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Abstract
In its present form, the subject of Comparison of Experiments was

introduced into Statistics by D. Blackwell and C. Stein in 1951. We
trace its development up to the publication of E. N. Torgersen's monu-
mental treatise in 1991. The story leads us through the representation
theorems of V. Strassen, convolution theorems of C. Boll and the use
of a distance between experiments.

1. Introduction. Following Blackwell (1951) we shall call "experiment" a
mathematical structure composed of the following pieces:

1) A set Θ called the parameter set, or the set of states of nature.
2) For each ί G θ a probability measure Pβ on a σ-field A of subsets of

a set X.
The idea is that, somewhere, there is a "true state of nature", that the

statistician observes a random variable with values in {X,A) and that he
models the effect of the state of nature on that observation by the probability
measure PQ.

The definition covers the case of sequential experiments where the stop-
ping rule has previously been chosen. Discussion of the choice of stopping
rule would need additional mathematical objects.

Now consider the plight of a statistician who could carry out an experi-
ment 8 = {Pθ; θ e θ} on (X, A) or a different experiment T = {QΘ\ θ e θ}
on (Y, 5), but not both £ and T. Assuming that the costs of observation are
not taken into account, should the statistician prefer to carry out 8 or TΊ
The answer to such a question is complex or impossible depending on the
statistician's goals. We shall deal here only with a statistician who wants
to minimize risks, that is expected losses, and with definitions in which £
is claimed to be better than T if that happens no matter what the loss
functions are.

The comparison procedure was introduced, following a suggestion of von
Neumann, in an unpublished RAND memorandum entitled "Reconnaissance
in game theory" by Bohnenblust, Shapley and Sherman, (1949). Blackwell
immediately noticed the links with statistics and produced another RAND
memorandum (#241, 1949).

Formal definitions of the comparison criteria are given in Section 2 below.
Section 3 recalls some of the main results, such as the Blackwell-Sherman-
Stein theorem. Section 4 indicates that the problem was of interest in some
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other branches of mathematics and recalls theorems of Cartier, Fell and
Meyer (1964) as well as work of V. Strassen (1965).

Section 5 is about invariance and an unpublished Thesis of C. Boll. Sec-
tion 6 discusses some of the ramifications of the theory when one uses only
"approximate" comparisons with introduction of "distances" between exper-
iments. For a more complete account of the theory, the reader should consult
the book by E.N. Torgersen, (1991).

2. Criteria for comparison. Suppose that, besides our two experiments

E and J7, one is given a set Z of possible decisions and a loss function

(θ,z)o*WΘ(z) e[Q,oo).
A decision procedure for £ is a Markov kernel, that is a map x ~> px from

X to probability measures on (Z,C) where C is a σ-field such that the WQ
are measurable. The function x ~> px is assumed to be measurable in the
sense that, for C €C, the real valued function x ^ ρx(C) is ^-measurable.
(This measurability condition will be discussed further below). One can then
define the risk function θ ~» R(θ, p) = / / Wβ{z)px{dz)Pβ{dx).

Let R(8, W) be the set of all functions of θ that are either actual risk
functions or larger than such risk functions. Proceed similarly for T getting

If W was given it would make good sense to say that £ is better than T

for W if R{T, W) C R(S, W). This leads to a first criterion:

(Cl) ε is statistically better than T if R{T, W) is a subset of i?(£, W) for

every loss function W such that 0 < W < 1.

(The restriction 0 < W < 1 is irrelevant here. It is meant for use in
Section 6.)

A second possible criterion is as follows:

(C2) ε is better than T if one can find on (X x Y,A x B) a. probability
measure M ,̂ θ € θ such that:

(i) The marginal of MQ on A is PQ and the marginal on B is Qg.
(ii) For {MQ\ θ e θ} on AX B the σ-field generated by A is sufficient.

This criterion can be strengthened to read:

(C3) The experiment T is reproducible from ε if there is a Markov kernel
(x,B) ^ KX(B), x € X, B e B such that QΘ(B) = J Kx(B)Pθ(dx), all
θeθ,BeB.

Finally, we shall also consider another criterion expressible in terms of
linear operators. To do this, let L(ε) be the Banach lattice generated by
ε. That is the space of finite signed measures carried by A and dominated
by some convergent series ΣΘ αθPθ where αg > 0 and αg = 0 except for a
countable subset of θ .

Define L{T) similarly. Call a map T from L(β) to L(JF) a transition if
it is positive, linear and preserves the mass of positive elements.



Comparison of Experiments 129

(C4) There is a transition T from L{£) to L{F) such that Qθ = TPΘ for all
0GΘ.

In criterion (C3) and in the definition of decision procedures, one might
allow a bit more freedom to the Markov kernels. For instance in (C3) it is
not necessary for the validity of the definition that x ~> KX(B) be actually
>A-measurable. It might only be integrable for each P#, 0 G Θ. Similarly
for the definition of the map x ~> px. The criterion (C2) could be modified
accordingly replacing the conditional expectation given the σ-field generated
by A by projections that yield bounded functions integrable for each Pβ. This
makes the situation a bit complex. The complexity almost disappears if the
family {Pβ\ θ G θ } is dominated.

Generally one sees easily that (C3) implies (C2) and that (C2) implies
(Cl). Whether (C2) implies (C3) depends on how well behaved the triplet
(f^y^B) is. Most authors consider only the case where (y,B) is "Polish",
that is where y is Borel isomorphic to a Borel subset of a complete separable
metric space and where B is the family of Borel subsets of y. If in addition
{PQ\ θ G Θ} is dominated then all criteria (C2), (C3) and (C4) are equivalent.
There are other possibilities as described by Doob (1952), pages 28-29 and
623. The domination condition can be relaxed to some extent. For this see
Torgersen (1991), pages 10-13.

All these possibilities do not change much the conceptual aspects of the
problem. They are just a reflection of the complexity of a measure theoretic
formulation. For instance (C4) always implies a criterion very similar to
(Cl), namely that 1Z(T, W) C Tl(8,W) where the bar means closure for
pointwise convergence.

The interesting problem is whether (Cl) implies any of the other cri-
teria. We shall see that (Cl) always implies (C4), but we shall first look
at the initial steps of the theory and at results obtained for very different
mathematical purposes.

Let us note in passing that we have not used the standard terminology
that if £ and T satisfy (C3) then E is sufficient for T. This is because, barring
difficulties that occur in quantum theory, or any field such as psychology
where the mere act of measurement modifies the "state of nature", if there
is truly a "state of nature" it presumably generates a measure, say Sβ, on
Ax B. For such measures {Sβ; θ G Θ} the σ-field generated by A may not
be sufficient even if (C2) or (C3) are satisfied.

Indeed look at a pair (JΓ, Y) of independent random variables where X
and Y are both λf(θ, 1) and where ί consists of observing X only while T
consist of observing Y only.

This distinction should be kept in mind when we discuss "deficiency"

versus "insufficiency".
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3. The Blackwell-Sherman-Stein theorem. Consider the situation
where the parameter set θ is a finite set. Let 5 = Σθ Pg. Then the Radon-
Nikodym densities fg = dPg/dS are well defined almost every where 5. One
can assume that they are non negative and add up to unity. The image of 5
by the vector map x ~> {fg{x)\ 0 E θ} is a measure M on the unit simplex
U of E θ . It is called the Blackwell canonical measure of the experiment
S = {PQ\ θ € θ} . The image of Pg by the same map is the measure ug-M that
has density ug with respect to M, the function ug being the 0-th coordinate
of u e U.

By sufficiency, one sees that nothing is lost when passing from S —
{Pg θ e θ } on (X,A) to E* = {Uθ • M;0 6 θ} . Indeed the pair (£,£*)
satisfies (C3) and the pair (£, £*) satisfies (C2) and also (C3) upon, if needed,
slight completion of X. Thus to compare experiments when θ is finite, it is
enough to compare their canonical versions. (This was already observed by
Bohnenblust, Shapley and Sherman (1949)).

To state the results available in this case, we need the concept of "di-

lation" . Suppose that C is a compact convex subset of a vector space. A

dilation D on C is a Markov kernel x ^ Dx such that the barycenter of Dx

is x itself. That is JyD(x,dy) = x.

A form of the Blackwell-Sherman-Stein theorem states the following:

Theorem 1. Let S and T he two experiments indexed by the same finite
parameter set θ . Assume that they are put in their Blackwell canonical form
on the unit simplex U o/E θ . Let Ms and Mj? be their respective canonical
measures. Then the following conditions are all equivalent:

i) The pair {S,T) satisfies (Cl).

ii) The pair (S,F) satisfies (C2), (C3) and (C4).

Hi) For every continuous convex function φ on U one has f φdMs >

iv) The measure Ms is a dilation o

For a proof in the case where both X and Y are finite sets, see Black-
well and Girshick (1954), page 328. These authors give also a number of
other properties equivalent to the statements in Theorem 1. Results similar
to those of Theorem 1 were first obtained by Blackwell, (1949), (1951), in
the case where θ has only two elements. For that case some results had
previously been obtained by R.F. Muirhead, (1903), as reported in Hardy,
Littlewood and Pόlya, (1934), Theorem 45. The connection between this
and the comparison of experiments was noted by Sherman, (1951). This
author and C. Stein (1951) extended Blackwell's result to the case where
θ , X and Y are all finite sets. The extension to the case where X and Y
are compact subsets of Euclidean spaces, θ being still finite, was given by
Blackwell, 1953. Boll (1955) replaced the finiteness condition on θ by a
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domination condition on {P#; θ € Θ}.
The equivalence of (iii) and (iv) of Theorem 1, for arbitrary convex com-

pact subsets of locally convex linear spaces was of interest in the Choquet
theory of representation of points of the convex set of barycenters of measures
carried by their extreme points. To avoid measurability difficulties one has
to assume that the set of extreme points is at least "universally measurable".
This is the case for compact metrisable sets where the extreme points form a
Gδ Choquet's representation theorem gives then a much more informative
result than the Krein-Milman theorem.

A paper by P. Cartier, J. Fell and P. Meyer (1964) proves the equivalence
of three ordering criteria for positive measures carried by a compact convex
metrisable set X. The criteria are as follows:

(a) For every continuous convex function / on X one has / fdμ < J fdv.
(b) There exist a dilation D such that

v = / Dxμ(dx).

(c) For every decomposition μ = μ\ + . . . + μn of μ one can find a
decomposition v = v\ + . . . + vn such that V{ has the same total mass and
barycenter as /x, .

(The last criterion was proposed by Loomis, 1962). At about the same
time V. Strassen (1965) linked the problem to a problem of representation
of linear functionals. Strassen considered a separable Banach space X with
dual Z and what he calls "support functions" h satisfying

h(x + y) < h(x) + h(y) and h(αx) = αh(x)

for α > 0.
Take a probability space (Ω, B,μ) and a measurable map ω ~> hω to

continuous support functions such that / HZ^H/x̂ o;) < oo. Let z be a linear
functional z G Z such that z(x) < f hω(x)μ(dω) for all x e X. Then Strassen
shows that z is an integral z = / zωμ(dω) where ω ~* zω is measurable and
such that z(x) < hω(x) for all ω and x.

From this it is easy to derive the Cartier-Fell-Meyer result and the
Blackwell-Sherman-Stein theorem.

Many results of this nature can be found in Torgersen (1991) but with
the additional twist that one does not require straight inequalities but ap-
proximate ones. See Section 6.

The arguments involving Blackwell's canonical measures on a simplex
use the finiteness of the set Θ. It was noted later, see for instance Le Cam
(1986), that for infinite θ a suitable substitute for Blackwell's canonical
measure is a Choquet conical measure of resultant unity. Of course, θ as
such does not appear in the Cartier-Fell-Meyer paper.
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4. Comparison of experiments and invariance. We have already noted
that C. Boll (1955) extended the Blackwell-Stein results to the case where
Θ is infinite (but {P#; 0 G θ } dominated). This was done under Polish type
assumptions on the spaces (X, Λ) and (y,B).

The main result of Boll's unpublished thesis was relative to a case where
θ , X and Y are all the same, equal to a locally compact group. To express
the result we shall use the following notation. If μ is a finite Radon measure
on the locally compact group X and if α G X let Sαμ be "μ shifted by
α on the left". This is defined by / f(αx)μ(dx) = f f(x)(Sαμ)dx) for /
continuous with compact support. If λ and μ are two such measures let λ*μ
be the convolution defined by / f(z)(λ * μ)(dz) = / / f(xy)λ(dx)μ(dy).

Consider a pair of experiments S = {P#;0 G θ} and T = {Qβ',θ G Θ}
both given by Radon measures on X = Y = Θ. Let us say that the pair
(£, T) is shift invariant if for α and θ in θ there is a θr such that SαPe = QΘ
and SαQθ< = Qθ.

Boll's results imply the following

Theorem 2. Let (£, J7) be α shift invariant pair such that 8 is better than T.
Assume that the group admits almost invariant means on the left and that
the Pβ are dominated by the Haar measure of X. Then there is a probability
measure M such that QΘ = P$ * M.

This is just one of Boll's results. To state his other results too much
notation would be needed. A somewhat simplified form occurs in Le Cam
(1986), page 120, Definition 1.

Boll's proof was rather complex. It was noted later (Le Cam, (1964)
(1972)) that one can decompose it in two parts. First ί better than T
implies the existence of a transition T such that Q$ = TPg. The Markov-
Kakutani theorem implies then the existence of a transition that commutes
with shifts: SaT = TSa. (See Eberlein 1949).

In a second part one shows that, since the PQ are dominated by the
Haar measures, a Γ that commutes with shifts is a convolution. This second
part can be obtained through a slight modification of a proof of J. Wendel
(1952). Wendel shows that a continuous linear map T on the set of measures
dominated by Haar measure to itself satisfying T(λ * μ) = (Tλ)μ must be of
the form Tλ = λ * M for some finite signed measure M. Wendel's theorem
does not seem to have been known to Statisticians till decades later.

The subject was further investigated by Torgersen (1972), who derived
numerous consequences, extended the convolution criterion to the case where
the deficiency δ{ε,T) is < e, (see Section 6) and applied it to numerous
computations of deficiencies.

There does not seem to be much prospect to a removal of the "amenabil-
ity" restriction on the groups. See Paterson (1983). Nor is there much
prospect to a removal of the condition of domination by Haar measures.
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The theorem has some further consequences in asymptotic theory. It
can be used in a simple proof of the Hajek convolution theorem under the
LAN conditions. Far reaching results for the case where Θ is a Banach space
(hence not locally compact) and the PQ are Gaussian cylinder measures have
been obtained by Moussatat (1976), Millar (1985) and van der Vaart (1991).
This result has been taken as a basic definition of asymptotic optimality in
Bickel-Klaassen-Ritov-Wellner (1993).

5. Distances between experiments. Let 8 = {P$\θ € Θ} and T =
{Qθ\θ e Θ} be two experiments indexed by the same parameter set θ .
Typically, ί and T are not comparable according to the criteria of Section
2, but one can always introduce a "distance" between 8 and T. This was
done in Le Cam (1964). One can describe it as follows. It involves the
spaces L(8) and L{F) of criterion (C4), Section 2, metrized by their Li-
norm | |M|| = sup^{| J φdM\] φ measurable; \ψ\ < 1}. Define a "deficiency"

where T runs over all transitions from L(8) to L^). Define 6^', 8) similarly
and let Δ(ε,T) = max[ί(f ,^"),ί(^",f)]. This Δ is a pseudo metric on the
class of experiments indexed by θ . Two experiments such that Δ(£,^) = 0
will be called equivalent.

Since (Cl) and (C4) are nearly equivalent one can use also another defi-
nition. Take loss functions W such that 0 < W < 1 and consider the spaces
11(8, W) and Ίl{T, W) of (Cl). Let Έ, be the pointwise closure of 11. Then
^{ε,T) < e if and only if for every such W, every g e *R>{T, W) there is an
/ € U(ε, W) such that f(θ) < g(θ) + e, all θ G θ

(Torgersen (1991) does not use a single number e but a function θ ~»
β0 > 0. This gives more flexibility.).

The use of the Li-norm || || is suggested by statistical considerations:
1 — j | | P — Qll is the optimal sum of errors for a test between P and Q.

Although Le Cam (1964) was written independently, we later (1990)
became acquainted with an unpublished paper of C. Stein given to us by
E. Lehmann. The paper was written when Stein was in Chicago, perhaps
in 1951. Stein does not restrict the loss functions to be bounded above by
unity. He requires instead that the convex hull of {W0{z)\z E Z} contain a
function bounded by unity. Stein applies his definition to the case where Θ
has only two points and where one considers sequences (En^fJl) where for
instance Sn is obtained by replicating 8 π-times independently. In the case
where 6 and T are not trivial, Stein shows that Sn and T* are asymptotically
equivalent if and only if 8 and T have the same Kullback-Leibler numbers.
On the contrary, with Le Cam's definition of distance, if 8 and T are not
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trivial then A(En

JJ
rn) —> 0. This discrepancy is not as serious as it may

appear. One can vary £ and T as n varies, getting En and Tn. Then one
looks at distances Δ(££,^£).

Stein's paper also answers a question of D. Blackwell. It had been proved
by Blackwell that if E is better than T then En is better than T71. Blackwell
asked whether a converse could be true. Stein gives an example where 8 and
T are not comparable but S2 is better than T2. One can wonder whether
this example was ever brought to BlackwelΓs attention. In the mid-sixties he
started Torgersen working on comparison of experiments by a similar inquiry.
Torgersen produced counterexamples constructed especially for the purpose
but in (1973) Hansen and Torgersen, looking at standard Gaussian linear
models for a different purpose, found that they can exhibit the phenomenon
when variances are unknown.

Returning to Le Cam's distance Δ, let us note that, typically, it is not
easy to evaluate, although Torgersen gave precise computable formulas for
it in many examples. However one can often get usable bounds for it. In the
case of finite θ , Le Cam (1969) and Torgersen (1970) show that it is bounded
by and therefore uniformly equivalent to the dual Lipschitz distance of the
canonical measures. More generally, for arbitrary θ , one can often find a
coupling procedure whereby E and T are realized on the same observation
space. Suppose then that they are both dominated by a probability measure
μ. Let X(θ) = dPe/dμ and Y(θ) = dQβ/dμ. If the coupling is such that
sup,, / \X(Θ) - Y(θ)\dμ < 2e then Δ(£,JF) < e.

For this see Le Cam and Yang (1990), page 16, the paper by M. Nuss-
baum on "Asymptotic equivalence of density estimation and Gaussian white
noise", and the forthcoming book by A.N. Shiryaev and V.G. Spokoiny.

The introduction of the distance Δ made it possible to look at the con-
vergence of a sequence {En} of experiments to a limit T, but it also makes it
possible to consider pairs (En,Pn) and ask whether A(En^Jr

n) —• 0. Here the
parameter space θ need not be fixed. It can be θ n , depending on n. A most
remarkable example of such a convergence occurs in the paper of Nussbaum
cited above. He considers an experiment E given by densities / on [0,1] with
respect to Lebesgue measure. The densities are subject to a Holder restric-
tion: \f(x) — f(y)\ < C\x — y\α with α > 1/2 and a positivity restriction:
f(x) > e > 0. Let En be E repeated π-times independently. Let Tn be the
experiment in which one observes a stochastic process [Y(t);t £ [0,1]} such
that dY(t) = y/f{t)dt + 277ζdW{t) where W is standard Brownian motion.

Nussbaum shows that Δ(£ n , Tn) —> 0 as n —> oo.

This is done by first showing that the result holds for certain subsets
θn(/o) of the set θ of densities described above. Then Nussbaum shows that
one can estimate the /o rapidly enough to fit the various pieces together. A
quilt-patch technique of this type had been used by Le Cam (1986), Chapter
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11, but only in cases where the densities corresponding to the θn(/o) stay
contiguous and subject to restrictions of a finite dimensional character.

Nussbaum has recently extended his results to the case of estimation of
regression curves.

One of the techniques used in the paper on densities is a Poissonization
technique: Instead of carrying out Sn one observes a Poisson variable N with
EN = π. One then carries out SN. Call the Poissonized experiment Vn.
Under Nussbaum's assumption Δ(εn,Vn) —> 0. This has now been proved
by Low and Nussbaum under much weaker assumptions but there are cases
where Δ ( £ n , £ n + 1 ) > 1/2 while A(Vn,Vn+r) is always inferior to r/\/2π.
See Le Cam (1986), pages 170-171.

Of course if one has a distance such as Δ one can also define some other
distances. One of the most used is one in which the parameter sets are
rescaled and one takes a distance such as Δ but computed only on compact
subsets of the rescaled θ n . See Bickel-Klaassen-Ritov-Wellner, (1993). An-
other possibility is to take distances only on subsets of bounded cardinality.
According to the results available in the finite parameter set case this is then
equivalent to the ordinary convergence of the distributions of likelihood ra-
tios. Finally, for θ fixed, one can consider convergence on fixed finite subsets.
This is called weak convergence and is already enough to yield the Hajek-Le
Cam asymptotic minimax theorem, and, with appropriate group structure,
the Hajek-Le Cam convolution theorem. All of this uses Le Cam's (1964)
definitions of deficiencies and distances. It has been observed by Le Cam
(1974) or Le Cam (1986), page 67, that under certain circumstances one can
define another measure of loss of information. This is the case where one
considers an experiment J7 = {Qe',θ £ θ} given by measures on a σ-field B
and where the experiment S = {Pg\ θ £ θ} is obtained by using a sub-σ-field
AcB and the restriction PQ of Qβ to A There £(£, J°) = 0 means that A is
sufficient or at least sufficient for all dominated subfamilies of T. However,
instead of measuring the loss of information incurred by the restriction to A
by δ(ε, J7) one can ask how much should one modify the QQ to make A suffi-
cient? That is, one can measure the loss of information by an η(E, T) defined
as infs sup0 |̂|Qfl — S0H where the infimum is taken over all families {Se} for
which A is sufficient. There are various other numbers that could be defined
in similar ways. It is now known (see Espen Norberg, preprint (1995)) that
all the numbers introduced in Le Cam (1986), pp. 67-71 are the same. It is
clear that one has always 8{E,F) < η{ε,T). However, it may happen that
δ(ε,F) is very small compared to η(ε,F). For finite θ the "insufficiency"
77 is always bounded by a constant multiple of the deficiency. Another case
where deficiencies and insufficiencies have been computed exactly is the case
of Gaussian shift experiments. Following Hansen and Torgersen (1973), con-
sider an experiment ε where the distributions for θ are λf(θ,I) on Rk. Let
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εm be the product of m replicas of S and let £ m + r be obtained by using Em

and r additional observations. Here A is the σ-field generated by the first
m observations among the n = m + r total.

If one lets m tend to infinity, with r fixed or much smaller than m then
the deficiencies £ ( £ m , £ m + r ) behave like Ci-τr(^) while the insufficiencies

behave like C2-7r(^/^)? C\ and C2 being appropriate constants.

This reflects the fact that, in our criteria (C2) or (C3) one chooses a

joint distribution for the observations of £ m and £ m + r while here the joint

distribution has already been prescribed.

Another possible description is that in 6(6, F) one tries to reproduce the

Qo from the PQ with small "bias" while in the computation of insufficiencies

one tries to reproduce the Qo = P™+r from P™ with small expected loss, the

loss being always measured by Li-norm distances. This latter effort can also

be considered as an attempt to estimate the conditional distributions of the

extra r variables given the first ra, or in general, the conditional distributions

on B given A.

The use of "insufficiencies" is the basis of assertions of asymptotic suffi-

ciency in Le Cam (1960), Le Cam (1986) or Le Cam and Yang (1990).

6. Further developments. In all the preceding sections, the families of
measures such as £ = {Po\θ G θ } were families of 'probability measures.
In particular they were positive and so were the corresponding Blackwell
canonical measures.

According to Torgersen (1991) one can consider general families of mea-
sures {Mβθ G θ } where the M$ are finite signed measures.

The main results of the theory can be applied to such a case, with some
precautions. See for instance Torgersen (1991) page 510 where the loss func-
tions are real valued, not positive as in our (Cl). See also the implication
for the algebraic total mass of the measures in equation 9.21, page 511.

In the case of finite θ , what would correspond to the Blackwell canonical
measure would be the image by the vector map {̂ -̂ θ G θ } of the measure
S defined by dS = Σθ \dpθ\-

The extension has enabled Torgersen to proceed to "local comparison of
experiments" by comparing families of measures such as Ps — Pt and Qs — Qt
for pairs s and t in a neighborhood of a point 0o

Also the theory so extended is closely linked to what Marshall and Olkin
(1979) call majorization of measures, to what is called Schur convexity. It
is also related to results of Karlin and Rinott (1983).

To describe all of this would take much space. We can only refer the
reader to Torgersen (1991). See especially Chapter 9.
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