^2d(k -1,1/2,P*)r,O}

where 0 < P* < 1 and d(h,p,P*) denotes the number such that

P(Zi > -d(h,p,P*) for i = 1,... ,Λ) = P*

where Z\,...,Zh are equally correlated N(O,1) random variables

with correlation p. Values for d(k — 1,1/2,P*) were obtained

from Gupta} Nagel, and Panchapakesan (1973).

Now define the coverage probability of a procedure R with confidence set C

for 7Γ(jt) and bounds D = (Z>i,..., Dk) for φ = (θ[k] -θu..., θ[k] - θk) by

P{ covβrage|R } = P{7Γ(A.)ECand ^ ] - βt < A for i = 1,. . . , fc}
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Hsu showed that

(3.4)
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coverage|R } = P*

where R is the procedure we described above. For our Monte Carlo study we
determined the observed coverage probability for various choices of P* and
model structures for 0j's. Results of the simulation are given in Table 5. In
most cases the observed probability is higher, as is to be expected, than the
nominal P* and in only a few cases are the observed levels less than P*, a
direction change that can be attributed to the Monte Carlo sampling rather
than the theoretical requirement (3.4) not being met.

a) Normal:

Model 1: 0i = 02 = = 0*-i = 0 ftk = 0.1

n
P* \k
.990
.975
.950
.900
.750

5
4

.990

.982

.968

.942

.806

5
5

.996

.994

.980

.938

.848

6
4

.998

.992

.982

.958

.826

Model 2: θλ = 0, θk = θk-i + 0.1

n
P* \k
.990
.975
.950
.900
.750

5
4

.992

.988

.974

.948

.826

5
5

.996

.994

.986

.958

.862

6
4

1.000
.992
.990
.968
.844

Model 3: θx = 1, θk = 20fc_χ

n
P* \k
.990
.975
.950
.900
.750

5
4

.988

.976

.960

.928

.758

5
5

.996

.986

.964

.920

.810

6
4

.996

.990

.972

.940

.784

Table 5(a). Observed coverage probabilities of Hsu's procedure
(with ca = 2)
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b) Cauchy:

61

Model 1: θλ = θ2 = = 0fc_i = 0,θk = 0.1

n
P \k

.990

.975

.950

.900

.750

5
4

.996

.992

.984

.964

.886

5
5

.996

.996

.990

.978

.922

6
4

.996

.992

.982

.974

.906

Model 2: 0X = 0, θk = θk-\ + 0.1

n
P* \k

.990

.975

.950

.900

.750

5
4

.996

.992

.984

.968

.898

5

5

.998

.996

.992

.980

.926

6
4

.996

.992

.984

.976

.916

Model 3: ΘΎ = l,θk = 20fc_i

n
P \k

.990

.975

.950

.900

.750

5
4

.996

.992

.982

.958

.882

5
5

.996

.996

.990

.976

.916

6
4

.996

.992

.984

.968

.904

Table 5(b). Observed coverage probabilities of Hsu's procedure
(with ca = 2)
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c) Exponential:

Model 1: Θi=θ2 = " = θk-ι = O,0fc = 0.1

n

P* \k

.990

.975

.950

.900

.750

5
4

.998

.992

.978

.938

.826

5
5

.990

.982

.968

.940

.832

6
4

.996

.990

.980

.954

.832

Model 2: θλ = 0, θk = θk-i + 0.1

n

P* \k

.990

.975

.950

.900

.750

5
4

1.000
.992

.988

.944

.836

5
5

.990

.988

.972

.952

.852

6
4

.996

.990

.982

.968

.846

Model 3: θ1 = 1, θk = 2θk_λ

n

P* \k

.990

.975

.950

.900

.750

5
4

.996

.986

.972

.916

.794

5

5

.990

.976

.962

.922

.792

6
4

.996

.984

.968

.940

.790

Table 5(c). Observed coverage probabilities of Hsu's procedure
(with ca = 2)
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d) Uniform:

63

Model 1: θι = θ2 = = θk_ι = 0,0* = 0.1

n

P* \k
.990

.975

.950

.900

.750

5
4

.994

.988

.982

.962

.854

5
5

1.000

.996

.988

.964

.884

6

4

1.000

1.000

.994

.976

.878

Model 2: θλ = 0,θk = θk-i + 0.1

n

P* \k

.990

.975

.950

.900

.750

5

4

.996

.990

.978

.956

.816

5

5

.998

.988

.984

.962

.866

6

4

1.000

.998

.994

.978

.856

Model 3: 0α = 1, θk =

n

P* \k

.990

.975

.950

.900

.750

5
4

.986

.972

.958

.914

.786

5

5

.990

.976

.960

.912

.814

6

4

.996

.986

.978

.944

.818

Table 5(d). Observed coverage probabilities of Hsu's procedure
(with ca = 2)
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e) Logistic:

Model 1: 0i = 02 = = θk-ι = Qβk = 0.1

n

P* \k
.990

.975

.950

.900

.750

5

4

.992

.986

.972

.936

.818

5

5

.994

.986

.976

.942

.818

6

4

1.000

.992

.976

.944

.850

Model 2: θ1 = 0, θk = θk-i + 0.1

n

P* \k

.990

.975

.950

.900

.750

5
4

.994

.988

.974

.948

.844

5

5

.994

.992

.976

.952

.860

6
4

1.000

.994

.982

.954

.876

Model 3: θι = l,θk = 20 fc_i

n

P* \k

.990

.975

.950

.900

.750

5
4

.988

.982

.966

.922

.796

5

5

.994

.986

.964

.936

.800

6

4

1.000

.990

.976

.940

.842

Table 5(e). Observed coverage probabilities of Hsu's procedure

(with cQ = 2)
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