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SOME APPLICATIONS OF CANONICAL MOMENTS IN FOURIER

REGRESSION MODELS

BY HOLGER DETTE

Ruhr- Uniυersitdt Bochum

This paper applies recent results on canonical moments for the determination of
optimal designs for multivariate Fourier regression models. Optimal designs for dis-
criminating between different Fourier regression models can be found explicitly. It is
also demonstrated that these designs may be useful in orthogonal series estimation and
for testing additivity in nonparametric regression. In contrast to many other optimal-
ity criteria for the trigonometric regression model, the discrimination designs are not
necessarily uniformly distributed on equidistant points.

1. Introduct ion. Consider a Fourier regression model in q variables

i) 92X(χ)= Σ βn,...,iqf[cφj)+ Σ <*!,...* Π £,(*;)

where g, λ G N,x G [-TΓ, π]q, Ck(z) = cos(kz) (k = 0,. . . , A); Sk(z) = sin(A;2:) (k =
1,.. ., λ) and SO(z) — 1. A simple example is the case λ = 2, q = 2, where there are 11
regression functions of the form

1, cosrr, cosy, cosxcosy, cos(2x), cos(2y), sinx, siny, sinxsiny, sin(2x), sin(2y).

Functions of this type are frequently used in orthogonal series estimation of a regression
function g : [-π,π)q -> M [see e.g. Eubank (1988, p. 66), Mϋller (1988, p. 21 and
the discussion in Section 2)] where the unknown parameters are estimated by least
squares. It is well known that the crucial point in the application of these methods is
the appropriate choice of the "smoothing parameter" λ or the degree of the regression
[see e.g. Hart (1985)].
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In this paper we consider the corresponding design problem in this context. More

specifically, define

(1.2) g2χ-ι{x)= Σ βh,-,i,tlCΦj)+ Σ «*w,Π^fe )

and consider the class of models

(1.3)

where d is a given bound. Note that the model #2λ-i in (1.2) is obtained from g2χ
in (1.1) by omitting the terms l\Qj=i C0Φjxj) of the form ΣjLi ij — λ. If we omit the
corresponding sine terms in g2\-ι we obtain the model g2χ-2 etc.

For the selection of the appropriate model in the class T2d Anderson (1962) proposed
to test successively the hypotheses

H^2d): βlu...,iq=0 V i u . . . , i q : Σ ? = i i ; = d

HQ : P21}...,iq = U V Z i , . . . , ιq : zJJ = i *j — « — 1

HQ : ttii,...,iq = 0 V iu...,iq: Σ ^ = ι ij = 1

and to decide for the model g^Q where ko is the first index for which HQ °̂  is rejected.
Anderson (1962) and Spruill (1990) proved several optimality properties of this proce-
dure. Roughly speaking it minimizes the probability of the error of choosing a too high
degree Fourier regression model. Under the assumption of normally distributed errors
it is well known that the quality of the F-test for the hypothesis HQ(1 = 1,. . . , 2d)
depends on the given design, and a good discriminating design should improve the
power of these tests.

In this paper we apply the theory of canonical moments [see Dette and Studden
(1997)] in order to determine efficient designs for the discrimination between the dif-
ferent models of T2d In the following section we present a concrete example from or-
thogonal series estimation in order to give some motivation for considering multivariate
Fourier regression models and product designs on the ^-dimensional cube. Section 3
introduces the corresponding design problem, while Section 4 demonstrates the ap-
plication of canonical moments in this context. Finally, we present a solution of the
discriminating design problem and illustrate the results by several examples. Especially
we give some arguments for using uniform designs in orthogonal series estimation.

2. A motivating example. Our main interest in the models of the type (1.1) and
(1.2) stems from the fact that these functions are used for orthogonal series estimation
and certain tests of additivity in nonparametric regression [see e.g. Eubank (1988)
and Eubank, Hart, Simpson and Stefanski (1995)]. In order to present a transparent
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discussion we consider in this section a regression model with two explanatory variables

Uij = g{x\%, %2j) +£ij i = 1, •, πχ; j = 1 , . . . , n2

where ε n , . . . , εnin2 are independent identically distributed random variables with mean
0 and positive variance σ2. A typical problem in regression analysis is the estimation of
the function g by nonparametric methods. It is well known that the efficiency of linear
smoothers decreases rapidly with an increasing dimension of the explanatory variable.
On the other hand, if g(xux2) = fι(x\) + hfa), the estimation error tends to 0 at
the same rate as in the case of a single predictor [see Stone (1985)]. Therefore it is
particularly important to perform a proper model check of additivity in a multivariate
nonparametric regression. If the data confirms the hypothesis of additivity, further
data analysis can be improved by using more efficient methods in the additive model.
To be more precise we rewrite the regression function as

g(x\,x2) — fi(xi) + 72(^2) + 712(^15^2), (^1,^2) € [—π,π]2,

then the problem of testing additivity is to check whether fι2 = 0 [see e.g. Barry
(1993)]. A common assumption in these situations [see Barry (1993) or Eubank et al.
(1995)] is that independent observations y^ ί — 1,... ,ni; j = 1,... ,n 2 are available
on a grid {(^i»,^2j)}i!j=i w ^ h expectation g(xu,x2j) and variance σ2.

In order to estimate the regression function g it is common practice to use a two
dimensional Fourier series estimation

(2.1) gχ{xι,X2)= Σ ^jk^os(jxι)cos(kx2) + Σ βjksin{jxι)sin(kx2)
(\<<i+k<\ 2<j+k<X

V 'Ύ S

where the "sample Fourier" coefficients are defined by

U r=ls=l
722

yrsCOS(JXlr)cθs(kx2s) 1 < j + k < λ

= ~ Σ Σ Vrs
n

yrssiΏ-(Jχir)sin(kx2s) 1 < j + k < λ, j , fc>

2 Π\ 712

= - Σ Σ y™ s i n(i χ ir) i < j <
n r=lβ=l
2 τiι n>2

Σ Σ Vrs BΪn(jX2s) 1 < 3 <

and n = nxni denotes the total sample size. Note that the expression in (2.1) contains
also terms of the form cos^xx) and cos(A;x2) which are obtained by putting either
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j = 0 or k = 0 in the first sum of (2.1). Eubank, Hart, Simpson, and Stefanski (1995)
proposed a test of the interaction /i2(£i,£2) which is based on a statistics ofj'sample
Fourier coefficients" άjk and βjk which are defined in a similar manner as άjk, βjk- Note
that we consider here the cube [-π, π]q as design space and we have to use a Fourier
series estimator of the form g2χ or g2x-i in contrast to Eubank, Hart, Simpson, and
Stefanski (1995) who dealt with the problem on the cube [0, τr]9, where a Fourier series
approximation, which involves only the cosine terms, is sufficient.

It is well known that the crucial point in the application of these methods is the
appropriate choice of the smoothing parameter λ [see Hart (1985) or Eubank (1988)].
In order to obtain efficient estimation and testing procedures it is therefore particularly
important to be able to distinguish between regression models of different degree λ.
The designs constructed in the following sections will be discriminating designs for the
class of Fourier regression models T2d and should therefore be useful for estimating and
testing the additivity of nonparametric regression functions.

3. The design problem. We consider approximate designs here, i.e. probability
measures on the cube [—τr,τrp, with the interpretation that the observations are taken
at the support points in proportion to the corresponding masses [see Kiefer (1974)].
From a mathematical point of view it turns out to be useful to restrict ourselves to the
class of product designs, i.e.

Ξ = {σi x . . . x σq\θj probability measure on [—π, π], j — 1,. . . , q},

and it is demonstrated by Lim and Studden (1988) that designs of this type have ex-
tremely high efficiencies compared to the optimal design in the class of all measures
on the cube. Moreover, as pointed out in Section 2, such designs are useful for the
estimation or for testing the additivity of a nonparametric regression, where Fourier re-
gression models are commonly applied. Let fo denote the vector of regression functions
in the model gt [see (1.1) and (1.2)] and

(3.1) Mέ(σ) = ί fί{x)fj{x)dσ{x) \<i<2d

the information matrix of a design σ on the cube. It is well known that for an exact
design the volume of the ellipsoid of concentration for the parameters corresponding
to the hypothesis HQ is inverse proportional to

ι-i

and consequently a good discrimination design should make these quantities as large as
possible. Following Atkinson and Donev (1992) we introduce the following composite
optimality criterion for model discrimination.

DEFINITION 3.1 Let π = {aλ,βu . . . , ad, βd) denote a prior for the class T2ά, then
a design σ is called optimal discriminating design for the class T2d with respect to the
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prior π if it maximizes the function

where

denotes the number of parameters in the hypothesis HQ and HQ ί ~ 1,. . . , d.

It can easily be shown that Φ is a concave function and that Φ(σ) = Φ(σ*) where σ*
is obtained from σ by reflecting components at the origin. Consequently, by standard
arguments of design theory there exists a symmetric optimal discriminating design
and it is reasonable to restrict the optimization to the class of product measures with
symmetric components, i.e.

Ξ s := {σi x . . . x σq\σj is symmetric on [—π, π] V j = 1,. . . , q}.

If σ G Ξ s and fc/, fs/ denote the vectors collecting the cosine and sine terms of f2ι,
respectively, then it is easy to see that

(3.4) \M2e(σ)\ = |M/

|M2 ί_!(σ)| = iM/

where

(3.5) M/(σ) = f fCίe(x)fJ>e(x)dσ(x)
./[-π,7r]9

(3.6) M/(σ) = / fs/(x)fj/x)dσ(x)

denote the information matrices in the submodels fcj and fsj (ί = 1,. . . , d). Conse-
quently, the optimality criterion in (3.3) can be rewritten as

4. Fourier regression, polynomial models and canonical moments. It is
well known that the set of symmetric probability measures on the interval [—π, π] can
be mapped in a one to one manner on the set of all designs on the interval [—1,1] by the
transformation t = cosx [see e.g. Lau and Studden (1985)]. For a symmetric product
measure σ = σ\ x . . . x σq G Ξ s we therefore define a projection ξσ = ξι x . . . x ξq by
transforming each factor σj via t = cosx to ξ3•, (j = 1,.. ., q). Throughout this paper
let Tj(z) and Uj(z) denote the jth Chebyshev polynomial of the first and second kind,
then it is well known that

(4.1) cos(jarccosz) = Tj(z)

sin(jf arccos2:) = y/l — z2Uj-ι(z) (z e [—1,1])
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[see e.g. Rivlin (1990)]. This means that a projection of the product measure σ G Ξ s

on a measue on the cube [- l , l ] ς induces a transformation of the vector fcj into a
vector hcj which contains the NQtι functions

and similarly fsj is mapped into a vector hStι containing the Nqιe — 1 functions

where U-ι(z) = 1 and a(ίj) = 1 or 0 according to ij > 1 or ij = 0. Because the
determinant criterion is invariant with respect to reparametrizations it follows that the
optimality criterion Φ in (11) can be rewritten as

where the constant C does not depend on the design, Bι(ξσ) and Aι(ξσ) are the infor-
mation matrices corresponding to the regression functions

(z" 1 = 2:0 := 1) respectively, and £σ = ξι x . . . x ξq denotes the projection of

σ — aλ x . . . x aq. Therefore the discriminating design problem is equivalent to a
problem of designing an experiment for the discrimination between certain homo- and
heteroscedastic multivariate polynomial regression models.

An important tool used in optimal design for polynomials is the theory of canonical
moments which was introduced by Studden (1980, 1982a, 1982b, 1989) in this context.
We will only give a very brief heuristical introduction into this concept which should
be sufficient for the purpose of this paper. For more details we refer to the work of
Lau (1983, 1988), Skibinsky (1986) or to the recent monograph of Dette and Studden
(1997). It is well known that a probability measure on the interval [—1,1], say ξ, is
determined by its sequence of moments (ci,c 2 , . . .). Skibinsky (1967) defined a one to
one mapping from the sequences of ordinary moments onto sequences (pi,P2? •) whose
elements vary independently in the interval [0,1]. For a given probability measure ξ
on the interval [—1,1] the element pj of the corresponding sequence is called the jth
canonical moment ξ. In order to indicate the dependence on ξ we use at some places
the notation Pj(ξ). The dependence on the design is omitted whenever it is clear from
the context. If j is the first index for which pj G {0,1}, then the sequence of canonical
moments terminates at pj and the measure is supported at a finite number of points.
The support points and corresponding masses can be found explicitly by evaluating
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certain orthogonal polynomials [see Skibinsky (1986), Lau (1988) or Dette and Studden
(1997, Chapter 3)]. The set of probability measures on the interval [—1,1] with first
k canonical moments equal to ( p 1 ? . . . ,pk) e (0, l)k~λ x [0,1] is a singleton if and only
if Pk € {0,1}. Otherwise there exists an uncountable number of probability measures
corresponding to (pi , . . . ,Pfc) [see Skibinsky (1986) or Dette and Studden (1997)].

The following Lemma provides an explicit representation of the determinants \Bι(ξ) |
and |-A*(f)| in terms of the canonical moments corresponding to the factors of the
product design ξ = ξι x . . . x ξq and is the basic ingredient for the solution of the
optimal discriminating design problem.

LEMMA 4.1. Let ξ = ξι x . . . x ξq denote a product measure on the cube [—1, l]q

and p{ = Pi(ξj) the ith canonical moment of ξj (j = 1,..., q), then

(4-4) \Ad(ξ)\ = cq4 Π Π ( ^ - 1 7 1 , 2 * ) ^ - '
2 = 1 ^ = 1

(4-5) 1

where jjtι = l-pj,Cj,i =pί,7j,t = (l-Pi)Pi-i, 0,» = (l-Pi-i)Pί (* > 2),j = 1,... ,g.

PROOF: By the preceeding discussion Bι(ξ) is the information matrix of a product
design in a multivariate polynomial regression of degree ί using the first set in (4.3)
as regression functions. This problem was considered by Lim and Studden (1988) and
the representation (4.5) follows from their Lemma 4.3 and Lemma 5.1.

For the first part define dξi(xi) = ^ ( l - x ? ) ^ ^ ) , μ{ = / ^ ( l - x , 2 ) * ^ ) = 47^7^2

(i — 1,. . . , q) and ξ = ξι x . . . x ξq. Then it is easy to see that |Aj(f)| is essentially the

determinant of the information matrix of ξ in a multivariate polynomial regression of

degree d - 1, i.e. \Ad(ξ)\ = C|S d-i(OI (ΠLi βi)^4'1 If Ppζij denote the quantities

of Lemma 4.1 corresponding to the product measure £, then it follows from Corollary

1.5.6 in Dette and Studden (1997) that

(j > 1, i = 1,. . . , ς). Therefore assertion (4.5) shows

q /d-l \ Nq,d-l-l q

Π Π 7i^+i7i,^+2

ι = l £ = 1

which proves the remaining statement of the lemma.
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With the aid of Lemma 4.1 the optimal discriminating designs can be described
explicitly in terms of the canonical moments of the corresponding projections ξu..., ξq.

T H E O R E M 4.2 A design σ = σx x . . . xσq G Ξ s is an optimal discriminating product

design for the class of Fourier regression models T^d with respect to the prior π =

(αi, A , . , ad, βd) if and only if the canonical moments pj = Pj(ξi) of the corresponding

projection ξσ = ξι x . . . x ξq satisfy

(i — 1,. . . , q) where Nq_ι:-ι := 0.

PROOF: Observing (4.2) and Lemma 4.1 it follows that the optimal product
discriminating designs σ = σ\ x . . . x σq have corresponding projection ξσ — ξι x . . . x ξq

such that all factors ξj•, (j — 1,.. ., q) have identical canonical moments up to the order
2d. Therefore the optimality criterion in (4.2) reduces to

Γi 1
exp -Φ(σ) U

where we used Nq^j—Nq^j^ι = iV9_i^_j, the common canonical moments of £χ,..., ξq

are denoted by {pj}j>ι and d = P l , 7 l = 1 - Pl and ζj = (1 - Pj-i)Pj,Ίj = ί1 ~
Pj)Pj-ι (j > 2). The assertion now follows by a straightforward optimization, observing
that the canonical moments vary independently in the interval [0,1]. •

It is worthwhile to mention that the optimal discriminating designs are not neces-
sarily unique. Theorem 4.2 characterizes the first 2d canonical moments of the cor-
responding projections and every product measure whose projections have the same
canonical moments will also be an optimal discriminating (product) design for the class
Tϊd with respect to the prior π. On the other hand if α^ = 0 or βd = 0 it follows from
Theorem 4.2 that pι

2d = 1 or 0 (i = 1,..., q) and therefore all projections ξj are unique
[see Dette and Studden (1997)]. In these cases there exists a unique symmetric optimal
discriminating (product) design for the class T^d with respect to the prior π.

Theorem 4.1 provides a complete solution of the discriminating design problem for
the class of Fourier regression models in the set of all symmetric product measures
on the cube [—π,π]q. The corresponding projection ξ can be found from the optimal
canonical moments by standard methods [see e.g. Dette and Studden (1997), Ch. 3]
and the factors Oj of the optimal product design σ = σi x . . . x σq are obtained from
ξj via the projection t — cosrr. We will illustrate this method in the following section.

5. Applications. In this section we demonstrate the application of the results of
Section 4 in two examples. The first example is directly related to a given 2-dimensional
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Fourier regression model while the second one demonstrates a potential application
of our results for estimating and testing additivity of a nonparametric regression as
described in Eubank, Hart, Simpson and Stefanski (1995).

5.1. Fourier regression of degree 2 in two variables. Consider the case d — 2; q = 2
introduced in Section 1. The projection ξ = ξλ x ξ2 of the optimal discriminating
product design σ = σ\ x σ2 for the class T± — {51,52,53,54} is characterized by the
property that the canonical moments up to the order 4 of ξι and £2 are pi = p% — 1/2
and

_ 1 3/?i + 4/?2 + 2a2 β2
P2~S l + α 2 + /?2 ' P 4 ~ α 2 + /V

Every design ξι with these first four canonical moments corresponds via ξ = ξι x ξι and
the projection t = cosx to an optimal discriminating design σ — σ\ x σ\. Uniqueness
occurs if and only if β2 = 0 or a2 — 0 because in this case p 4 = 0 or p 4 = 1. For
example, if we assume a uniform prior for T±, i.e. α^ = /?j = 1/4 j = 1,2, we
obtain p* — 1/2 j = 1,..., 4. Terminating this sequence with p 5 = | , p 6 = 0 yields a

three point design ξι on [-1,1] with equal masses at the points — γ3/4,0, γ3/4. The
transformation t = cosx of this design to a symmetric measure on [—τr,τr] shows that
the design σ\ x σ{ with

is an optimal discriminating design with respect to the uniform prior. Alternatively we
could terminate at any other index j > 5, which gives a sequence of canonical moments
(Pi,P2>Pί>PtiPs>- ,Pj-uPj) where pfc G (0,1) (k = 5 , . . . , j - l ) and p, G {0,1}.
We can also obtain designs with an infinite number of support points by continuing
(P15.P25.P35.P4) with an infinite sequence of canonical moments. All these designs will
be optimal because the first four canonical moments of the corresponding projection
are given by 1/2,1/2,1/2,1/2. For example, the uniform distribution on [-τr,τr]2 is
an optimal discriminating (product) design because the corresponding projection onto
[—1,1]2 via t = cosx yields a product of arcsin-distributions and these have canonical
moments pj = 1/2 for all j > 1.

As an example where the optimal design is unique, consider the prior π* = ( | , | , 0, | ) .
In this case the canonical moments of the optimal discriminating design are given by
pλ = p3 = 1/2, p2 = 7/12, p4 = 1 which corresponds to the unique optimal projection
ξ* = ξ* x ξ* determined by the measure ξ2 with masses 7/24, 5/12, 7/24 at the points
— 1,0,1. The optimal discriminating (product) design for the class T = {51,52,54} with
respect to the prior π* is given by σ2 x σ2 where (σ2 is obtained from ξ2 via t = cos x
as)

K 9λ π* i " π -2 ° f π

(o.z) σ2 — < j _ 5_ j_ i_ j_48 24 24 24 48

5.2. Good designs for testing additivity. As pointed out in Section 2 the optimal
product discriminating designs may be useful for the estimation and certain tests of
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additivity in nonparametric regression. For the sake of simplicity we consider again the
case q = 2. Additionally we note now, that a common assumption in this situation is
that the grid of the design points {{xu,X2j)}1ϊj=ι is generated by two positive densities
hi and h2 on the interval [—τr,τr], such that

(5.3) Γ3 h i ( u ) d u = ' 2 i - ^ - j = l , . . . , n < i = 1 , 2
J—7Γ ^Ύli

(note that we have adjusted the assumptions of Eubank et al. (1995) to the interval
[—π,7r]). In this case repeated observations in the marginal distributions of the design
are not possible. An interesting question is now, which is an appropriate design density
for the nonparametric estimation of the regression and for the testing procedure of
Eubank et al. (1995). Because the main problem is the choice of an appropriate λ in
(2.1), this is essentially the problem of finding an optimal discriminating design for the
class of Fourier regression models {g2j\j > 1} Note that the number of observations
is given by n = nin 2 and as a consequence the number of parameters in the model is
limited. Therefore we consider the discrimination design problem for the class

where m = min{ni,n2} — 1 [see also Eubank et al. (1995)] which corresponds to the
discriminating design problem for the class T^m with respect to a uniform prior on
the models of even degrees, i.e. α^ = 0, £ = 1,.. ., m; βt — 1/m, £ — 1,. . . , m. By
Theorem 4.2 the optimal discriminating product design is given by σ* x σ* where the
corresponding projection ξ* of σ* has canonical moments

3=1

_ 1and P2t-ι = \ (£ — 1, •, m). Note that in this case the optimal discriminating design
is unique [see Dette and Studden (1997)]. In order to obtain a design with a continuous
density [as required by (5.3)] we note that p2i —> 1/2 as m -> oo and as consequence,
for moderate sample size, it makes sense to replace ξ* by the arcsine distribution ξa on
[-1,1] which satisfies Pj(ξa) = 1/2 for all j > 1. Note that ξa x ξa is also the projection
of an optimal discriminating design for the class ^d with respect to the uniform prior
on all models for any d G IN. This follows readily from Theorem 4.2 which shows that
for an — βι — ^ {£ — 1,. . ., d) the canonical moments of the corresponding projection
satisfy pt = 1/2 (£ = 1,.. ., 2d) [see also the discussion in Section 5.1]. Moreover, ξa

is the projection of the uniform distribution on [—τr,τr] via the mapping t = cosrr.
Consequently, an efficient choice of the densities hi and h2 in (5.3) is the uniform
measure on [-TΓ, π]. For this reason we propose as an efficient design for the orthogonal
series estimation and for testing the additivity of a nonparametric regression on the
cube [—π, τr]2 the equidistant grid of the form
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