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Abstract

A functional central limit theorem is proved for certain random fields whose

domain has both a temporal and a spacial component. These processes are made

up of dependent summands which are measurable with respect to an increasing

filtration. Temporal limit theory for semi-martingales is utilized to provide spa-

cial finite-dimensional convergence. Consequently the limiting random fields

have independent increments in time, and can be thought of as evolving random

fields. In deriving a tightness result the notion of majorizing measures is em-

ployed to allow local spacial variability. Thus a functional central limit theorem

for evolving random fields with a rather general dependence structure is given

here for the first time. Comparison with results available for empirical processes

suggest that this result is close to optimal.

Introduction. In this paper we consider conditions for weak convergence of

a sequence of random fields which are individually evolving over time. For mo-

tivation though, let's first examine a given sequence of random fields at some

fixed time point Let X be an arbitrary index set and for each n > 1, let {Ynj(x):

1 < i < n, jce x) be a sequence of random functions Y n j : x^R . Let

*. W for xex.

Thus the sequence (Sn(x) :n>l,jceΛΓ}isa sequence of random fields. We are

interested in general conditions under which Sn converges weakly. We wish to

allow dependence among the individual summands, the Ynti's. We do this by

considering conditions of the martingale type, involving only conditional first

and second moments. (These are more desirable than mixing type conditions

which involve the entire distribution.) In addition, we must constrain our index-

ing family X to satisfy a complexity condition involving the notion of majoriz-

ing measures (or, alternatively, metric entropy). There will be a natural topology

on X associated with our problem.

In two papers Goldie and Greenwood (1986a, b) found conditions for weak

convergence of sequences of set-indexed random fields. An unexpectedly diffi-

cult aspect of the problem was the characterization of the limiting distribution in
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a way which allowed the identification of the limiting finite-dimensional distri-

butions. The first of the two papers was devoted to this problem, and the solu-

tion there was rather unsatisfactory in that mixing conditions were used rather

than martingale type conditions.

An entirely different way of characterizing finite-dimensional laws is avail-

able if one considers, instead of a sequence of random fields (S^x) : xe x), a

sequence of evolving random fields

y n i W f 0 Γ * € * , * € [<U].

(Here τ(n,t) depends on both n and t, perhaps randomly.) The idea of an evolv-

ing random field is appealing for modeling because most naturally occurring

random fields are, in fact, either evolving over time or have arrived at the state in

which we observe them by development through time. There are many exam-

ples where an evolving random field model is appropriate and weak limit theory

is needed. Picture empirical data being gathered on a d-dimensional screen

through real time. This example has been studied extensively as a random field,

with time fixed at the point when sampling ends, but is also of interest as an

evolving random field. A limit result can now be stated which allows depen-

dence in both space and time of the empirical data. Another kind of example is

a measure-valued process obtained from a branching diffusion. Here a function-

al limit theorem for the evolving random field has not yet been obtained (using

our topology) but the conditions to be checked can be seen using our Theorem

2.1. Further applications arise related to e.g. U-statistics, chi-squared tests for

spatial processes, and robust estimation for autoregressive process (see Koul

(1989)).

An evolving random field has a natural partial ordering along the time axis.

Each finite collection of points x = (xv...jck) ex corresponds to a sequence of

k-dimensional stochastic processes in the time parameter:

The proof of weak convergence of evolving random fields will reduce to proving

finite-dimensional convergence (i.e. weak convergence of {Sn(*, t) :te [0, l]})

and tightness of {Sn(x,t): xe X, t e [0, l ] } . (SeeTheorem 2.1.)

If each Sn (x, t) is a Markov process in t we can prove weak convergence us-

ing the theory found, e.g. in the book of Ethier and Kurtz (1986). For a variety

of models, results about weak convergence of interacting particle systems as in
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the book of Liggett (1985) might be used. If sn (x, t) is a sequence of semimart-

ingales with respect, e.g., to the filtration Fn t = o{Sn(x,s) : KE X, s<t } then

conditions for convergence of the finite-dimensional processes sn(x, t) appear

in the book of Jacod and Shiryaev (1987).

In this paper we find conditions for weak convergence of a sequence of evolv-

ing random fields where the finite-dimensional processes {Sn(χ,ή : te [0, l ] } ,

are semimartingales. The sense of weak convergence here is different from and,

in fact, much stronger than the sense usually employed in the subject called

"measure-valued processes" or "super-processes." There, the processes are con-

sidered as indexed by t, only, and evaluated on x. The topology relative to

which convergence is proved is then much weaker than the one we consider and

in fact, by a theorem of Mitoma (c.f. Walsh (1984)), weak convergence of

Sn(x,t), for fixed x e x is sufficient for tightness of the "super-processes." Here

our main challenge will be to prove tightness. The weak convergence obtained

is, of course, correspondingly more useful.

The requisite tightness, or asymptotic equicontinuity, component of the weak

convergence of (Sn(x,t): x e x,t e /} is obtained by restricting the complexity of

X with a majorizing measure condition in conjunction with a bracketing condi-

tion. The concept of majorizing measures dates back to the early 1970's, see

Preston (1972) and Fernique (1974). Fernique (1974) gave a characterization of

X, together with its canonical metric, in terms of majorizing measures which

was sufficient for the a.s. continuity of a Gaussian process {Z(x): x e x}. Quite

recently Talagrand (1986) gave a necessary condition for the a.s. continuity of Z

in terms of majorizing measures. (See Theorem 1.1.) The use of a majorizing

measure condition in this context allows more local variability in the richness of

X than a metric entropy condition would allow.

Now let Δ « ( > = { i » Ψ ) t \ r + i W - \ i l >l} w h e r e ' f o r

G e B (X), G* denotes the P-outer envelope of G. Conditions which restrict the

magnitude of the Δ̂ δ? 's are termed bracketing conditions. The use of bracketing

conditions first arose in the study of the central limit theorem for the set-indexed

empirical measure, under the name inclusion conditions for families of sets.

Dudley (1978) was one of the first to use them in developing tightness results

for empirical processes; tying the LP variability of the brackets (for p > 2) to

constraints on metric entropy. The development of a new method of proof of as-
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ymptotic equi-continuity allowed Ossiander (1985) and (1986) to impose only

L2 constraints on the variability of the brackets through the use of a simple met-

ric entropy condition. Using a refinement of the same method, while relying

upon the recent work of Talagrand (1987), this last result was further improved

by Andersen, Gine, Ossiander and Zinn (AZOG) (1988) by linking constraints

on the weak-L2 variability of the brackets to (natural) majorizing measure condi-

tions. Ledoux and Talagrand (1989) have a comprehensive study of recent re-

sults in this area. A key ingredient of all of the above work is the assumption of

independence of the Y^'s which is not made here. Instead the Yn/s are taken

to be measurable with respect to an increasing filtration and the following key

assumptions on the Yn/s are made:

(i) uniform conditional asymptotic negligibility,

(ii) uniform conditional asymptotic centering,

(iii) a conditional bound on the weak-L2 norm, uniform over a col-

lection of brackets.

Thus in this paper functional central limit theorems for evolving random fields

with a rather general dependence structure are obtained for the first time.

In section 1 we introduce notation and discuss the continuity of Gaussian pro-

cesses. Some relevant results involving majorizing measures are presented. A

definition of weak convergence and conditions implying the weak convergence

of evolving random fields are given in section 3. This section contains a state-

ment of our main central limit theorem, as well as several variants. Finite di-

mensional convergence and some characteristics of the limiting Gaussian

process are discussed in section 3. Section 4 contains some exponential proba-

bility bounds for martingales. The crucial tightness result is proved in section 5.

It depends on an exponential probability bound which may be of independent

interest.

1. Notation, Definitions, and Preliminaries. Let(Ω, M, P) be a complete

probability space and let X be some (arbitrary) topological space. Let B(X) de-

note the set of all bounded real-valued functions on X and B(X) denote the

smallest σ-field containing all sets of the form {fe B (X): f(xp e B̂ , j = 1,..., m}

where m is an arbitrary integer, the Xj are points in X, and the Bj are half-open

intervals in 1 .
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Definition 1.1. A random field, Y, on X is a measurable mapping Y from (Ω, Af)

into (B(X), B(X)). Thus Y(x,w) denotes the value of the function in B(X)

picked out by w at the point x. Generally, we suppress w through-out and simply

write Y(x).

We assume throughout that the random fields we work with are separable in

the following sense.

Definition 1.2. A separable random field is a random field, Y, for which there

exists a countable set D c x and a fixed event N for which P(N) = 0, such that for

any closed interval CcH and open set u<zX the two sets {w:

Y (JC, w) e c, x e u} and {w: Y(χ, w) e c, x e u n D) differ (at most) by a subset of

N.

For each n > 1, let { F n i : i >. 1} be an increasing filtration on the probability

space (Ω, F, P). Let F^Q = {ft Ω} be the trivial σ-algebra. For each n > 1 and

te / = {t : 0 < t < 1} let τ(n,t) be a stopping time with respect to { F n i : i > 0}.

Also let {YΠϊί: i > 1} be an array of separable random fields on X with each Y^

being measurable with respect to FΠ f i. Let

^ Y^iix) fOTxeX mdtel.

Note that Sn is a random field on X x I.

The next definition is standard.

Definition 13. A (centered) Gaussian random field on X is a random field on X

for which each finite linear combination Y aiY(xj) is a centered Gaussian
lύjϊm

random variable. That is, each linear combination has a density of the form

(2πσ 2)' 1 / 2 expf-y^σ 2} for some σ > 0.

We utilize the following two definitions in discussing our limiting process.

L e t l = {t: 0 < t < 1} denote the unit inteval, and let {F t : 0 < t < 1} be an in-

creasing filtration contained in F. That is, Fs c Ft c F for 0 < s < t < 1.

Definition 1.4. A F^evolving random field, Z, on Xxl is a random field on

X x I for which Z(\t) is measurable with respect to F t for each t e I and has inde-

pendent increments in I uniformly over X; that is for any x, y e x, Z(x,t) is inde-

pendent of Z(y,s) - Z(y,t) for 0 < t < s < 1.
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Definition 1.5. A standard Revolving random field, Z, on X x I is a ̂ -evolv-

ing random field on Xxl for which

EZ(x,t) = 0,

EZ2(x,0) = 0.

and

E(Z(x,s) - Z(x,t))2 = Is - tl EZ2(x,l)

for all x e X and s, t e I. We say that Z is a {standard) evolving random field if Z

is a (standard) /Revolving random field for some increasing filtration {Ft: 0 < t

< 1} contained in F.

Clearly a Gaussian random field Z on Xxl is a standard evolving random

field if and only if Z(x, )/(EZ2(x,l))1/2 is a standard Brownian motion for each

fixed x.

The following two definitions are due to Fernique (1974).

Definition 1.6. Let d be a (pseudo-) metric on X. A Borel (sub-) probability

measure v on X is a majorizing measure for X with respect to d if

oe

xePX\lnU2 0MBd(x.u))) d u < ~ < U >
o

Here, Bd(x,u) ={yeJf : d(x,y) < u} is the u-ball in (X,d) centered at x.

Definition 1.7. A sub-probability measure μ is a discrete majorizing measure if

it is a majorizing measure with support being a countably dense subset of X.

Let (Z(x): x e x] be a mean zero Gaussian process on the space X. Let d

denote the canonical L2 pseudo-metric generated on X by Z, so

d(x,y) = (E(Z(x)-Z(y))2)ι/2. (1.2)

The following theorem is due to Fernique (1974) and Talagrand (1987).

Theorem 1.1. Suppose that the Gaussian process (Z(x): x e x} is separable in

(X,d). Then: (i) (Fernique) If (X ,d) admits a majorizing measure, v, then Z has

bounded sample paths a.s.. If, in addition,

δ

lim sup ί/n1/2(l/v (Bd(x,u)) )du = 0 (1.3)
δ->0 xe'XJ
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then the sample paths of Z are uniformly continuous with respect to d a.s.

(ii) (Talagrand) If Z has bounded sample paths a.s., then (X,d) admits a majoriz-

ing measure. If the sample paths of Z are uniformly continuous with respect to d

a.s. then (X,d) admits a majorizing measure v, satisfying (1.3.).

It is easy to see that if (X,d) admits a majorizing measure v, it also must ad-

mit a discrete majorizing measure μ. If (1.3) holds for v, the following lemma,

due to Andersen (1986), allows us to assume that μ has a particular structure.

Lemma 1.1 If (X,d) admits a majorizing measure for which (1.3) holds, then

for any β € (0, l) there exists a discrete majorizing measure μ satisfying the fol-

lowing. For each xeX and k > 0 ,

there exists x k in the support of μ with d(x,xk) < βk, (1.4)

and

Km sup £ β*/n1/2(l/μ0t,) ) = 0. (1.5)

We may also assume that

if xk = yk for a pair *, y e x, then Xj = yj for j < k. (1.6)

Furthermore

Km sup Σ β*'*1/2O/β* T[μty > = 0. (1.7)
*> yXT Λ J

Notice that (1.5) is the discrete analogue of (1.3), and that (1.7) follows easily

from (1.5) using Kronecker's Lemma and interchange of summation. The fol-

lowing relationship between majorizing measures and metric entropy is useful.

Definition 1.8. The metric entropy of X with respect to d is given by

H(δ,X,d) = In min{N : there exists xj,..., χne x such that d(Xj,x) < δ for every

xeX for some i = l,...,n}.

It is easy to verify the following lemma.

Lemma 1.2. If

1
2 (1.8)

then there exists a majorizing measure μ such that (1.3) holds.
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2. Weak Convergence and the Central Limit Theorem. In this section we

see how weak convergence of {Sn (x,t) : x e X, te /} follows from finite-dimen-

sional convergence and asymptotic equi-continuity (tightness). We use the defi-

nitions and viewpoint of Gaenssler and Schneemeier (1986). An alternate

approach using the Hoffmann-Jorgensen definition of weak convergence (which

would yield a slightly more general result) is that of Andersen and Dobίίc

(1987). Results of later sections are called in as needed in order to state our

main results here.

Let Γ(X,I) = {f: Xχl->R : (χ tfgXxI

 lf(x»0 I < °°} denote the space of

real-valued bounded functions onXxl and equip it with the supremum norm, so

that Ufl\χxj= SUD ' f ( χ > t ) '• F o Γ ^ y m ^ t r i c Γ o n X x I » to

(x,tfeXxI

gr= {/€ Γ (X, I) : f is uniformly r-continuous on X x I}. For a mean zero stan-

dard evolving Gaussian process {Z(x,t): x e x, t e 1}, let σ be the canonical L2

metric on X x I given by

σ((*j).(*0) = (E(Z(x,s)-Z(y,t))2)l/2. (2.1)

Let d be the metric on X given by

d{χ,y) = σ ( ( χ , l ) ( > , l ) ) (2.2)

and p be the metric on I given by

p(M) = \s-t\l/2

 s u p (Var Z(x,l))1 / 2. (2.3)
xe X

Letting τ denote the metric on X x I given by

τ((x.5).(*0) =d(x,y)+p(s,t), (2.4)

it is easy to see that τ dominates σ. If Z is separable and uniformly σ(τ)-contin-

uous, then from Talagrand's result (Theorem 1.1 (ii)) we know that

(X x I, σ) ((X x I, τ)) is totally bounded. Then gσ (gτ) is separable and closed in

( Γ (X x I) ,| 1 11); c.f. Corollary 2 of Gaenssler and Schneemeier (1986). Let B

be the σ-algebra of all Borel sets in ( Γ (X x I) ,| | 11 ) and let B b denote the sub-

σ-algebra of B generated by the open n i l -balls in Γ (X x I) .

Let {Sn: n > 1} and Z all be defined on a common probability space (Ω ,F, P),

with each Sn being an element of (Xχl,B ) and Z being an element of
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Definition 2.1. The sequence Sn converges in distribution to Z (Sn -» Z) if

and only if

P(Zegσ) = i (2.5)

and

lim Ef(Sn) = £/(Z) (2.6)

for all /e {g : Xxi ->R : g is bounded, uniformly || | | -continuous and Im-

measurable}.

Theorem 2.1. If {Z(x,t) : xe X, te 1} is a standard Gaussian evolving random
field with

(X,d) admitting a majorizing measure which satisfies (1.3), (2.7)

for any finite collection x l f..., x t εX

(Sn (* ! , ' ) , ...,$„(**,•)) £ (Z(xv ) Z(xk, ) ) , (2.8)

and, for all η > 0,

lim lim PΓ sup \SΛ (x, t) - S Λ (y, t) I > η 1 = 0 (2.9)

then Sn ^ Z.

Proof: Condition (2.8) of the theorem identifies the limiting distribution and us-

ing Lemma 3.2, (2.7) guarantees its continuity. In view of the domination of σ

by τ, Theorem 2.12 of Andersen and Dobπc (1987), and Theorem 1 of Gaenssler

and Schneemeier (1986), it remains for us to show that (2.9) (together with (2.6),

(2.7), and (2.8)) imply that for any η > 0,

5 _» 0 Λ -> β Lilim lim F* \ sup I S r t (*,»*,) - 5 (JC, ί ) | >Ή = 0,

where {(x^): 1 < i < Iδ) is a (finite) δ-net in (X,τ). Note that

and
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*,•• ',) - Sn (*. 01 S | ί . (Vi) - Sn <*, ') | + |S. ( V ) - 5» (*• '> I

Thus

P*[ sup

< δ > ί e

sup IS. (x, ί, ) - SΛ ( V ) I > η/2]
lSi</δ>p(ί,,ί)<δ

sup |S.(*,, *) -Sn(*,-, 01 >η/2].

From (2.9), if we let n go to infinity, and then δ go to zero, the first term goes to

zero. From (2.8) (together with (2.6)),

limj* £ s u p \Sn (* , s) - Sn (xif t) I > η/2 Ί

= /* Γ sup \Z(xit s)-Z(*,., 01 > η/2 Ί .

Now from (2.5) we see that this term decreases to zero as δ decreases. D

Notice that a result parallel to Theorem 2.1 is easily available for many cases

when the limiting distribution is that of a general evolving Gaussian random

field. The needed ingredient is a metric τ, dominating the canonical metric σ,

with τ, being of the form given in (2.4), where d is as defined in (2.2) and p(s,t)

= sun, (E (Z (χ,s) - Z (x, t))2)1/2 with Z(x,t) being uniformly p-continuous in
x ε Λ.

t over X.

The following corollaries are easy consequences of Theorem 2.1 and Theo-

rem 5.1,5.2, and 5.3 respectively.

Corollary 2.1. If (2.7) holds,

(3.1), (3.2), and (3.3) of Lemma 3.1 (finite-dimensional convergence) are

satisfied, (2.10)
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and

conditions (5.7), (5.8), (5.9) and (5.10) of Theorem 5.1 giving the uniform

modulus of continuity are satisfied, (2.11)

thenS n ^ Z.

Note that the definition of convergence in distribution implies that the Gauss-

ian process X is a.s. σ-continuous on X x I. Other variants are:

Corollary 2.2. If (2.7) and (2.10) hold, as well as

(5.12) and (5.13) of Theorem 5.2, (2.12)

thenS n ^ Z.

Corollary 2 3. If (2.7) and (2.10) hold, as well as

(5.12) and (5.14) of Theorem 5.3, (2.13)

thenS n ^ Z.

The following three corollaries are easy consequences of the three corollaries

above and Lemma 1.2. They replace the majorizing measure condition (1.3)

with the metric entropy condition (1.8).

Corollary 2.4. If (1.8), (2.10), and (2.11) hold, then Sn ^ Z.

Corollary 2.5. If (1.8), (2.10), and (2.12) hold, then Sn ^ Z.

Corollary 2.6. If (1.8), (2.10), and (2.13) hold, then Sπ ^ Z.

Notice that if a weak convergence result for random fields whose domain

lacks a temporal component is of interest, a simpler version of Theorem 2.1 (and

consequently Corollaries 2.1 through 2.6 that follow) is readily available. In

particular, consider the random field

*»(*) = Σ rn,, « forxeX,
()

where the YΠfi's are measurable with respect to an increasing filtration and τ(n)

is a stopping time. Think of this as reducing the temporal component of the do-

main to a single value; i.e. I = {1}. Conditions (2.8) and (2.9) of Theorem 2.1
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would thus be simplified, and Corollaries 2.1 through 2.6 would hold as stated

for l= {1} throughout.

3. Finite Dimensional Convergence and the Limiting Process. In the case

in which the prelimiting random fields have independent "increments" in t, e.g.

for 3<j<ί,5n(ί, ), Sn(t, - )-(Sn s, ) are independent processes, the usual

central limit theorem can be used to identify the limit law which will also, of

course, have independent increments. However when a more complex 'tempo-

ral' dependence structure exists in ^ the identification of the distribution of the

limiting becomes a serious problem. Here we state sufficient conditions for

identification of a more general Gaussian limit by calling in general results for

weak convergence of R k -valued semimartingales. The following lemma is a

reformulation of e.g. Thm 2.27 of Jacod and Shiryaev (1987).

Lemma 3.1. (Convergence of finite-dimensional distributions in X.) If for all

ί e l , ε e (0,1],a = (βj,...^) e R* , and x = (xv.. *k) eX*fork>l,

0, (3.2)

V Uiί^t I J | J

and

£ t Varf Y aZ(xΛ)\
\l*J*k J

where {Z(x,l): x e X} is a Gaussian process, then the finite-dimensional distri-

butions in X of {Sn( , t) : t e I } converge to those of {Z(\ t ) : * € I} where Z( ,t)

is a standard evolving Gaussian process.

The finite-dimensional convergence in X above gives us a candidate for our

limiting process, as well as the canonical metric σ (see 2.1) on the product space
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X x I. Recall also the definitions of the metrics d, p, and τ given in (2.2), (2.3)

and (2.4) respectively of section 2. The following lemma gives a proof of the

continuity of the limiting distribution under the natural majorizing measure con-

dition.

Lemma 3 2. If the mean-zero Gaussian random field (Z(x,l): * e X} is separa-

ble and d-continuous a.s., then the standard evolving Gaussian random field

{Z(x,t): x e X,ί e I} is σ-continuous and τ-continuous a.s..

Proof. First notice that for all δ > 0, x e X and ί e l ,

Bd(*,δ/2) x5 p(5,δ/2) cB τ((x,s),δ). (3.4)

From Theorem 1.1, (X ,d) admits a majorizing measure v satisfying

δ

lim suo Un1/2(l/v(Bd(x,u)))du = 0.
o —»0 X € A

0

Let m be the product measure vxλ on Xxi where λ is Lebesgue measure.

Then, setting c = ̂ su^(VarZ(x, 1))1/2, it follows from (3.4) that

δ δ

J/n1 / 2(l/m (B τ ((x,0,«))^<J/n 1 / 2 (l/λ (Bp(r,«/2)) v(Bd(x,u/2)))du
o

δ

\lnWΪ(\h(Bd(x,u/2)))du,

0

δ

o

and thus,

( 3 l 5 )

Since Bτ((x,t),u) czBo((χ,t),u), clearly (3.5) holds also with the metric τ re-

placed by σ. The result follows from Theorem 1.1. α

Again a parallel result is easily available for many general evolving Gaussian

processes. (See comment following Theorem 2.1.)

4. Exponential Probability Bounds for Martingale Differences. This

section contains some inequalities which play an essential part in this derivation

of our tightness results. Throughout we assume that {Yx: i > 1} is a sequence of

real-valued random variables on the probability space (Ω, F, P) which are mea-
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surable with respect to an increasing filtration {F^: i > 1} with Fi c F for each i.

We let Fo = {φ, Ω} denote the trivial σ-algebra.

The following proposition, a Bernstein-type inequality for martingales, due

to Freedman (1973), is a basic ingredient of most of our probability bounds.

Proposition 4.1. . Suppose that P(S^D \Yt\ >a) = 0 and ElY^F^j =0.For

n>l, le tV r t = ^ E(YJ\F^X). Then, for all η , δ > 0 ,
\<.ι<>n

( α η + δ ) / α V / β
Σ Yi>η > V n <δforsomen>l Ί < [δ/(Λη + δ) ] ( α η + δ ) / α V

<exp{-η2/2(aη + δ)}.

The following simple lemma proves useful. A variant of it may be found in

AGOZ (1988).

Lemma 4.1. Let {q: i > 1} be a decreasing sequence of non-negative real num-

bers. For any b > 0 and n > 1,

Proof: Notice first that for any j > 1,

Σ c.l = V (iι/2cΛ

Fix a > 0, and let j a = {j : c j > a > C j + 1 } . Then

a Σ Cil[a<ciϊb) = a Σ Cil[a<c^b]

~Cj ja

l[cj Sb) Σ Ci1[ci
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Jc; 1 Γy. < M D

The following lemma is an easy consequence of Freedman's Proposition

(4.1).

Lemma 4.2. For any η > δ > 0 and sequence of sets {Aj: i > 1} with Λ, € F, ,

Σ !Λ (ir<>> η Σ ^(AKi-iί^δ for some n) <

Proof: Since |iA j(r, ) - P ^ F ^ S I , B d ^ i ^ - P W j F , . , ) ) = O, and

β(OA.d'i) - ' ( ^ I^i-i) ) 2 | Fi-\) ^^( Λ , | f , -i) . we may apply Proposition

4.1 above to see that

( Σ \(y<> > η and Σ p<A4 F.-1) s δ f 0 Γ s o m e n>
1 ^ i £ n ' 1 £ i: ̂  Λ

< p ( Σ O A W - ^ I I ^ - I ) ) > η - δ a n d Y PίΛJF^^ <δ for some n)

G

The following lemma is essential in proving our tightness theorem. It is ba-

sically an extension of Lemma 2.16 of AGOZ (1988) to sums whose increments

are martingale differences.

Lemma 4.3. Suppose that the Yj *s are non-negative and let the set

For all η > δ,

l £ ι £ n

<(eδ/η)η/fc2/(l-eδ/η).

Proof: Fix n > 1 and let Y(^ be the decreasing order statistics of {Yj,..., Yn}.

Using Lemma 4.1, we see that for η > 0

*%a Σ γ>
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2
J\/b Δ

Notice that, for each i > 1,

Λc Γ(η/i) ]Γ P(Yj> (η/i) 1 / 2 |^-i) ^δ for all nj

= Γ V P(Y> (r\/i)ι/2\F. ,) <δί η for all nΊ.

Thus, using Lemma 4.2, we see that

for someΣ

Σ p{ Σ ιiγl>(Ά/i)^
iSίΩd

f. .^^δ i η for some n)

5. Tightness. We assume throughout this section that the metric space

(X,d) admits a majorizing measure m for which

δ

l im SUΓL, | / Λ (1/fΠ (BJ(X, u )))du = 0 . ( 5 . 1 )
δ-»o xe*XJ a

o

Thus, in addition, we have, for each β > 0, a discrete majorizing measure μ on

(X,d) for which (1.4) through (1.7) hold. Fix β > 0 and, in the notation of Lem-

ma 1.1, set Xj = {XJ . xe X }, so that Xj is a finite β* net in X.
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Thus A®, is a local modulus of continuity for Y^j which is constant on the set {y

: yj = x} for xe x .̂ Due to the structure of the Xj's specified by (1.6), we may

assume that Δ^.(x) decreases in j for each fixed x.

Before continuing, we introduce some technical definitions involving the

discrete majorizing measure μ. Fix 0 < β < 1. For x e X and j > 0, set πij(x) =

Π μ (χk> Define m : Xx (0,1 ] -* (0,1 ] as follows:

m(x,u) = m j+1(x) + (u - βi+1

for β^+1 < u < p. Notice that, for each fixed x, m(x, ) is a continuous and strictly

increasing function with m(x,u) = m(xj ,u) for β* < u < 1. Also, since μ is a ma-

jorizing measure, we have Y m(χ) < $>' . Let g : Xx (0,1 ] ->R+ be de-

fined by

g(x,u) = /Λ(l/m(x,u)). (5.2)

For each fixed x, the function g(x,) is continuous and strictly decreasing with

g(x,u) = g(xj ,u) for βi < u < 1. If the metric entropy integral condition (1.8)

holds, we may assume that m(x,u) (and thus g(x,u)) depend only on u and not on

x. Thus, under the assumption of (1.8) rather than (5.1) most of the conditions

that follow can be stated much more simply.

The following sets AJl) and A}2) are respectively the random function ana-

logues of the sets Λ of Lemma 4.3 and [ vn< δ] of Proposition 4.1. For each

fixed n, denote the entire sequence {Y^: i > 1} by Yn.

Forj>0,let

\(x)>a\Fni_x)>P2k (5.3)

for some xe X,k>j]

forb >0

A}2)(Yn,b) = [IUIJ JΛ B ί ^ i W - ^ i ί x t - i ) ) 2 (5.4)
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for some x e X and k > j],

and for c> 0

> cg(x,βk) for some ^x, i fe>i] . (5.5)

Notice that if the increments, Y^ , are independent, then all three sets,

), Λ ( 2 ) and Λ(3) are non-random.

For a > 0, let

and for a: X -»R + , let

denote the truncated Y ^ process. Notice that we have allowed the truncation

level to depend on x. Again, denote the entire process { l ^ " } : i > 1} by

1^( ' \ and let

denote the truncated and conditionally centered partial sum process.

We are ready to state our first tightness theorem.

Theorem 5.1 If (X,d) admits a majorizing measure satisfying (5.1),

xe

for all a > 0

XG X, I

and
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^ι^'^^\F' t-^ ' °' (5'9)

for some b < e 2 (e 2 - β3)/β4,

ϊinΓ Ita"/* (A,(1) (YH) uΛJ2) (YΛ,b)) = 0 (5.10)

then, for all η > 0,

X €
sup. |S.(x,ί)-S,1(*/ί)|>η)=0. (5.11)

Theorem 5.1 is a corollary of the following theorem which has slightly weak-

er but more cumbersome hypotheses.

Theorem 5.2. If (X,d) admits a majorizing measure satisfying (5.1), for all a > 0

and ε > 0,

χ e ^ t e l \ \ > ε ) = 0 (5.12)

and for some b < e 2(e 2 - β3)/β4 and c < e 2(e 2 - β3)/2β4,

iώΓ iiπΓp* (Λ. ( 1 ) (yn) u \j2) (YH, b) u Λ^3 ) (YH, C )) = o,

then for all η > 0, (5.11) holds.

Conditions (5.10) and (5.13) above should be viewed as the conditional ana-

logue of the weak - L2 and L2 bracketing conditions for process with indepen-

dent increments. (c.f. Ossiander (1986) and AGOZ (1988)).

The following lemma helps bridge the distance between Theorem 5.2 and

5.1.

Lemma 5.1. If (5.7) holds, and, for all a > 0, (5.8) and (5.9) hold, then for all a

> 0 and ε > 0,(5.12) holds.

Proof: Forany xe X,te l , a n d a > 0 ,

\Sn(x,t)-S°H(x,t)\

= 1 Σ
l £ i £ (

έ ( 0
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Thus, for any a, η > 0,

Σ

We now prove Theorem 5.1 using Lemma 5.1 and Theorem 5.2.

Proof of Theorem 5.1: Lemma 5.1 implies that under the hypothesis of Theo-

rem 5.1, (5.12) holds. Note that g(x,β*) is constant on the set {y e X : yj = x} so

that βV2g(x,βi) takes on a finite number of values which are bounded below

away from 0. Also g(x,βk) increases in k, so

[ sup |Γ
m i n

X

>c min

Condition (5.8) implies that the probability of this latter set goes to 0 for all

j > 0 and c > 0. The proof is completed by noting that

(/* (Λ.(1) (Yn) UAJ2) (Yn,b) uΛJ3 ) (Yn,c))



86 GREENWOOD and OSSIANDER

(Λ. ( 3 )(y n,c)). G

Theorem 5.2 is, in turn, proved using the following result.

Theorem 5.3. If (X ,d) admits a majorizing measure satisfying (S.I) and for all

a > 0 and ε > 0, (5.12) holds, then for all η > 0 and b < 2e2(e2 - β3)/β4,

([ ψo \SΛix,t)-SΛtyi)\>i\] (5.14)
j n X €= A, i t 1

n (A/Wίrf^t -w ) υ A » ( f « ί Mjb) )c) = o.

We use the following two lemmas in deriving Theorem 5.2 from Theorem

5.3.

Proof of Lemma 5 2: Fix j > 0 and to simplify notation, set aj(x) =
2(x,βί). Clearly, since aj (x) only depends on x through Xj, yjjy) (?) and

yj|.^ (xp are truncated at the same level (aj(Xj)) whenever y. = x. and we have

then

Thus, fork > j , using (1.6) of Lemma 1.1,

- xkxk

Lemma53. Forallc>Oandj>0,

Proof: Again set aj(x) = |^/2g( ,βί) for ease of notation and note that ^ (x) de-

pends on x only through x j . For any a, b > 0, we have

so, taking conditional expectations, summing, and taking suprema, we have, for
a n y j > 0 a n d c > 0 ,



CLT FOR EVOLVING RANDOM FIELDS 87

[4a2 (x)

> cβ2*/4 for s o m e xeX and k > j ]

: Λ.(2) ( 7 , c/2) u Λ.(3) (Y , c / 4 ) . π
j n j n

Proof of Theorem 5 Jt: It follows from Lemmas 5.2 and 5.3 that for any η > 0,

j > 0 , andb>0,

Λ^15 (yΛ) uΛ | 2 ) (Yn,b/2) | rt

Theorem 5.3 depends in turn on the following proposition. The statement of

the proposition employs the ftinction γ : X x (0, l ] -> R+ defined by

γ(*,δ) = X (y/n1/2(l/mj(x)), (5.15)

Proposition 5.1. If (X ,d) admits a majorizing measure satisfying (5.1),

E(YΛti(
χ)\Fn,i-0 = oforxeXandi> 1

and, for some β e (0, l) and jo > 0,

P*(^ |y n | .W|>β / o /2^ / 2 (χ,β / o ) foranyxeX) = o, (5.16)

where g is as defined in (5.2), then for b < 2e2 (e2 - β3) /β4,

η \Sn(χ,t) -Sn(χJo,t)\ > (1 + I2e2/β5 )γ(χ, β70) for some xe X ] (5.17)
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where c = Cβ is a universal constant depending only on β.

Proof of Theorem 5.3: For any xe x,te I, j > 0 , and a : x-»Λ+ whichde-

pends on x only through xj,

\SH(x,t) -SH(Xj,ή\ί\SH(.x,t) -S*n

( ){x,t)\+\sn(xJ,t)-Slι ' } (x,ί ) |

Thus, for any j > 0 ,

xe

<χe %vte J s ^ 1 2 < ^ ) (x,o -$/*"<*» {Xjtt)\

Fix η > 0 and choose jo sufficiently large to have

(Recall from (1.5) of Lemma 1.1 that suo γ(*, δ) -* 0 as δ -> 0.) Then for j > j 0

( sup sup K

forsomexe x]

I) - S%'2' <* « (x, 01 > η/4 )

It remains to prove Proposition 5.1. It proceeds as follows. First we stratify

Sn(x,t) and Sn(χ^,t) by partitioning the sample space. Then, within each stra-

tum, for a particular j > Jo we compare Sn(x,t) to sn (x^91) in two stages. The
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first comparison gives rise to two remainder terms, one of which is contained in

Λ.(1) and the other of which is bounded in probability on Λ.(1) using Lemma 4.3.
'o Jo

The second comparison gives rise to a third remainder term, which we bound in

probability on the set Λ}2) .
Jo

Before we begin the proof, however, we need some technical lemmas which

will be used in controlling the rate at which our approximations Xj converge to x.

The following property of the function g defined in (5.2) above is of central im-

portance.

Lemma 5.4. The function g : X χ ( 0 , i ] ->R + satisfies

β * 1 / 2 ( * , « ) ^ < ( ( i - β ) /β)γ(*δ) (5.18)

as well as

l b). (5.19)

Proof: lfp+ι<u<&, then, for any x e X,g (*, u) < lnι/2QJmJ+ x (x)). Thus, again

letting ; δ = {j :β> + 1 <δ<β0,

/-β/^)/α^(l/m (X))

= ((1-β) /β) 2 β//n1/2(l/m.(x)).

Fix δ e (0, l ] , and for each % e X and k > 0, choose δk(x) to satisfy

δ, (x) lgιn (x, δ, (x)) = δβVg1/2 (x, δ). (5.20)

Lemma 5.5 For each x, the sequence {δ^ : k > 0} is a strictly decreasing se-

quence. In addition, if γ(χ, l) < <*>, then lim bk(x) = 0 .

Proof: Since for each fixed x the sequence δβk/g1/2(x,δ) is strictly decreasing in

k and the function u/g1/2(x,u) is strictly increasing in u, it is clear that δ^x) is a

strictly decreasing sequence. From (5.18) we see that

g1 / 2(x,u)<(l-β)γ(x,l)/βu,

so
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δt (x) = δβV / 2 (x, δt (x)) /gU2 (x, δ) <, δ (1 - β) β*γ(x, 1) /βδt (*) gW2 (x, δ).

Thus δ t (x)S(δ(l-β)γ(*,l ) /βg1 / 2(*,δ))1 /2β*/2, SO t l imJ t (x)=0 if

γ(x, l)<oo. Π

It is easy to see that δ t (x) decreases more slowly than βk.

Lemma 5.6. For each x e X and k > 0,

βδ t(x)<δ t + 1(*). (5.21)

Proof: For any x e x

βδkCxyg^x δkOO) = δk+^xVg^ίx.δk+xίx)) < δk+1(xyg1/2(x,δk(x)).α

The following summability result is quite important.

Lemma 5.7. For \(\) as defined in (S.20) above

U2<* δ *( χ )) s (2/β)γ(χ, δ). (5.22)

Proof: For any xe X and K > 0,

d-β)

= (l - β) δgι/2 (x, δ) + Σ δ* (χ) («1/2 («.δ* w) ) fh w
0 t A Γ

1 / 2

= ( l - β) δ*1 / 2 (x, δ) + Σ δ* W * 1 / 2 (*.δ* (χ))
0 * A Γ

δ t 1

Σ ί W
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<2\igι/2{x,u)du.

The first equality above follows from the recursion relation

The first inequality stems from dropping the leading negative term and observ-

ing that

To complete the proof use Lemma 5.4. D

Proof of Proposition 5.1: We partition the sample space using the following

construction. Fix j 0 > 0, β e (0, l ) , and set δ = β*0. We use the sequence {δfc(x):

k > 0} defined in (5.20) and discussed above. Note that δo(x) = δ = β/° for all

x e X. Also define the geometrically decreasing sequence

ak(x) = δβ*/*1/2(*,δ) = ί t ( x ) / ί 1 / 2 h i t ( x ) ) .

For each x e X, set jk(x) = {j: β**1 < δ^x) < βi. Again, note that jo(x) = Jo for

all xeX. Fork>01et

and

The following sets are defined iteratively as follows. Set

and for k > 0, set

Notice that
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i v ^ W . ( 5 2 3 >
and

£>*,.(*) c (A* , (x))c. (5.24)

Since the Yn,i(x) is bounded a.s. by ao(x)/2 for all n,i > 1, each Δ ^ (X) is

bounded by ao (x) a.s.. Thus for any fixed x and K > 0, ύie collection of sets

{£>̂  t , Λĵ  j : 0 ̂  k < K} provide a disjoint partition of the sample space.

We now stratify S n . For k > 0, set

and

^j.i ) = 0,foranyK>0,

Each SΠik (x,t) is compared to its (approximately) δij(x)-approximation

(xiiw
t) as follows:

It is important to notice that, as both Δ^*.(jc)) (x) and , Bk

n .(x) depend on x only
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through χjt(x), both R^\(x,t) and R^l (x,t) also depend on x only through x^w.

Likewise,

ΓM<xAW'f)l ( 5 2 7 )

<2τ(n,t)ak+ι(x).

In turn we stratify sn (xJ91) and compare each stratum to SΛ Λ (xj (jr), 0 for a

particular k. Let

and note that for any K > 0 , and xeX

Then, for any K > 0 ,

(5.28)

= Σ (<°1 (*o-\*^« ')J+(rfluo-r^i^w^J
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o<*sisr

In deriving the third equality, we interchange summation and note that

= Σ (>>-i->/) Σ hk
0<j<K jZkύK

We then apply (5.23) to see that . < ^ κ B* t W = D "̂/ (x) \z>£; (x). Now for

re I, set

K(n,t) = inf{k: k> ^su^in(γ(x, δ)gιn{x,δ) /2δβτ(n,t)

K(n,t) is finite a.s., since condition (5.1) (through Lemmas 1.1 and 5.4) insures

that both γ( ,δ) and g C,δ) are bounded on X. Now combine the comparisons

(5.25), (5.26), (5.27) and (5.28) derived above to arrive at the following:

| S f t ( * , 0 - s n ( V ) | ( 5 2 9 )
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Σ ?
0<JkSAΓ(n,l)

Fork>0, set

η t(

Then, from Lemma 5.7,

Thus, for any b > 0, from (5.29),

P*([ roster) -SΛ(χJa.t)\ >(1 + I2e2/β5 )γU δ) forsome xe X] (5.30)

< P*([/?i°l (x) >ηt(χ) for some « x and 0 < k < K(n,t)] π (A™ (Yn) V)

for some χeXandO<k< K(n,t)] n ΓΛ^!) (YH) V)

f o r s o m e * e x a n d θ < k < K(n,t)] n ίΛ^2) (rB,

The set where the first remainder is large is actually contained in Λ.(1) . For

any x e X and ί € I, we have

so that
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Bounding the second remainder term in probability is more complicated. For

j > Jo s e t t>j(x) = βVg^x.βό From the definition of jk(x) and a^x) observe that

δt(χ) < β'i(x) from Lemma 5.6 and αt(χ) ̂ ^ ( X ) W. so for any fixed xe X and

ί6l,

Thus, using the above, Lemma 4.3, and the definitions of the functions g(y) and

m(y), we see that

(x, t) > ηΛ(x) for some x s X, t e I, and k > 0] n ίΛ^15 (yΛ) V) (5.32)

1 for some ί e I] u ίΛ^X) (yΛ) V)

Σ (β/«) * ( * W / P / ( l - β / e )

<Σ
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Finally, R®\ (x, t) is made up of the conditionally centered increments

which depend on x only through x;4(*) F r o m (5.24),

O*"1^) c [Δ£*~υ(x) SfljW], and from Lemma 5.6, we know

δ t (x) > βδt_ j (x), so either yt_ 1 (x) = jk(x) +iorjk_ι (x) = jk (x). Thus

(5.33)

Furthermore, if ; t_ t (x) ί' tί*), on the set D*".1 (x) we have

Set kj(x) = {k : δA(χ) < β^< δt_j (x )} , so ^(x) = ̂ ( x ; ) , and notice that again

from Lemma 5.6 we have bk(χ) (x) > βδ t {χ) _, (x) > β/+ !, so that

2 2 2 / - V / 2 ( ^ ^ ) , (5.34)

as well as ak(x) * &/gxn (x, β'). Then, for any fixed xeX.tel, from (5.33) and

(5.34),

and

l\R£l (*') | >ΆkM for some xe x,te I, andk> 0]

c . u. u v [\R (2). , v (x, o I > 2 ^ ~ 3 ^ 1 / 2 (*. P0 ft>Γ s o m e

Set

Eni(χ,t) = [
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|F n ί _ 1 )<2( β

2 -β 3 )e 2 β 2 >- 6 ]

and note that EΛ.(x,t) => (Λ(2)(yΛ,fc))e for fc<2e2(e2-β3)/β4. Then, from

(5.35), Proposition 4.1, and the definition of g(γ), we have

,θ|>η t(*) forsomeχεx,tei ,andk>0] n(\2(Yn,b))c) (5.36)

for some t e I)

y. Σ 2

eX;.

y 2

Combining (5.30), (5.31), (5.32) and (5.36), we have, for b < 2e2(e2-p) /β4,

-sn(χJQ, 0 | > (l + i2^2/β5 )γ(χ, β'0) for some ^ X ]

<β/o(i + β-2β2/e)/(l-β)(l-β/e),

which completes the proof of (5.17). D
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