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ABSTRACT
In nonparametric and robust inference, estimating functions are based

on suitable implicitly or explicitly defined statistical functionals. The in-
terplay of robustness and asymptotic efficiency properties of such typically
nonlinear estimators is appraised here by reference to some standard as well
as nonstandard problems that arise in statistical applications.
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1 Introduction

In parametrics, estimable parameters generally appear as algebraic constants
associated with the underlying distribution function(s) of assumed functional
form(s). In nonparametrics, estimable parameters are defined as function-
als of the underlying distribution(s) that may not have known functional
form(s). This formulation shifts emphasis to validity for a broad class of
distributions wherein efficiency and robustness properties dominate the sce-
nario. The U-statistics are the precursors of such nonparametric estimators;
they are of the kernel estimator type, and enjoy good efficiency (and unbi-
asedness) properties but may not be generally very robust. Moreover not
all parameters in a nonparametric setup are estimable or regular functionals
in the Hoeffding (1948) sense; the median or a percentile of a distribution
belonging to a broad class is a classical example of such a nonregular func-
tional. Significant developments in nonparametric and robust estimation
theory covering both kernel type and estimating equation (EE) type esti-
mating functions (EF) have taken place in the recent past. Three important
classes of estimators are the following

(i) L-estimators based on linear functions of order statistics,
(ii) M-estimators allied to the maximum likelihood estimators (MLE),
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and (iii) R-estimators based on suitable rank statistics.
There has also been a drive to unify these estimators in terms of differen-
tiable statistical functional, though that fails to cover all such estimators.
A good deal of discussion of such estimators with due attention to their ro-
bustness and asymptotic properties has appeared in various contemporary
research publications; we may refer to Jureckova and Sen (1996) for an up
to date treatise of this subject matter. Whereas L-estimators are explicitly
defined statistical functional, M- and R-estimators are defined implicitly
(as is generally the case with the parametric MLE). Conditional statistical
functional particularly arising in mixed-effects and multiυariate models have
added new dimensions to the scope of study of (asymptotic) properties of
such nonparametric estimators. In this quest, even the very linearity of the
model has been challenged (on the grounds of validity and robustness), and
hence, nonparametric regression functions have emerged in a better foot-
ing than before. Yet, the study of their robustness properties needs further
scrutiny with adequate emphasis on their finite sample behavior. In the
current study, due emphasis will be placed on such estimating function(al)s.

The basic motivation for estimating functions in some simple nonpara-
metric models is presented in Section 2. We examine the picture in a more
general (linear model) setup in Section 3. Some nonstandard models arising
in functional estimation problems are introduced in Section 4. The conclud-
ing section deals with some general remarks.

2 Nonparametric Estimating Functions

We may remark that the very formulation of the Fisher-consistency crite-
rion of statistical estimators brings the relevance of functionals of emprical
measures in estimation theory. In a simple setup, given n independent and
identically distributed random variables (i.i.d.r.v.) XL, . . . , Xn from a distri-
bution function (d.f.) F, we may introduce a statistical parameter θ = Θ(F)
as a functional of F, and a natural (i.e., plug-in) estimator of this parameter
is the corresponding sample counterpart

Tn = T(Xι,...,Xn) = θ(Fn), (2.1)

where Fn is the sample (empirical) d.f. The empirical d.f. Fn is known to

possess some optimality properties in a traditional setup, and if Θ(F) is a

linear functional, these properties are shared by Tn as well. The ingenuity

of Hoeffding (1948) lies in covering a more general class of functionals where

Θ(F) can be expressed as

Θ(F) = EF{g(Xu...,Xm)}

= J---jg(xι,...,xτn)dF(xι)- -dF{xτn), (2.2)
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where g(.) is a kernel of (finite) degree m(> 1), and without loss of generality,

we assume that g(.) is a symmetric function of its m arguments. Hoeffding

introduced the U-statistic as an (unbiased) estimator of Θ(F) :

i l ? . . . , X ί m ) , n>m. (2.3)

A closely related estimator is the von Mises (1947) functional

Vn = θ(Fn) = J'••• J'g(x1,...,xm)dFn(x1)-- dFn(xm)

- ^ ϋ (2-4)

For m = 1, Un and V̂  are the same (and average of i.i.d.r.v.'s). But for m >
2, they are generally not the same; whereas Un is an unbiased estimator, Vn

is generally not so. Nevertheless, under quite general regularity conditions,
\Vn — Un\ = Op(n~ι), so that asymptotically they share the same optimality
properties, studied in detail by various researchers; Sen (1981) contains a
systematic account of this work.

We may note that the above formulation is pivoted to a suitable kernel
#(.), and the optimality properties, interpreted in a nonparametric fashion,
rest on the adoption of the classical Rao-Blackwell theorem along with suf-
ficiency and completeness of sample order statistics. Nevertheless, from a
robustness perspective the choice of the kernel is very important. Generally,
if g(.) is unbounded, neither of these two estimators may be very robust. To
illustrate this feature, let us consider the simple situation where Θ(F) is the
variance of the d.f. F. In this case, the kernel g(.) is given by

g(xι,x2) = -(xι-x2)
2, m = 2, (2.5)

so that if F does not have a compact support, the estimators are vulnerable
to error contamination, gross errors or outliers. A similar situation arises
with the mean functional (where m = 1 and g(x) = rr), although there it may
be possible to introduce the location parameter by imposing symmetry of F
around its median and bypassing some of these technical difficulties. The
degree of nonrobustness is likely to be more with dispersion than location
measures. Robust estimation of location (regression) and scale parameters
has its genesis in this feature, and we will discuss this briefly later on. There
has been some attempts to introduce more robust dispersion functionals,
such as the mean absolute deviation and interquartile range, although they
may not belong to the class of estimable parameters in the sense of Hoeffding



420 SEN

(1948) and may also lack some generality prevailing in the case of location
parameters; we refer to Jureckova and Sen (1996) for some discussion.

We may also consider a variant of U- or F-statistics which merits con-
sideration on the ground of robustness. Instead of taking an average over
all possible subsample kernels g{Xiλ,..., Xim), 1 < i\ < - - < im < n, we
arrange them in an ascending order, and denote the median of these Q)
pseudovalues by θn; this can be proposed as an estimator of the median
of the distribution of the kernel g(X\,... ,-Xm) Thus, whenever for this
kernel distribution, the median and mean are the same, a case that holds
when this distribution is symmetric, or they differ by a known constant, a
robust estimator can be obtained in this manner. In general, we may define
a {/-process by letting

. , X i m ) < y ) , y G R . (2.6)

Virtually what has been studied for [/-statistics remains true for such
U-processes, and they have better robustness perspectives. Thus (Hadamard
differentiate) statistical functionals of such [/-processes may be advocated
on the ground of robustness as well as other optimality properties. This line
of attack initiated the development of the [/-processes; in a more abstract
setting, Nolan and Pollard (1987), and others, have studied related asymp-
totics. We would not go into further depths on this topic here. There are
other types of [/-processes, more akin to sequential setups, and we refer to
Sen (1981) for some broad coverage of them.

For both location and dispersion measures, linear functions of order
statistics, known as L-statistics, have been used extensively in the literature;
they are generally efficient, adaptable in parametric as well as nonparamet-
ric setups, and generally possess good robustness properties. The estimating
equation for L-estimators of location and scale parameters in (parametric)
location-scale family of distributions has its genesis in the theory of (BLUE)
best linear unbiased estimators which incorporates the weighted least squares
(WLS) methodology on the set of order statistics. Led by this genesis, in a
nonparametric setup, a parameter Θ(F) is expressed as a functional

Θ(F) =
J-

g(x)J(F(x))dF(x), (2.7)
oo

where g(.) is real valued, and J = {J(u),u G (0,1)} is a weight-function
defined on the unit interval (0,1). It is easy to see that the corresponding
sample counterpart θ(Fn), given by

)Jn(i/n), (2.8)
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is an L-estimator; here the Xn:i,i = 1,... , n stand for the order statistics,
and Jn(.) is a suitable version converging to J(.) (as n increases) almost
everwhere. The flexibility of this approach stems from the choice of g(.)
and J(.), for which Θ(F) remains invariant, in such a way that retaining
robustness to a greater extent, not much is compromized on (asymptotic)
efficiency of an estimator of θ(Fn). For example, in the location model, the
trimmed mean, a member of this class of L-estimators, for a small amount of
trimming (at both ends) combines robustness with good efficiency properties.
The theory of (asymptoptically) ABLUE is geared to this direction; it covers
both the cases of smooth weight functions and a combination of a selected
number of order statistics. For this location model, whenever F is assumed
to be symmetric about its median (0), one may take g(x) = x a.e., and for
nonnegative Jn(i/n) (adding upto 1), we have a convex combination of the
order statistics as an estimator of θ. Within this class, one may like to choose
the weight-function in such a way that robustness can be fruitfully combined
with high efficiency properties. Generally smoother weight functions are
used in this context. For the location-scale problems, the sample quantiles
and interquartile range are particular cases of such L-estimators. It is often
possible to express an L-statistic as a U-statistic, and in an asymptotic setup,
a first order approximation for L-estimators in terms of U-statistics works
out well [viz., Sen (1981, ch.7)]. A notable example in this context is the
rank-weighted mean Tn^ which is the average of all the subsample medians
of size 2k + 1 from the given sample of size n. As in Sen (1964), we may
write this equivalently as

Γ ( ' ' ) ( % ' ) (2..)
so that for k = 0, we have the sample mean, and for k = [(n — l)/2], we

have the sample median. Incidentally, this example, for a k > 1, provides an

illustration for the robustness of U-statistics even when the kernel is possibly

unbounded.

In order to introduce the salient features of the estimating functions for

R- and M-estimators it may be more convenient to start with the conven-

tional MLE when the assumed (location) model is not necessarily the true

one. Assume that X\,..., Xn are drawn from a population with an abso-

lutely continuous density function f(x — θ) where /(.) is symmetric about the

origin. Assume further that the true density function is given by g(x - θ)

where g(.) is also absolutely continuous and symmetric about the origin.

Then the estimating function for obtaining the MLE θn based on the as-

sumed model is given by

£{-/'(*< - θ)/f(Xi - θ)} = 0. (2.10)
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Note that under the assumed conditions (on / and g),

\-f'(x - θ)/f(x - θ)}g(x - θ)dx = 0, (2.11)

so that the MLE based on the assumed model remains pertinent to the entire
class of g satisfying the above symmetry condition. Let us denote by

A2(f,g) = J{-f(χ)/f(χ)}2g(χ)dχ,

Ί(f,9) = J{-f'(χ)/f(χ)}g'(χ)dx,

1(9) = j{-g'{χ)lg{χ)γg{χ)dx. (2.12)

Then following standard asymptotics for the MLE, it can be shown that

nι/2(θn - θ) ^v Λf(O, A2(f,g)/Ί

2(f,g) ). (2.13)

Let us denote the MLE based on the true model by θn. Then we have the
following result:

l λf(O, [Iig)}-1)- (2-14)

Next note that by the Cauchy-Schwarz inequality,

-y2(f,g)<A2(f,g)I(g), (2.15)

where the equality sign holds only when {—f'(x)/f(x)} = {—gf(x)/g(x)}
almost everywhere (a.e.). Thus, if both / and g belong to the same location-
scale family of densities for which the log-derivative scale-equivariant, as
is the case when g is Laplace or normal, then θn and θn are isomorphic,
and there is no loss of efficiency due to incorrect model assumption; this
is the usual parametric orthogonality condition referred to in the literature.
This orthogonality condition is not universal for the location-scale family
of densities; the Cauchy density is a classical example toward this point.
On the other hand, if / and g do not satisfy this condition, the asymptotic
relative efficiency (ARE) of θn with respect to θn is given by

e(f,9) = Ί2(f,9)/{Π9)A2(f,g)} (< 1). (2.16)

This ARE can be quite low depending on the divergence of / and g. For

example if g is Cauchy while / is taken to be normal, A2(f,g) = oo, and

hence, e(/,g) = 0. In the above development, we have tacitly assumed

that (2.10) holds. Sans the assumed symmetry of / and g this may not be

generally true, and therefore in such a case, the MLE θn may have serious

bias, and this in turn may make it inconsistent too. In any case, it is clear
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that with an incorrect model, the derived MLE can not attain the Cramer-
Rao information bound for its asymptotic mean square error, and hence,
loses its (asymptotic) optimality properties.

The above picture turns out to be far more complex in a general para-
metric model where θ may not be the location parameter or the density may
not be symmetric, and as such it reveals the grave nonrobustness aspects of
the classical MLE to plausible model departures. The nonparametric situ-
ation is more complex in the sense that / and g may not simply differ in
nuisance parameters, and their separability is generally defined in terms of
more general metrics. As such, the methodology developed for parametric
EF in the presence of nuisance parameters may not be of much use in this
more general setup. In the classical robust inference setup, Huber (1964)
introduced various measures of departures from the assumed model, such
as the Leυi-distance, Kolmogoroυ-distance and Prokhorov-distance, and has
exhibited the possible lack of robustness of the classical MLE. Following
his ground-breraking work, we may therefore conceive of a suitable score
function ψ(t),t G ΊZ, and for the location model, consider the estimating
equation:

n

- 0 ) = O; (2.17)

to have good robustness properties of the derived (M-)estimator, generally
the influence function ψ is taken to be bounded a.e. In order that the above
EE provides a consistent solution, we need that

φ(x)g(x)dx = 0, (2.18)

and a sufficient condition for this is the skew-symmetry of ψ and symmetry
of g (both about 0). Within this broad class, specific choice of ψ can be
made to achieve local efficiency, and we may refer to Hampel et al. (1986)
and Jureckova and Sen (1996) for details.

The EF's for R-estimators have a greater appeal from global robustness
perspectives. It stems from the basic fact that under suitable hypotheses of
invariance, a rank statistic is genuinely distribution-free, so that whenever
it has some monotinicity properties with respect to an alignment in the
direction of alternative hypotheses, we have a robust EF. For example in
the location model, assuming that the underlying d.f. G is symmetric, and
incorporating suitable scores αn(l) < < an(ή), we may consider a signed
rank statistic

Λ+J = Sn say, (2.19)

where R^i is the rank of \X{\ among \X\\,..., \Xn\, for i = 1,... ,n. Note

that under the null hypothesis that θ is null, Sn has a known, symmetric
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distribution. Moreover, if we replace the X{ by X{ — α, for some real α, and
denote the corresponding (aligned) signed rank statistic by Sn(a), then it is
easy to verify that

Sn(a) is nonincreasing in a ETZ. (2.20)

Therefore, the EF in this case is Sn(a), and the corresponding EE is

Sn(a) " = " 0, (2.21)

where, in view of the usual step-function nature of Sn(α), " = " is defined
precisely as follows. We let

0n,i = sup{α : Sn(a) > 0}, 0n,2 = inf{α : Sn{a) < 0};

θn = \[θnΛ+θn^ (2.22)

Although in the case of the sign statistic θn turns out to be the sample
median, and for the Wilcoxon signed rank statistic, it is the median of the
mid-ranges, in general, an algebraic expression may not be available, and an
iterative solution has to be prescribed. Such R-estimators are distribution-
free in the sense that they remain valid for the entire class of symmteric
distributions, and unlike the case of the MLE, here the absolute continuity
of the density function or a finite Fisher information need not be a part of
the regularity assumptions.

Let us have a close look into the ranks i?^, which assume the integer
values 1,... , n. Thus, if an observation is moved to the extreme right (or
left), it continues to have the rank n (or 1), no matter howfar it is shifted.
In that way, the rank scores have good robustness properties for error con-
taminations and outliers. R-estimators are translation-invariant, robust,
consistent and median-unbiased under very general regularity assumptions.
Their asymptotic properties have been extensively studied in the literature;
see for example, Jureckova and Sen (1996). Under appropriate regularity
conditions, we have

v2\ (2.23)

where

v2 = {j φ2{u)du)l{j φ{u){-g'{G-ι{u))lg{G-ι{u))}du}\ (2.24)

and φ{.) is the score generating function for the an(k). As such, we may con-

clude that the nonparametric and robustness aspects of R-estimators prevail

as long as the score functyion φ(.) is square integrable inside (0,1); unlike
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the case of M-estimators, here we need not confine ourselves to bounded
score functions. Within this broad class of score functions, one may choose
specific members such that the ARE at a given G is a maximum, so that
robustness can also be combined with local optimality.

In passing we may remark that for both M- and R-estimators, the d.f. G
is largely treated as a nuisance (functional) parameter, so that the situation
differs drastically from the parametric situation where one has generally a
finite (and typically small) number of nuisance parameters. Further, looking
at the last equation, we gather that

v2 > [I(g)]-\ V0€ £2(0,1), (2.25)

where the equality sign holds only when φ(u) = {-g'{G~ι(u))/g(G~ι(u))},
u G (0,1). In this way, the situation is quite comparable to the case of
M-estimators (sans the boundedness condition). As a matter of fact, both
M- and R-estimators have certain asymptotic equivalence properties (with
congruent score functions), and such general equivalence results for L-, M-
and R-estimators have been studied in detail in Jureckova and Sen (1996). It
follows from their general discussion that all of them are expressible in terms
of statistical functional; L-estimators being defined explicitly, while M- and
R-estimators implicitly. For such statistical functionals, suitable modes of
differentiability have been incorporated to provide convenient means for the
study of general asymptotic properties of such estimators. Among these,
the Hadamard differentiability property has been exploited mostly. It turns
out [viz., Sen, 1996a] that U-statistics for unbounded kernels may not be
Hadamard differentiable, although they possess nice (reverse) martingale
properties which provide access to various probabilistic tools that can be
used to study related asymptotics. Likewise for L-, M- and R-estimators in
a functional mold, one needs bounded score (weight) functions to verify the
desired Hadamard differentiability property. For L- and M-estimators, such
a boundedness condition does not pose any serious threat (as robustness con-
siderations often prompt bounded influence functions), but bounded scores
for R-estimators exclude some important statistics (such as the classical
normal scores and log-rank scores statistics), and hence, this differentiability
approach for R-estimators is not totally appropriate. Fortunately, there are
alterenative methodologies, studied in detail in Jureckova and Sen (1996,
ch.6), which provide a better resolution, and hence, we need not be over-
concerned about Hadamard differentiability of EF's for R-estimators.

For all the types of estimators considered above there is a basic query:
Treating the underlying density g to be a nuisance functional belonging to
a general class Q, is it possible to formulate some EF which yields asymp-
totically optimal estimators in the sense of attainment of the information
bound for its asymptotic mean square error in a semiparametric setup? Un-
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der fairly general regulaity conditions, we have an affirmative answer. We

illustrate this point with adaptive R-estimators of location ( Huskova and

Sen, 1986), and a similar situation holds for other functionals as well (Sen,

1996a). Let us define the Fisher-information score generating function by

Φg(t) = {-9\G-ι(t))lg{G-1 (*))}, t 6 (0,1), (2.26)

and assume that I(g) = JQ φ2

g(t)dt < oo. Then we may consider a Fourier
series expansion

φg(t) = ΣΊkPk(t), t 6(0,1) (2.27)
Λ;>0

where the {Pfc(.)? k >0} form a complete orthonornal system [on (0,1)] and
the Fourier coefficients 7^ are defined as

7* = / φ9{t)Pk{t)dt, for k = 0,1,.... (2.28)
Jo

For adaptive R-estimators, Huskova and Sen (1985,1986) advocated the use
of the Legendre polynomial system on (0,1), where for each k(= 0,1,2,...),

Pk(t) = (2k + Iγl2{-\)k{k\)-\dkldtk){t{\ - t)}k, t e (0,1), (2.29)

so that P0(t) = 1, Pι(t) = Λ/3(2< - 1), P2(<) = \/5{l - 6t(l - t)} and
so on. Thus P\(.) is a variant of the Wilcoxon scores, and when g is a
logistic density, it is easy to see that φ(.) = Pi(.)? while for a symmetric
5, it follows from the above that j2k = 0, Vfc > 0. In general the Fourier
series is an infinite one, though convergent. The basic idea is to truncate
this infinite series at a suitable stopping number, say, Kn, and for such a
truncated version Σk<χn ΊkPkif), to estimate the Fourier coefficients ηk by
the classical Jureckova-linearity method. If we denote these estimates by
7fc,n> k ~ ^n> then our adaptive version of the Fisher score function is

ΦgA*)= Σ 7*,nΉ(*)>*e(0,l). (2.30)
k<Kn

One may then define a (signed-) rank statistic as in before with the scores

άn(k), k = l , . . . , n generated by the adaptive score generating function

φg,n{m)i a n d , based on the same alignment principle, obtain adaptive R-

estimators of location. These estimators are robust and asymptotically effi-

cient for the class of densities with finite Fisher information. Huskova and

Sen (1986) considered a suitable sequential version to formulate suitable

stopping numbers {Kn} for which there are suitable rate of convergence; a

simpler algorathim without appealing to such a sequential scheme has been

worked out in Sen (1996a).
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3 Estimating Functions for Linear Models

In linear models though observations may not be i.d., the error components
are assumed to be i.i.d.r.v.'s. Conventionally, we define a vector of observable
random variables Yn = (YΊ,..., Yn)' by letting

Yn = Xnβ + en] en = (ei,...,en)', (3.1)

where X n is a given (nonstochastic) n x p matrix, β = (/?i,... ,βp)' is a
vector of unknown regression parameters, and the errors eι are assumed to
be i.i.d.r.v.'s. For normally distributed errors the ML EE's are linear in Yn,
and they agree with the LSE. Specifically, we have

βn = {X^Xn}"1x;Yn. (3.2)

In a general parametric model with an assumed error density /, the ML EE
is given by

= 0. (3-3)

where X^ = (x' l 5... ,x^) The situation is quite comparable to the i.i.d.
case presented in (2.9) through (2.15), and although the ARE properties
are isomorphic, possible lack of robustness would be more accentuated here
because of the nonidentity of the x .̂ Moreover, for / not belonging to an
exponential family, the resulting MLE in (3.3) may not be linear estimators,
and hence, a trial and error solution may be necessary.

The usual M-estimators for such linear models are based on EF's that
resemble (3.3) along the same line as in Section 2: One would use a score
function ψ(.) : Έ, —> Έ, satisfying the same regularity conditions as in Section
2, and consider the EE:

(3.4)

Jureckova and Sen (1996,ch.5) contains an extensive treatment of first and
second order asymptotic distributional representations for M-estimators in
linear models; their treatise exploits mostly the uniform asymptotic linearity
results of M-statistics (in the regression parameters). Another approach
to this type of representation is based on the Hadamard differentiability of
extended statistical functionals, and this has been considered in detail by Ren
and Sen (1991,1994,1995). As in location models, such M-estimators have
good local robustness and optimality properties, but they are not genuinely
nonparametric.
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R-estimators of regression parameters are based on suitable linear rank
statistics, and they are globally robust and asymptotically optimal for suit-
able subfamilies of underlying densities. For a given b E Kp, we define the
residuals by

Yi(b) = Yi-*ib, i = l , . . . ,n, (3.5)

and denote the aligned ranks by

l , . . . ,n . (3.6)
. 7 = 1

Then a vector of aligned rank statistics is defined by

), b e W, (3.7)

where the scores αn(l) < <an(ή) are defined as in the location case, and
x n = n " 1 Σ i< n Xί Note that if we take the design matrix in the conventional
form with the first column vector as l n , then β\ is the intercept parameter.
In this case, in the last equation, the contribution of the first coordinate of
the Xi and b will be null (as the ranks are translation-invariant). Thus, we
would have p — 1 elements in Ln(b), while for the first element, we need to
use suitable signed rank statistics.

In the case of real valued 6, for monotone scores, Ln(b) is a monotone
(step-) function, so that an estimator of β can be obtained by "equating
Ln(b) to 0"; unmiform asymptotic linearity of Ln(b) in a shrinking neigh-
borhood of β provides access to the asymptotic properties of the estimator.
In the case of vector valued b, unlike the case of LSE, these aligned linear
rank statistics are not linear in b; typically for monotone scores, for each
j(= 1,... ,p), the jth coordinate of Ln(b) is montone in 6j, but may not be
so with respect to the remaining components of b, so we do not have a lin-
ear EE. There are various approaches to motivate such EF's, and a detailed
account of these is given by Jureckova and Sen (1996, ch.6). Jaeckel (1972)
introduced a rank dispersion measure

Dn(b) = Σ(Yi - xzb)αn(i?ni(b)), b e W>, (3.8)

and proposed to minimize Dn(b) with respect to b to obtain an estimator
of β. Since the ranks are translation-invariant, it can be shown easily that
Dn(b) is nonnegative, piecewise linear (and hence, continuous) and convex
function of b. Thus, jDn(b) is almost everywhere differentiate with respect
to b and (d/db)Dn(b) = — Ln(b) at any point of differentiability. Therefore
'equating Ln(b) to 0' in a suitable norm (such as the C\ norm) yields a conve-
nient R-estimator of β. In this context too, the uniform asymptotic linearity
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of Ln(b) in b in a shrinking neighborhood of the true β provides access to
the variety of asymptotic results pertaining to robustness and asymptotic
representations for R-estimators.

R-estimators in linear models are closely related to regression rank scores
(RRS) estimators, developed mostly due to Gutenbrunner and Jureckova
(1992). To indroduce such estimators, we make use of some related EF's,
due to Koenker and Bassett (1978), termed the regression quantiles (RQ),
which possess a basic regression equivariance property and are variants of
L-estimators in linear models. For a given a : 0 < a < 1, define

pa{x) = \X\{{1 - a)I{x < 0) + al{x > 0)}, i G K , (3.9)

and define the α-RQ estimator J3n(a) by

βn(a) = Mgmm{ΣPa(Yi - xjb)) : b e Up}. (3.10)

Following Koenker and Bassett (1978), it can also be shown that an a—RQ
can be characterized as optimal solution (/3(α)) of the linear programming
problem

n n

a2_\rf + (1 — ex) 2Zrϊ~ = m^n

Xijβj + rf -r{ = y , i = 1,..., n;
t = l

βjeπ,j = l,...,n 4>0, r " > 0 , i = l,...,n; (3.11)

where rf(r~) is the positive (negative) part of the residual Y{ — /3'xi, i =

1,... ,n. Thus, for a given a : 0 < a < 1/2, usually small, if we define a

diagonal matrix Cn = diag(cnχ,..., cnn) by letting

cni = I{xJ/3(α) < Yi < x'iβ{l - α)}, i = 1,..., n, (3.12)

then an a-trimmed (T)LSE of β can be defined as

Tn(α) = (X^CnXn)-1x;CnYn. (3.13)

Here the EF in (3.9)-(3.10) is primarily used to obtain the matrix C n , so

that robustness and efficiency considerations are to be related to this basic

choice. We refer to Jureckova and Sen (1996, ch.4) for some detail discus-

sion of these aspects of RQ and related TLSE. For introducing the RRS

estimators, for a given a E (0,1), we define the vector of regression ranks
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(RR) &n(α) = (αni(α),. . . ,α n n (α)) ' as the optimal solution of the linear

programming problem:

n n n

Σ Yiάni{θi) = max ] ζ Xijάni{a) = (1 - α) ̂  x^, j = 1,... ,p;
i = l i=l i=l

fini(α) 6 [0,1], i = l , . . . ,n ; α € ( 0 , l ) . (3.14)

Let φ(u),u e (0,1) be a nondecreasing, square integrable score generating
function, and let

φn{u) = 0(α*)J(O < ti < α*) + φ(u)I(a* < u < 1 - a*)

+ φ(l - a*)I(l - a* < u < 1), (3.15)

where α G (0,1/2) and is usually chosen small. Then the RRS, generated
by the score function φ, are taken as

Γ1

bni = ~ φn{θL)dάni(a), i = 1,..., n. (3.16)
Jo

We can then consider a regression rank measure of dispersion:

D*n(b) = Σ(Yi - b 'x;)[MY - Xb) - φl (3.17)

where the RRS (bni(Y — Xb), i = 1,..., n) are computed from the aligned
observations Y — Xb. Then the derived RRS estimator is defined as

βn = Arg. min{££(b) : b e W}. (3.18)

A similar estimating function works out for the estimation of a subvector of
β. The interesting fact is that under fairly general regularity conditions and
based on a common score function </>(.), the classical R-estimator and the
RRS estimator are asymptotically equivalent upto the order (n" 1 / 2 ); we refer
to Section 6.8 of Jureckova and Sen (1996) for details. Robustness aspects of
both these type of rank estimators can therefore be studied in a unified man-
ner, without requiring a bounded score generating function. We conclude
this section with a note that as in the case with the semiparametric loca-
tion model, here in the semiparametric linear models whenever the density
/ admits a finite Fisher information /(/), we may construct adaptive EF's
based on adaptive rank scores statistics, and these yield asymptotiocally op-
timator estimators of the parameters involved in the parametric part of the
model [viz., Huskova and Sen, 1985; Sen, 1996a]. Thus, adaptive EF's in
semiparametric linear models, though computationally more complex, yield
robust and asymptotically efficient estimators.



ROBUST NONPARAMETRICS 431

4 Estimating Functionals.

In traditional and generalized linear models, as well as in other specific forms
of nonlinear models, essentially the parameter space is finite dimensional,so
that EF's are vector valued. Robustness and nonparametric perspectives
often prompt us not to advocate such finite dimensional models; the condi-
tional mean or quantile regression functions in a multuivariate nonparamet-
ric setup are simple and classical examples of such functionals. While the
basic motivations for EF's remain essentially the same in such a functional
case, technical manipulations are usually more extensive. For this reason,
robustness and efficiency considerations are to be assessed in a somewhat
different manner.

In a multivariate setup, let (Ŷ , X;), i — 1,..., n, be i.i.d.r.v.'s with a d.f.
F defined on 7£p + 1, and let G(y\κ) be the conditional d.f. of y, given X = x.
Then typically a regression functional of Y on x is a location functional of
the conditional d.f. G(.|x), x E Vf \ Therefore as long as this conditional
d.f. can be estimated consistently and efficiently in a nonparametric fash-
ion, suitable sample counterparts of such location functionals (based on, for
example, appropriate L-, M- and R-statistics) can be constructed in a ro-
bust manner. Sans multinormality of F, such regression functionals may
not be generally linear (in x), and moreover a specific nonlinear form in
turn calls for a specific form of F, though in general such functionals may
otherwise exhibit good smoothness properties. Therefore in a nonparametric
or semiparametric setup, it seems quite plausable to incorporate appropriate
smoothness conditions on such conditional functionals and estimate them in
a robust, consistent and efficient manner. Of course, one has to pay a little
penalty for choosing an infinite dimensional parameter space when actually
a finite dimensional one prevails, but, in the opposite case, a finite dimen-
sional model based statistical analysis may be totally inadequate when a
functional parameter space prevails.

Among various possibilities, we may mention specifically the two popular
approaches to this problem. They are (i) the nearest neighbor (NN) method,
and (ii) kernel smooting methods. In a NN-method, corresponding to a set
pivot x0, usually lying in a convex set C £ 7£p, we define the pseudoυariables

Zi = d(Xi,x0), i = l , . . . , n , (4.1)

where d(.) is a suitable metric on Rp (which may as well be taken as the

Euclidean norm), and denote the corresponding order statistics by Zn:\ <

• < Zn:n] note that they specifically depend on the base sample as well as

the chosen pivot. Also we define a nondecreasing sequence {kn} of positive

integers such that kn -> oo but n~ιkn -> 0 as n ->• oo. Further, we set

the antiranks Si by letting Zn:i correspond to X^, for i = 1,..., n. Then a
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empirical d.f. at the pivot x 0 is defined by

Gn,kn(yM = K'ΣΠYst <v), ven. (4.2)

Estimating functionals are then based on the entire set Gnjfcn( |xo), x0 G C.
Naturally robustness considerations dominate the choice of such function-
als (viz., Sen 1996b). In a kernel method, we choose a known density φ(x)
possessing some smoothness properties such as unimodality and symmetry
around 0, compact support and differentiability upto a certain order, and de-
fine a smooth conditional empirical d.f. by integrating 0(x—xo) with respect
to the empirical d.f. Fn. This conditional measure is then incorporated in
the formulation of suitable robust functionals. These two methods compare
favorably with respect to their asymptotic bias and asymptotic mean squares
and robustness pictures. There is, however, a common concern that stems
from the fact that such conditional functionals span an infinite dimensional
parameter space, and hence, in setting suitable confidence sets, a prescrip-
tion in terms of a finite number of pivots may not suffice. Weak convergence
approaches [viz., Sen 1993, 1995a, 1996b] provide viable alternatives, yet
retaining robustness to a certain extent.

5 General Remarks

In the context of (generalized) linear models (GLM),possibly involving nui-
sance parameters, EF's have received a good deal of attention, and these de-
velopments constitute a major advancement in the research literature. There
is, however, a point worth mentioning: The very motivation of retaining the
flavor of exponential family of densities by skillful choice of (canonical) link
functions yields (generalized) GEE's that share nonrobustness properties
with MLE's and other parametric estimators. In most biomedical appli-
cations the response variate is nonnegative and has typically a positively
skewed distribution, so often the Box-Cox type transformation is used to
induce more symmetry (if not normality); however, this may also distort
the inherent linearity or other parametric structure of the underlying dose-
response relations. Hence GLM [ viz., McCullagh and Nelder, 1989] may not
be universally advocated in such studies. Considerations of model robustness
naturally call for nonparametrics or semiparametrics , and as such L-, M-
and R- EF's along with their siblings come into the picture. In this context,
the dimension of nuisance parameters is often large if not infinity, and the
estmation parameter space may also be large. In a quasi-parametric setup,
under the coverup of semiparametrics, Godambe (1985) initiated a line of
attack for such EF's that are potentially applicable to various stochastic
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processes where independence of the observations may not hold. A good
deal of extensions of his seminal work has taken place during the past ten
years. If we have a good feeling of the conditional distributions of the obser-
vations given the past ones, then Godambe's scores can be obtained in an
appropriate manner, and his suggested avenue leads to a finite sample op-
timality property, interpreted in terms of the smallness of the mean square
error of the estimators. However, sans the knowledge of these underlying
distributions, we may not be able to decide a proper choice of the Godambe
scores, and this may vitiate his small sample optimality properies when the
assumed scores do not correspond to the likelihood based ones, so such semi-
parametric procedures are likely to be quite nonrobust to possible departures
of the assumed conditional distributions from the true ones. Therefore, as in
Huber (1964), we should consider some scores which remain robust in such
situations. In a genuine semiparametric model, we usually allow a finite
dimensional estimable parameter space retaining the infinite dimensionality
of the nuisance parameter space; for example, the d.f.'s are unknown and
arbitrary, but the linearity of regression prevails. As such, compared to pure
nonparametrics, such semiparametrics may yield more efficient estimators
when the postulated model is correct, but is naturally more nonrobust to
plausible departures from such assumed models. One other advantage of
semiparametrics is that the finite dimensionality of the estimable parameter
space usually permits the adoption of adaptive procedures which are asymp-
totically optimal with respect to the postulated model. We refer again to
the semiparametric linear models for which adaptive R- or M-estimators
which are asymptotically efficient [viz., Huskova and Sen (1985,1986)]. In
a relatively more general setup of statistical functionals, under a similar
semiparametric modeling, such adaptive EF's have also been discussed in
Sen (1996a). Prom this perspective it is clear that modeling part is a vital
task in formulating the estimation space, and EF's are to be considered in the
light of dimensionality and structure of this setup. In this context, robust-
ness and (asymptotic) efficiency considerations are of utmost importance. In
most biomedical, clinical and environmental studies, generally this modeling
is far more complex, and conventional parametric GLM's may not be that
appropriate even following suitable transformations. Therefore, there is a
need to focus on the appropriateness of suitable semiparametric and non-
parametric models, and model flexibility often favors the latter choice. We
refer to Sen (1996c) for some discussion of EF's in GLM's in biostatistical
applications.
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