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He looked into the water and saw that it was made up of a thousand thou-
sand thousand and one different currents, each one a different colour, weav-
ing in and out of one another like a liquid tapestry of breathtaking complez-
ity; and Iff explained that these were the Streams of Story, that each coloured
strand represented and contained a single tale.

(Salman Rushdie, Haroun and the Sea of Stories, 1990)

1 The first ten years

A good case can be made that modern robustness begins in 1960, with
the papers by J.W. Tukey on sampling from contaminated distributions,
and by F.J. Anscombe on the rejection of outliers. Tukey’s paper drew
attention to the dramatic effects of seemingly negligible deviations from the
model, and it made effective use of asymptotics in combination with the
gross error model. Anscombe introduced a seminal insurance idea: sacrifice
some performance at the model in order to insure against ill effects caused
by deviations from it. Most of the basic ideas, concepts and methods of
robustness were invented in quick succession during the following years and
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were in place by about 1970.

In 1964 I recast Tukey’s general setup into an asymptotic minimax
framework and was able to solve it. Important points were: the insistence
on finite, but small deviations, the formal recognition that a large error
occurring with low probability is a small deviation, and the switch from
the then prevalent criterion of relative efficiency to absolute performance.
At the same time, I introduced the notion of maximum likelihood type or
M-estimators.

Hampel (1968) added the formal definition of qualitative robustness
(continuity under a suitable weak topology), infinitesimal robustness in
form of the influence function (von Mises derivative of a statistical func-
tional) and the notion of breakdown point.

A nagging early worry had been the possible irrelevancy of asymptotic
approaches: conceptually, 1% gross errors in samples of 1000 are entirely
different from the same error rate in samples of 5. This worry was laid
to rest by Huber (1965, 1968): both for tests and for estimates, there are
qualitatively identical and even quantitatively similar exact finite sample
minimax robustness results.

The end of the decade saw the first steps of an extension of asymp-
totic robustness theory beyond location to more general parametric mod-
els, namely the introduction of shrinking neighborhoods by C. Huber-Carol
(1970), as well as the first attempt at studentizing (Huber, 1970).

The basic methodology for Monte Carlo studies of robust estimators was
established in Princeton 1970/71, see Andrews et al. (1972). That study
more or less finished off the problem of robustly estimating a single location
parameter in samples of size 10 or larger, opening the way for more general
multi-parameter problems.

In this paper I shall pick a few of the more interesting robustness ideas
and follow the strands of their stories to the present. What has happened to
the early strands since their invention? What important new strands have
begun in the 1970’s and 1980’s? I shall avoid technicalities and instead give
a reference to a recent survey or monograph, where feasible. Completeness
is not intended; for a recent “far from complete” survey of research direc-
tions in robust statistics, with more than 500 references, see Stahel’s article
in Stahel and Weisberg (1991, Part II, p. 243).

2 Influence functions and pseudo-values

Among the basic robustness concepts, influence functions have become a
standard tool, especially after the comprehensive treatment by Hampel et
al. (1986). Also the trick to robustize classical procedures through the
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use of pseudo-values is becoming common knowledge, even though it has
received only scant coverage in the literature. This trick is that one calcu-
lates robust fitted values 7j; by iteratively applying the classical procedure
to the pseudo-values y; = ¥; + r} instead of y;. Here, the pseudo-residual
r; = 9(r;) is obtained by cutting down the current residual r; = y; —; with
the help of a function 1 proportional to the desired influence function (i.e.
with the 9-function defining an M-estimate). For examples see in particu-
lar Bickel (1976, p. 167), Huber (1979), and Kleiner, Martin and Thomson
(1979). If 4 is chosen equal rather than merely proportional to the influ-
ence function, the classical formulas, when applied to the pseudo-residuals
r? instead of the residuals, yield asymptotically correct error estimates for
ANOVA and other purposes (Huber 1981, p. 197).

There have been some very interesting extensions of influence function
ideas to time series (Kiinsch, 1984).

3 Breakdown and outlier detection

For a long time, the breakdown point had been a step-child of the robustness
literature. The paper by Donoho and Huber (1983) was specifically written
to give it more visibility. Recently, I have begun to wonder whether it has
given it too much, the suddenly fashionable emphasis on high breakdown
point procedures has become counter-productive. One of the most striking
examples of the usefulness of the concept can be found in Hampel (1985):
the combined performance of outlier rejection followed by the sample mean
as an estimate of location is essentially determined by the breakdown of
the outlier detection procedure.

4 Studentizing

Whenever we have an estimate, we ought to provide an indication of its
statistical accuracy, say by giving a 95% confidence interval. This is not
particularly difficult if the number of observations is very large, so that the
estimate is asymptotically normal with an accurately estimable standard
error, or also in one-parameter problems without nuisance parameter, where
the finite sample theory of Huber (1968) can be applied.

Otherwise, we end up with a tricky problem of studentization. To my
knowledge, there has not been much progress beyond the admittedly un-
satisfactory initial paper of Huber (1970). There are not only many open
questions with regard to this crucially important problem, it is even open
what questions one should ask! A sketch of the principal issues follows.

In the classical normal case, it follows from sufficiency of (Z,s) and an
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invariance argument that such a confidence interval must take the form

(T — kns/V/n, T+ kns/v/n)

with k,, depending on the sample size, but not on the sample itself. In a
well-behaved robust version, a confidence interval might take the analogous
form

(T - KnS/\/"_% T+ KnS/\/E)

where T' is an asymptotically normal robust location estimate and S is
the location invariant, scale equivariant, Fisher consistent functional esti-
mating the asymptotic standard deviation of \/nT, applied to the empirical
distribution. In the case of M-estimates for example, we might use

_ S} [ydF
~ (JY'dF)?

where the argument of ¢, ¢' is y = (z — T')/So, i.e. a robustly centered
and scaled version of the observations, say with S = MAD. If we are
interested in 95% confidence intervals, K, must approach ®~1(0.975) ~
1.96 for large n. But K, might depend on the sample configuration in a
non-trivial, translation and scale invariant way: since we do not have a
sufficient statistic, we might want to condition on the configuration of the
sample in an as yet undetermined way.

While the distribution of \/nT typically approaches the normal, it will do
so much faster in the central region than in the tails, and the extreme tails
will depend rather uncontrollably on details of the unknown distribution of
the observations. The distribution of S suffers from similar problems, but
here it is the low end which matters. The question is: what confidence levels
make sense and are reasonably stable for what sample sizes? For example,
given a particular level of contamination and a particular estimate, isn = 10
good enough to derive accurate and robust 99% confidence intervals, or do
we have to be content with 95% or 90%? I anticipate that such questions
can (and will) be settled with the help of small sample asymptotics, assisted
perhaps by configural polysampling (below).

S(F)?

5 Shrinking neighborhoods

Direct theoretical attacks on finite neighborhoods work only if the problem
is location or scale invariant. But for large samples, most point estimation
problems begin to resemble location problems, so it is possible to derive
quite general asymptotically robust tests and estimates by letting those
neighborhoods shrink at a rate n~1/2 with increasing sample size. This idea
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was first exploited by C. Huber-Carol (1970), followed by Rieder, Beran,
Millar and others. The final word on this approach is contained in Rieder’s
book (1994).

The principal motivation clearly is technical: shrinking leads to a man-
ageable asymptotic theory. But there is also a philosophical justification:
since the standard goodness-of-fit tests are just able to detect deviations of
the order O(n~1/2), it makes sense to put the border zone between small
and large deviations at O(n~1/2). Larger deviations should be taken care
of by diagnostics and modelling, smaller ones are difficult to detect and
should be covered (in the insurance sense!) by robustness.

This does not mean that our data samples are supposed to get cleaner if
they get larger. But the shrinkage of neighborhood faces us with a dilemma,
namely a choice between the alternatives:

e improve the model; or

e improve the data; or

e stop sampling.

Note that adaptive estimation is not among the viable alternatives. The
problem is not one of reducing statistical variability, but one of avoiding
bias, and the ancient Emperor-of-China paradox applies (you can get a
fantastically accurate estimate of the height of the emperor by averaging
the guesses of 600 million Chinese, most of whom never saw the emperor!).

The asymptotic theory of shrinking neighborhoods is, in essence, a the-
ory of infinitesimal robustness and suffers from the same conceptual draw-
back as approaches based on the influence function: infinitesimal robustness
(bounded influence) does not automatically imply robustness. The crucial
point is that in any practical application we have a fixed, finite sample
size, and we need to know whether we are inside the range of n and ¢ for
which asymptotic theory yields a decent approximation. This range may
be difficult to determine, but the breakdown point often is computable and
may be a useful indicator.

6 Design

Robustness casts a shadow on the theory of optimal designs: they lose
their theoretical optimality very quickly under minor violations of linearity
(Huber, 1975) or independence assumptions (Bickel and Herzberg, 1979). I
~ am not aware of much current activity in this area, but the lesson is clear:
“Naive” designs usually are more robust and better than “optimal” designs.
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7 Regression

Back in 1975, the discussants of Bickel (1976) raised interesting criticisms,
in particular there were complaints about the multiplicity of robust proce-
dures, and about their computational and conceptual complexity. Bickel
fended them off skillfully and convincingly.

There may have been reasons for concern then, but the situation has
become worse. Most of the action in the 1980’s has been on the regression
front. Here is an incomplete list of robust regression estimators: L1 (going
back at least to Laplace), M (Huber, 1973), GM (Mallows, 1975), with
variants by Hampel, Krasker and Welsch, RM (Siegel, 1982), LMS and LTS
(Rousseeuw, 1984), S (Rousseeuw and Yohai, 1984), MM (Yohai, 1987), 7
(Yohai and Zamar, 1988), SRC (Simpson, Ruppert and Carroll, 1991), and
no end is in sight. For an up-to-date review see Davies (1993).

Bickel would not have an easy job now, much of the “Nordic” criticism,
unsubstantiated in 1975, seems to be justified now. In any engineering
product, an overly rapid sequence of updates sometimes is a sign of vigor-
ous progress, but it can also be a sign of shoddy workmanship, and often
it is both. In any case, it confuses the customers and hence is counter-
productive...

Robustness has been defined as insensitivity to small deviations from an
idealized model. What is this model in the regression case? The classical
model goes back to Gauss and assumes that the carrier X (the matrix X
of the “independent” variables) is error-free. X may be systematic (as in
designed experiments), or haphazard (as in most undesigned experiments),
but its rows only rarely can be modelled as being a random sample from a
specified multivariate model distribution. Statisticians tend to forget that
the elements of X often are not observed quantities, but are derived from
some model (cf. the classical non-linear problems of astronomy and geodesy
giving rise to the method of least squares in the first place). In essence,
each individual X corresponds to a somewhat different situation and might
have to be dealt with differently. Thus, multiplicity of procedures may lie
in the nature of robust regression. Curiously, most of the action seems to
have been focused through tunnel vision on just one aspect: safeguard at
any cost against problems caused by gross errors in a random carrier.

Over the years, I too had to defend the minimax approach to distribu-
tional robustness on many occasions. The salient points of my defense were
that the least favorable situation one is safeguarding against, far from being
unrealistically pessimistic, is more similar to actually observed error distri-
butions than the normal model, that the performance loss at a true normal
model is relatively small, that on the other hand the classically optimal
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procedures may lose sorely if the normal model is just slightly violated,
and that the hardest problems are not with extreme outliers (which are
easy to detect and eliminate), but with what happens on the shoulders of
the distributions. Moreover, the computation of robust M-estimates is easy
and fast (the last paragraph of this section). Not a single one of these de-
fense lines can be used with the modern “high breakdown point” regression
estimates.

A typical cause for breakdown in regression are gross outliers in X;
while individual such outliers are trivially easy to spot (with the help of the
diagonal of the hat matrix), efficient identification of collaborative leverage
groups is an open, perhaps unsolvable, diagnostic problem. However, I
would advise against treating leverage groups blindly through robustness,
they may hide serious design or modeling problems, and there are similar
problems even with single leverage points.

The story behind an outlier among the X (“leverage point”) might for
example be:

e a misplaced decimal point,

e an accurate but useless observation, outside of the range of validity of
the model.

If the value at this leverage point disagrees with the evidence extrapo-
lated from the other observations, this may be because:

e the outlying observation is affected by a gross error (in X or in y),

e the other observations are affected by small systematic errors (this is
more often the case than one might think),

e the model is inaccurate, so the extrapolation fails.

The existence of several, phenomenologically indistinguishable but con-
ceptually different situations with different consequences calls for a diag-
nostic approach (identification of leverage points or groups), followed by
alternative “what if” analyses. This contrasts sharply with simple location
estimation, where the observations are exchangeable and a minimax ap-
proach is quite adequate (although one may want to follow it up with an
investigation of the causes of grosser errors).

At the root of the current confusion is that hardly anybody bothers
about stating all of the issues clearly: not only the estimator and a proce-
dure for computing it must be specified, but also the situations for which
it is supposed to be appropriate or inappropriate, and criteria for judg-
ing estimators and procedures. There has been a tendency to rush into
print with rash claims and procedures. In particular, what is meant by
the word breakdown? For many of the newer estimates there are unqual-
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ified claims that their breakdown point approaches 0.5 in large samples.
But such claims tacitly exclude designed situations: if the observations are
equally partitioned among the corners of a simplex in d-space, no estimate
whatsoever can achieve a breakdown point above 1/(2d + 2).

It is one thing to design a theoretical algorithm whose purpose is to
prove, for example, that a breakdown point 1/2 can be attained in principle,
and quite another thing to design a practical version that can be used not
merely on small, but also on medium sized regression problems, with a
2000-by-50 matrix or so. This last requirement would seem to exclude all
of the recently proposed robust regression estimates.

Some comments on the much maligned “plain vanilla” regression M-
estimates are in order. The M-estimate approach is not a panacea (is there
such a thing in statistics?), but it is easy to understand, practicable, and
considerably safer than classical least squares. While I had had regression
problems in mind from the very beginning (cf. Huber 1964, p.74), I had not
dared to go into print until 1973, when I believed to understand the asymp-
totic behavior of M-estimates of regression. A necessary regularity condi-
tion for consistency and asymptotic normality of the fitted values is that
the maximum diagonal element h of the hat matrix H = X(XTX)"1xT
tends to 0. While watching out for large values of h does not enforce a
high breakdown point, it at least may prevent a typical cause of break-
down. Moreover, with M-estimates of regression, the computing effort for
large matrices typically is less than twice what is needed for calculating the
ordinary least squares solution. Both calculations are dominated by the
computation of a QR or SVD decomposition of the X matrix, which takes
O(np?) operations for an (n,p)-matrix. Since the result of that decompo-
sition can be re-used, the iterative computation of the M-estimate, using
pseudo-values, takes O(np) per iteration with fewer than 10 iterations on
average.

8 Multivariate problems

Classically, “regression” problems with errors in the independent variables
are solved by fitting a least squares hyperplane, that is, by solving a prin-
cipal component problem and picking the plane belonging to the smallest
eigenvalue. It can be argued by analogy that regression problems with po-
tential gross errors in the carrier should be attacked through some version
of robust principal components. Thus, multivariate problems, in particular
of the principal component type, deserve added attention.

In 1976, Maronna showed that all M-estimates of location and scatter in
d dimensions have a breakdown point e* < 1/(d+1). In higher dimensions
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this is shockingly low, but then Stahel (1981) and Donoho (1982) indepen-
dently found estimates based on projection pursuit ideas with a breakdown
point approaching 1/2 in large samples. The bad news is that with all cur-
rently known algorithms the effort for computing those estimates increases
exponentially with d. We might say they break down by failing to give a
timely answer!

9 Some persistent misunderstandings

Robust methods have persistently been misclassified and pooled with non-
parametric and distribution-free methods. They are part of traditional
parametric statistics, the only difference is that they do not assume that
the parametric model is exactly true.

In part the robustness community itself is to blame for this misunder-
standing. In the mid-1970’s adaptive estimates - attempting to achieve
asymptotic efficiency at all well-behaved error distributions - were thought
by many to be the ultimate robust estimates. Then Klaassen (1980) proved
a disturbing result on the lack of stability of adaptive estimates. My cur-
rent conjecture is that an estimate cannot be simultaneously adaptive in a
neighborhood of the model and qualitatively robust at the model.

Also the currently fashionable (over-)emphasis of high breakdown points
transmits a wrong signal. A high breakdown point is nice to have, if it comes
for free, but the potential presence of high contamination usually indicates
a mixture model and calls for diagnostics. A thoughtless application of
robust procedures might only hide the underlying problem.

There seems to be some confusion between the respective roles of diag-
nostics and robustness. The purpose of robustness is to safeguard against
deviations from the assumptions, in particular against those that are near
or below the limits of detectability. The purpose of diagnostics is to find
and identify deviations from the assumptions.

The term “robust” was coined by Bayesians (Box and Andersen, 1955).
It is puzzling that Bayesian statistics never managed to assimilate the mod-
ern robustness concept, but remained stuck with antiquated parametric su-
permodels. Ad hoc supermodels and priors chosen by intuition (personal
beliefs) or convenience (conjugate priors) do not guarantee robustness, for
that one needs some theory. Compare already Hampel (1973).

10 Future directions: small sample problems?

At present, the most interesting and at the same time most promising new
methods and open problems have to do with small sample situations.
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The Princeton robustness study (Andrews et al., 1972) remains one of
the best designed comparative Monte Carlo studies in statistics. Among
other things we learned from it how difficult it is to compare the behavior
of estimates across entire families of distributions, since small systematic
differences of performance easily are swamped by larger random sampling
errors. A very sophisticated sampling method thereafter proposed by Tukey
is based on the remark that a given sample can occur under any strictly
positive density, but it will do so with different probabilities. Thus it must
be possible to compare those performances very efficiently by re-using the
same sample configurations with different weights when forming Monte
Carlo averages. A comprehensive account of this approach is given by
Morgenthaler and Tukey (1991).

On the other hand, it was noted by Hampel that a variant of the saddle
point method can give fantastically accurate asymptotic approximations
down to very small sample sizes (occasionally down to n = 1!).

I hope that these approaches in the near future will permit to close sev-
eral open problems in the area of small samples: studentization, confidence
intervals, testing. Embarrassingly, the robustification of the statistics of
two-way tables still is wide open. Typically there are so few degrees of free-
dom per cell that ordinary asymptotic approaches are out of the question,
maybe some version of small sample asymptotics may help here too.
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