
MEASURES OF SIMILARITY BETWEEN TWO IMAGES

Charles C. Taylor
Department of Statistics
University of Strathclyde

Glasgow, U.K.

SUMMARY

Psychology and physiology give us some insight into the way in which
humans derive information from images. We give a brief introduction
to some of these theories in a general setting and consider the applica-
tion to automatic procedures. Distance measures are discussed, with
examples, to illustrate some of the difficulties.
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1. Introduction

Suppose that the true scene t is corrupted by noise to a distorted image f, and that
we have a restoration algorithm a which produces a restored image r.

a: f v-+ r

We would like to measure the distance from the true image to the restored image,
d(t, r), possibly taking into account the starting point d(t, r | / ) , although it is not clear
how to use this information at present. Baddeley (1987) has distinguished 3 roles for
error measures:

(i) a theoretical framework for deriving a new reconstruction algorithm.

(ii) a benchmark for comparing different reconstruction algorithms in a computer ex-
periment.

(iii) a measure of achieved quality without reference to the true image.

A fourth reason for considering such a distance measure could be to give further insight
into the performance of an algorithm, perhaps as a preliminary to (i).

A commonly used error measure involves a pixel-by-pixel comparison,

1 N

t = l

or

where N is the number of pixels and t{ is the class (or grey level ) of pixel i in the
true scene. Although widely used, these measures are also widely recognized as un-
satisfactory; they ignore the spatial context and are inadequate in expressing human
perceptions of similarity. Our objective in this paper is to derive a measure which in
some way reflects the human assessment of errors, and comparison of images. We begin
by describing some psychometric models, and attempt to use these principles in deriving
appropriate measures.

2. Psychometric models

In the literature there are many models to describe the way in which humans
perceive, and process information from, images. So far, no one seems to have proposed
a satisfactory answer; without exception, each model has some flaw or limitation. We
give a brief introduction to some of these models which may be relevant to our objective.

2.1 Template models

This proposes that the human mind retains a library of specific images. It then
recognizes an image by choosing the "closest" match to one of those in the memory. For
example, two such images in store may be A and R (see Figure 1). When presented with
an alternative image (Figure 1) this mind would then decide this was an R, based on
the fact that this is the closest. Clearly, this approach may be satisfactory for reading
a typewritten post code, but it is not flexible enough to reflect human perception.
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Figure 1. Template matching.

2.2 Prototype models

This relaxes the rigidity of the template model. It involves extraction and abstrac-
tion of information. The description of the model itself seems a bit abstract, but there is
some experimental support. Psychology experiments show that the greater the number
of "transformations" from the prototype, the less confident the subjects were in being
sure they had seen the image before. The model thus assumes that stimuli are labeled
as a prototype with a distortion; a search process then locates the "best fit". This idea
is further developed in the next section, though without some further specification it
would be hard to implement in an automatic procedure.

2.3 Feature models

This refines the prototype model by further assuming that the prototypes are stored
in memory as a network of discrete features. We then find a match between a list of
features for the stimulus and a list of features stored in memory. A simple example
of such a model is a pandemonium model. This has image demons, feature demons,
cognitive demons and a decision demon. Thus, given an image, the first stage decides
which feature demons are present. Each of these then "votes" for one of a set of cognitive
demons, finally resulting in a decision. Continuing the previous example, suppose that
the image demon is

Obviously, the voting here has been restricted - we might have included e.g. Λ,
h to have obtained a different outcome. However, feature models are challenged by
experimental findings which show that the context of the stimulus influences the ability
to identify or recognize the stimulus. This leads psychologists to believe that human
recognition may involve both serial and parallel processing of information.

2.4 Representing the image

We now look at a different approach due to David Marr (1982), which looks at
different ways of representing the image. A summary of this is given below.

The complexity varies from a grey level image, which can be easily handled au-
tomatically, to something which would be very difficult to program. There are three
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feature demons decision demon

Pandemonium Model.

grey
level
image

primal
sketch

sketch

PURPOSE

represents
intensity

makes explicit information
about the 2-dimensional
image, primarily the intensity
changes and their
distribution and organization

makes explicit the information
and rough depth of the
visible surfaces, and contours
of discontinuities in a
viewer-centred co-ordinate frame

PRIMITIVES

intensity value
at each point
in the image

zero-crossing, blobs,
terminations, edge segments,
virtual lines, groups,
curvilinear organization,
boundaries.

local surface orientation,
distance from viewer,
discontinuities in depth,
discontinuities on surface
orientation

stages involved in the processes that derive the primal sketch,

(i) The detection of zero-crossings:
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A sudden change in intensity gives rise to a peak or trough in the first derivative,
or, to a zero crossing in the second derivative. To detect these, apply the filter

which will then transform a grey level image to a binary image. Although it seems im-
plausible that humans use this method for edge detection, there is physiological evidence
which allows Marr to claim:

It is not too unreasonable to propose that the V 2 G function is what is carried by
the X cells of the retina and lateral geniculate body, positive values being carried by the
on-centre X cells, and negative values by the off-centre X cells.

(ii) The formation of the raw primal sketch:

Obtain zero crossings for a number of different-sized channels (different σ). The
question of how humans combine these channels is unanswered, but the raw primal
sketch is nevertheless a very rich description of an image.

(iii) The creation of the full primal sketch:

This makes explicit important relationships. Starting with the raw primal sketch
and operating on it with processes of selection, grouping and discrimination to form
tokens, virtual lines and boundaries at different scales.

From a psychological distance measure perspective, we would like to be able to
automatically classify and describe images as a full primal sketch. We can achieve this
only in part.

3. Towards the desirable via the possible

The first step is to convert the grey level image to a binary image using filters or
by thresholding. Then classify each pixel according to type by applying the filter

2

256

128

4

1

64

8
16
32

So, for example, the pixel which has 8-neighbor pattern LJHH has type 391.
This results in 512 types, and for each type we can compute an error rate by comparing
the restored image with the true image. (Note that the error rate will not be symmetric.
We can obtain a transition matrix Nij for the number of times pixel type i in the true
image corresponds to pixel type j in the restored image 0 < i, j < 511.

In addition we can take the difference between the true and restored images and
consider the pattern types which result. For small images, counts may be low. We
can combine types which are inversions, rotations, reflections, and group together those
types which are of no interest. Note that the ordering of the filter facilitates this process
since a rotation through τr/4 corresponds to a multiple of 4. Expected values for much of
the above can be calculated for specific hypotheses, and tests on these can be performed.
This approach is motivated by three factors:
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(i) Many restoration algorithms consider 4— or 8—neighbor patterns, so this may yield
further insight into which is preferable.

(ii) There is a need for a flexible, simple approach which can be further adapted and
modified.

(iii) It seems to be within the spirit of psychometric models. We could consider the 512
types as demons or view them as local "primitives", e.g.

uzero-crossings H H H , blobs terminations

This approach can be useful in the understanding and analysis of the performance of
restoration algorithms, but for many purposes it is desirable to obtain an overall distance
from one image to another. The pixel-by-pixel comparison is criticized because it ignores
the spatial context. What is required is a new labeling which provides information not
only about a pixel, but also pixels in that neighborhood. This new label should be
constructed so that it could be used in a distance metric. Note that this is not the case
for our 512 types since there is no straightforward way to measure the distance between
any two types. We would like closeness in the labeled space to mimic closeness in the
pixel neighborhoods.

We could associate a line with many of the types, and then measure the distance
between the lines. This would give a nice interpretation to simple shifts and rotations,
but unfortunately many of the interesting types require more than one line to describe
them, and there is the added complication of dealing with inversions. A more flexible
approach would be to associate a "black" circle and a "white" circle with each 3 x 3
neighborhood. For example, the black circle could be the smallest circle which would
cover the centers of all the black pixels and none of the white pixels. This would give a
6-vector label for each neighborhood (center and radius for both circles), and enables us
to describe 158 of the 512 types. We have adopted the convention that if only one circle
is needed (as for a uniform array), then the other circle is given by the same center
with a negative radius - as though it had been "cut away". We can then obtain an
overall measure by reverting to a pixel-by-pixel comparison of the new labels. Here, we
have used the minimum distance between corresponding white or black circles, where
distance between circles is taken as ((#i - X2)2 + (2/1 - 2/2)2 + (n. - r 2 ) 2 ) 1 / 2 This is
then averaged over all pixels.

We have conducted a few experiments to determine the characteristics of this mea-
sure. For large scale details the measure behaved in a similar fashion to the ordinary
pixel-by-pixel measure, but for small scale details, we obtained slightly preferable re-
sults. Some of the large-scale test images and corresponding transformations were:

image transformation distances (ordinary, new)

half plane (y > 0) half plane (y > 1) .016, .027
half plane (y > 2) .031, .054
half plane (y > 3) .047, .099
half plane (y > .05a?) .012, .020
half plane (y > Λx) .025, .047
half plane (y > .2x) .050, .112
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image transformation distances (ordinary, new)

circle radius 20 translate (1,0) .095, .054
translate (2,0) .039, .089
translate (1,1) .028, .067
translate (2,1) .044, .010

image transformation distances (ordinary, new)

bar (3 wide) translate 1 031, .054
translate 2 .062, .105
translate 3 .094, .193
remove .047, .099

Similar results were obtained for a diagonal line, and squashing this circle. The
important differences in the measures are seen in the small-scale details. The ordinary
error rate gives the same distances for the removal of a 2 pixel-wide bar, or a 2 x 2
square, as for a single translation of the same object. The new distance measure gives
clear preference to the translations.

image transformation distances (ordinary, new)

square (2 x 2) translate (1,0) .016, .061
translate (2,0) .031, .121
translate (1,1) .023, .070
translate (2,1) .031, .129
remove .016, .075

4. Examples

These images are taken from Ripley (1986) (Figures 2, 3) and Ripley & Taylor
(1987) (Figures 4 - 6). For each method of reconstruction we display the binary images,
together with the "differenced image".

Error rates are shown for each pixel type of interest. The images are relatively
small, so we have combined rotations, reflections and inversions.

All of the non-spatial restorations (Figures 3, 4) have similar error rates (non-
significant χ 2 ) for each pixel type, as expected.

An interesting point is that the error rates for the "corner" pixel-types are very
different for the restoration methods which use 4-neighbors rather than 8-neighbors;
compare Figures 5 and 6. This is because the corners, when viewed through a 4-
neighborhood perspective, could be straight edges, which are very plausible.

Note that small translations of a part of the image (as seen in Figure 2) are easily
seen in the differenced image, and that the error rate for the edge-type pixel is very
much greater than the overall error rate.

The distances (D) of the new circle measure for these images have a similar ordering
to the overall error rate. A desirable difference of these values is that the small trans-
lation in Figure 2 is now preferred to the restoration of Figure 5, and the non-spatial
restorations are relatively more costly.
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TRUE RESTORED DISTANCE

TRANSLATION ERROR RATE = .036 , D = .062

2955 326 153 68 11 91 231

.004 .368 .0 .0 .0 .273 .022 .004 .0 .0 .0

Figure 2. Distribution of types in true image, with error rate for each type.

TRUE RESTORED DISTANCE

NONSPATIAL RESTORATION ERROR RATE = .143 , D = .615

2955 326 153 68 11 91 231

.146 .126 .190 .147 .0 .0 .143 .117 .0 .0 .50

Figure 3. Distribution of types in true image, with error rate for each type.

Clearly, this new error measure still has shortcomings. Many of the possible pixel
types have no circle representations as they are too disconnected (Ireland has 1% of such
types); here we have chosen to ignore these, but other ad hoc approaches are possible.
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TRUE RESTORED DISTANCE

NONSPATIAL RESTORATION ERROR RATE = .093 , D = .449

2965 123 57 113 3 31 191 226 4 3 38

.092 .098 .105 .159 .0 .032 .105 .084 .250 .333 .079

Figure 4. Distribution of types in true image, with error rate for each type.

TRUE RESTORED DISTANCE

BESAG SIMULTANEOUS (4) ERROR RATE = .022 , D = .078

2965 123

.001 .057 .105 .186 1.0 .032 .031 .0 .750 1.0 .0

Figure 5. Distribution of types in true image, with error rate for each type.

In addition, other circle representations, perhaps using the largest circle, are possible,
although not so easy to compute. Obviously, our set of examples is small, but further
experiments should give more insight into the error measures described here.
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TRUE RESTORED DISTANCE

BESAG SIMULTANEOUS (8) ERROR RATE = .034 , D = .103

2965 123 57 113 31 191 226 38

.0 .065 .105 .265 .667 .613 .026 .009 .750 1.0 .0

Figure 6. Distribution of types in true image, with error rate for each type.
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