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Uncertainty about the value of an unmeasured real random variable Y is commonly rep-
resented by either the entropy or variance of its distribution. If it becomes known that Y
lies in a subset A of the support of V's distribution, one might expect uncertainty about
Y to decrease. In other words, one might expect the entropy and variance of V's condi-
tional distribution given Y E A to be less than their counterparts for the unconditional
distribution. Going further it might be conjectured that the uncertainty about Y would
be greater given the knowledge that Y E B as compared with Y G A C B.

We do not know whether these conjectures are correct. However, we give sufficient con-
ditions in certain cases where they are true. In particular, when Y is normally distributed
we can make considerable progress. For example, we show in the case that A = [α, b] and
Y normally distributed with mean η and variance 1, that the variance of the conditional
distribution of Y given that α < Y < b is less than that of the unconditional distribution,
thereby confirming our intuitive reasoning in this case. This last example also shows that
for this exponential family the variance is less than 1 for all α < b and all η—a result that
is not known among the experts on exponential families we consulted.

The only relevant thing is uncertainty—the extent of our own knowledge
and ignorance, de Finetti (1970, Preface, pp. xi-xii)

1. Introduction

A search of the Science Citation Index for the years since 1989 lends sup-
port to de Finetti's contention. The keyword "uncertainty" yielded 29,386
documents. However, a quick scan of the abstracts for just the most cited
documents, as well as standard statistical references reveal a variety of in-
terpretations of this concept, leading us to paraphrase Basu (1975) on "in-
formation":

But, what is uncertainty? No other concept in statistics is more elusive
in its meaning and less amenable to a generally agreed definition.

As with "information," an agreed on, operationally useful meaning of the
term would be desirable. However, such a meaning seems elusive.

Bernardo and Smith (1994) describe uncertainty as "incomplete knowl-
edge in relation to a specified objective." Prey and Rhodes (1996) echo that
definition, saying that "uncertainty arises due to a lack of knowledge re-
garding an unknown quantity." In achieving their comprehensiveness, these
definitions suffer from a lack of specificity.
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Helton (1997) provides a refinement of the above ideas by classifying "un-
certainty" as either stochastic (i.e., aleatory) or subjective (i.e., epistemic).
We have used that classification to help formulate our objectives in this
paper.

In an attempt to 'quantify' uncertainty, Prey and Rhodes (1996) propose
the use of "probability distributions." OΉagan (1988) gives a similar inter-
pretation, making "probability" the measure of "uncertainty." Both of these
interpretations fail in their attempt to operationalize the concept of uncer-
tainty since the result remains ill-defined except perhaps in the simple case
of a single uncertain event, C. [Here, P(C) might be thought of as the "mea-
sure" or "quantity" in question. In that case, we might think of P(C) = \
as representing the state of maximal uncertainty.] Nevertheless, that simple
case and results flowing from it helps us to a more incisive question about
the nature of uncertainty and the role of information in connection with it.

Harris (1982) gives a measure of uncertainty that seems to be quite gen-
erally accepted, namely the entropy of the distribution of Y defined by:
H(Y) = £(—log/(y)/m(y)) where / denotes the probability density of
Y (with respect to counting measure in the discrete case). Here m plays
the role of a reference measure against which uncertainty about Y is to be
measured. For simplicity, we take m = 1 as is commonly done (Singh, 1998,
p. 3). Similarly, we define H(Y \ A) to be the entropy for the conditional
density f(y | A) = f(y)/P(A), ye A where P(A) = P(Y G A).

Harris quoting from the celebrated paper of Shannon (1948) states that
entropy is "... a measure of choice, uncertainty and information." Renyi
(1961) also views the entropy as a measure of both uncertainty and informa-
tion, the amount of the latter being precisely equal to the amount by which
uncertainty will be reduced by the performance of the experiment. The
Renyi-Shannon interpretation of entropy as information emphasizes their
complementarity. Plausibly, uncertainty should decrease as the amount of in-
formation increases. In Section 3, we see that entropy may behave this way in
certain cases. However, we are not able to give general answers to even some
very simple questions. [Incidentally, the entropy makes p — P(C) = \ the
maximal state of uncertainty in that it maximizes — plog(p) — (1— p) log(l—p),
the entropy of the distribution of the indicator random variable, Z = Ic(X)i
all in accord with our heuristics, above.]

So in the next section we first study the variance, an even simpler measure
of uncertainty. The frequency with which it plays the role of uncertainty,
makes it the leading player. In particular, providing standard errors for
estimators is often touted as one of the hallmarks of good statistical practice
as it indexes the uncertainty attached to the estimate.

The National Institute of Standards and Technology uses the variance
or rather, the standard deviation, to express measurement uncertainty.
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To quote from the Institute's web page (http://physics.nist.gov/cuu/
Uncertainty/basic.html) "Each component of uncertainty, however eval-
uated, is represented by an estimated standard deviation, termed standard
uncertainty ...".

In one case at least, the variance and entropy are equivalent measures of
uncertainty, that case being the normal distribution. Moreover, p = P(C) —
\ maximizes the variance of Z for the indicator variable, Z defined above,
just as it maximized the entropy for the distribution of Z. Thus, these two
measures of uncertainty do seem to have some things in common. Since the
variance seems simpler than the entropy, we consider it first.

However, even here as we will see in Section 2, answering the questions
we ask about the relationship of uncertainty and information proves difficult,
even in the normal case. We are able to provide a positive answer to these
questions in some cases.

In fact, the genesis of this paper that leads to the issues we address about
probability, variance and entropy as measures of aleatory uncertainty is an
exceedingly simple question. Would uncertainty about a random variable
Y be reduced by the knowledge that Y G A, if P(A) < 1? Following the
Shannon-Renyi concept of uncertainty-information, we might expect a sat-
isfactory definition of uncertainty would give an affirmative answer to this
question. More generally, given two events A C £?, with P(B — A) > 0,
knowledge that Y e A should seemingly reduce uncertainty about Y more
than Y e B.

The definition proposed by O'Hagan, as implemented here, does not agree
with them and shows our heuristics to be too simplistic. More precisely, let
P(Y G C) represent our uncertainty about the event, Ύ falls into C\ Now
suppose we learn that Y is in A, for some A for which A Π C is not empty.
Will our uncertainty about the event decrease as our heuristics suggest?

The answer to that question can be 'no' when the new knowledge conflicts
with our prior beliefs. The new probability of the event, P(Y G C | Y G A),
may be closer to \ than P(Y G C). For example, ΊfY~ [/[0,1], C = [0,c],
and A = [α, 1] with 0 < a < c < 1, then P(Y G C \ Y G A) = (c-α)/(l-α) =
^ when a — 2c — 1. If c = | and a = | we would move from a state of
near certainty about the event to one of complete uncertainty (conditional
probability \) about whether or not it has occurred. New information need
not reduce our uncertainty with this simple measure of uncertainty. Can the
same phenomenon occur with other measures of uncertainty? That question
is the subject of the next two sections.

2. Variance

In this section, we study the behaviour of the variance of a real random
variable Y as a measure of uncertainty. In particular, we consider what
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happens to that measure when either the knowledge that YeBorYeA =
[α, b] C B obtains.

We first prove, for A — [—c,c\, a rather general result that falls in line
with our intuition.

T h e o r e m 2 . 1 . Let Y be a real random variable symmetrically distributed
around zero, let I = {c \ P(\Y\ < c) > 0 } ; and let A c = [—c,c] for eel.
Then V(Y \ A c ) is nondecreasing in c. Further, for e e l and c < c\,
V{Y I Ac) = V(Y I A C 1 ) if an only if P(c < Y < cλ) = 0.

Proof. Let Q be the distribution function of Y2. Then, with 7 = c2 and
ηλ = cf, V(Y I ACl) — V(Y I Ac) has the same sign as

/ sdG(s) ί dG(t) - ί dG(s) f tdG(t)
J[0,Ίi] J%Ί] ^[0,7i] ^[0,7][0,Ίi

/ / (s-t)dG(s)dG(t)

(s-t)dG(s)dG(t)>0.
]

Further, the above inequality is an equality if and only if

dθ{s) dG{t) =P{c<Y < ci)F(0 < Y < cλ) = 0.

Since c\ G /, that latter is equivalent to P(c < Y < c\) = 0. D

Although this result seems extremely general, we have imposed an im-
portant restriction, that Y is symmetrically distributed around zero. That
makes the new information, Ύ is in A\ confirmatory, the more so when c is
small. Therefore, it does not seem surprising that the new information has
made the level of uncertainty grow smaller. To probe further entails looking
for information that is inconsistent with our prior model. Thus, we keep A
symmetric as above, but make the distribution asymmetric about 0 so that,
in particular, its mean is no longer 0. We have chosen Y ~ ΛΓ(η, 1), because
of the central role of the normal distribution in statistical theory. What we
can then show as the next result is that the result in the previous theorem
is true when the event B = (—00, 00) and η is arbitrary.

Theorem 2.2. V(Y \ A) < V(Y) = 1 for all η when A = [-c,c\.

Proof. Using the fact that the conditional distribution of Y given that Y G A
is an exponential family distribution, we have

V(Y I A) = ±£(Y I A),
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where

£(Y 1 A) ~ Γ-c y e

1 ' ^ flce-(

where φ and Φ are, respectively, the standard normal density and distribu-
tion function. So, V(Y \ A) can be written as

V(Y Λ) = l d ^ V ~C">~ ^ η + ^
dη Φ(η + c) — Φ(η — c)

and it is now sufficient to show that

φ{η - c) - φ(η + c)
(2.1) h(η) =

Φ(η + c) — Φ(η - c)

is increasing in 77. Given that h(η) = —h(—η) for all 77, it is sufficient to prove
this for 77 > 0. A proof of this result can be found in van Eeden and Zidek
(2001) but, given that it is very short, we repeat it here for completeness.
Note that

h'(η) = K(η)[(η + c)φ(η + c) - (77 - c)φ(η - c) + h(η)(φ(η - c) - φ(η + c))]

where K^)"1 = Φ(η + c) — Φ(η — c). Clearly hf(ή) > 0 when 0 < η < c,
because 0(77 — c) > φ(η + c) when 77 > 0. For η > c

rη+c rη+c
λ(η) = / φ(t)dt < / φ(t)dt =

Jη-c Jη-c V~c η — c

which gives h!(ή) > 2cK(η)φ(η + c) > 0. The result then follows from the
fact that h is continuous. D

Remark 2.1. As an anonymous referee observed, the previous theorem can
easily be extended to the case where A = [α, 6]. We may simply transform
Y into Yf = Y — (b + α)/2 so that η gets transformed into η' = η — (b + α)/2.
We may now apply the theorem to obtain the conclusion of the theorem.

Remark 2.2. The same referee also obtained the result in the last theorem
for an infinite interval, say [α, 00). The proof for this case differs from that
which we give for the finite case, but for brevity is omitted.

The heuristics given in Section 1 would lead us to conjecture that V(Y \ A)
is increasing in c when A = [—c,c]. That conjecture seems to be supported
by the plots of the conditional variance against c for various values of η
depicted in Figure 1. However, we have not been able to prove or disprove
this conjecture other than in the case considered in Theorem 2.1. But we
have necessary and sufficient conditions for the derivative of V(Y \ A) with
respect to c to be positive under very minimal conditions on the density /.
They are given in Theorem 2.3.
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Figure 1. Conditional Variance of Y as a Function of c for Various Values of η.

Theorem 2.3. If A = [—c, c] and Y has density f(y) which is positive for
y G (—oo,oo)? then (d/dc)V(Y\A) > 0 if and only if

c2 - S{Y2 I A) + 2S{Y I A)[ε{Y \A)-c
J(c) - /(-c)

I + /(-c)

Proof. The conditional variance of Y given that Ye [—c, c] is

v{γ {Λ)=T(A) ίfmdv ~ {
So

d

yf(y)dy

c)

The result then follows from the fact that /(y) > 0 for y € (—00,00). D
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Following the reading of this paper, Dr Chris Klaassen, proved a theorem
with the same conclusion as Theorem 2.1 but under very different hypothe-
ses. He has graciously allowed us to present his result as Theorem 2.4. As
in our theorem, the conditional variance is shown to be monotone while
the distribution is symmetric about 0. However, unlike our theorem and
more like our Theorem 2.2, the new information in his theorem tends to be
inconsistent with the prior model.

Theorem 2.4 (Klaassen). Let Y be symmetric about zero with distribution
function F and let C be the smallest real such that F puts all its mass on
[—C,C]. Let Vc be the conditional variance of Y given that \Y\ > c. If
S Y2 is finite, then Vc is a nondecreasing function of c G [0, C) and strictly
increasing at all such c at which F is strictly monotone.

Proof First note that

" ' = ,C

IS dF(y)
[y2(F(y) - l)]g + 2 Jg y{\ - F(y)) dy

- 2 + Γ^/%(i-^))*

Now let, for c and d in [0, C)

χ(c, d) = c2+ 2 [ y{\ - F{y)) dy,
1 — r(d) Jc+

then χ(c, c) = Vc and χ(c, d) is nondecreasing in d for all c. Further, for any

0 < d < c < C,

Therefore we have, for 0 < ε < C — c,

(2.2) Vc+£ = Xc+ε,c+ε > Xc+ε,c > Xc,c = Vc.

Further note that the first inequality in (2.2) is strict when F(c + ε) >

F(c). •

3. The entropy

To begin, we state an easily proven identity using A to denote the comple-

ment of A. With this notation, we have

(3.1) H(Y) = P(A)H(Y I A) + P{A)H(Y \ A) + H(IA{Y})
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where I A is the indicator function for the set A. Therefore, H(Y) — H(Y \ A)
= P(A)[H(Y I A) - H(Y I A)} + H(IA{Y}).

Prom this identity we can see that knowing Y £ A will reduce our uncer-
tainty about Y (regardless of our choice of the reference measure, m, above)
if:

• our uncertainty about whether or not Y will lie in A and hence the
last term in identity (3.1) is large;

• knowing that Y is in A makes us appreciably more certain about the
value of Y than does knowing that Y is in A.

• Y G A is very unlikely.

Otherwise, our uncertainty about Y might increase as a result of partial
knowledge about Y thus flying in the face of our intuition.

To shed some light on this issue, we examine the identity above more
closely and see that the unconditional entropy is sensitive to what might
be called 'model uncertainty' as well as uncertainty about Y itself. That
model is either f(y\A)oτf(y\ A) as appropriate. Moreover, if Y G A is
in disagreement with the model f(y | A), that new knowledge can leave us
more uncertain about Y than before. However, we have not been able to
find an example for the entropy where this phenomenon actually arises.

The next theorem gives conditions that ensure the monotonicity of en-
tropy suggested by the heuristics in Section 1.

Theorem 3.1. Suppose A C B, P(A) > 0 and ΊnίyeA f(y)/supyeB_A f(y)
> e~ι where f denotes the density function of a random variable Y. Then
H{Y\A) <H{Y\B).

Proof. The result is obviously true when P(B — A) = 0. So now suppose
that P(B - A) > 0. Then

H(Y I B) - H{Y I A)

-^ J^-logf(y))f(y)dy

+ log P(B)-log P(A),

where

i D ^ , ntA\ ίP{B) 1 J ^P(B)-P{A) P(B-A)logP(B)-logP(Λ) = y - d t t > _ L J _ L J = _ L _ J .
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Thus

P(B)[H(Y \B)-H(Y \A)\

P(B - A)

^ IB-A(-losf(y))ny)dy
P(B - A)

Aλ I (-log/(y) + l)/(y)rfϊ/+ -5̂ 77 f (logf(y))f(y)dy
- A) JB-A r[A) JA

> inf ( 1 - log f(y)) + inί:(log f(y))
yEJtj—Λ y£A

= 1 - log( sup f(y)) + log (inf f(yj) > 0
\y(ΞB-A J κy^A '
(
\y(ΞB-A

if infyeA f(y)/^PyeB-A f(y) >

Observe in the previous theorem that we do not require Y to be real

valued.

Example. Suppose Y ~ JVp(0,Σ), while A = {y : ||y|| < c} and B = {y :

11 y 11 < d} where c < d. Then it is easily seen by the previous result that

H(Y I A) < H(Y I B).

Two corollaries follow from the previous theorem. The first concerns

densities like that of the normal that have the shape of an "inverted bowl."

Corollary 3.1. Suppose that A = [—c, c\, B = [—d, d] with c < d, that f is

symmetric about 0 and that f is non-increasing for y > 0. Then H(Y \ A) <

H(Y I B).

Example. Suppose Y has a Cauchy distribution centered at y = 0 and the

sets A and B are as in the previous corollary. Then H(Y \ A) < H(Y | B).

Corollary 3.2. Suppose A = [c,d] while B = [b,d] where b < c < d <

b + VΪ and that Y ~ Λf(η, 1). Then H(Y | A) < H(Y \ B) provided that

Proof. Four distinct cases need to be considered, namely (1) η < b\ (2)
b < η < c; (3) c < η < (c + d)/2; (4) η>(c + d)/2.

In case (4), where η > (c+rf)/2, - l o g ^ u p ^ . ^ f(y)) +log(inf2/GA f(y))
= 0, because the sup and inf are both attained at y = c. So, H(Y | B) —
H(Y I A) > 0 in case (4), whatever be b < c < d.

In case (3), where c < η < (c + o?)/2,

sup
eB-A
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which is nonnegative if and only if

Combining this with c < η < (c + d)/2 gives the condition

/ d+c 1 \ c+d

So, (c, d) has to satisfy c > (d + c)/2 - (l/(d - c)) , i.e., d < c + y/2, which
is implied by d < b + y/2.

Now consider case (2), where b < η < c. Here

sup /(y))+log( inf/(y))==l- i (d-r , ) 2 .
eB-A ' \y^A '

(
\eB-A

So, here we need
b = max(6, d — y/ϊ) <

which is satisfied when d < b + y/2.
Finally, for case (1) where η < 6,

- log( sup f(y)) + log(inf f(y)) = 1 + \{b - ηf - \[d -
VcR-4 / VyeA / 2 2xyeB-A

which is nonnegative if and only if η > (b + d)/2 — l/(d — 6), a condition we
imposed. Further (b + d)/2 — l/(rf — 6) < 6 is satisfied when d < b + \/2. D

We complete this section by proving a theorem for the normal distri-
bution where η is not restricted. However, to gain that generality, we are
limited by our method of proof to the case of B = (—oo, oo).

Theorem 3.2. Suppose A = [—c, c] and Y ~ Λ/"(r/, 1). TTien, w/ien 5 =
(-co, oo), # ( y I A) < H(Y I β) = H{Y) for all η.

Proof. For a Λ/*(ry, 1) distribution

H(Y) = £(-log f(Y)) = log(V2^) + \S{Y - ηf = ±(log(2π) + 1).

Further, f(y \ A) — f(y)/P(A) which gives

H(Y\A)=ε(-logf(Y\A)\A)

= £(log(\/2̂ ) + \(Y-ηf + \og(P(A) \ A)

= log V2^ + log P(A) + \V(Y I A) + \{S{Y I A) - τ?)2

= H(Y) + i(21ogP(A) + V(Y I A) + (ε(Y \ A) - ηf - I),
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where V(Y | A) is the conditional, given F G A , variance of Y.
So, H{Y I A) - H{Y) < 0 if and only if

(3.2) -logP(Λ) - \{V{Y \A) - 1) - \{8{Y \ A) - ηf > 0 for r? > 0,

Prom the proof of Theorem 2.2 we know that S(Y \ A) = η — h(η) and
1 - V(Y I A) = h'(η), where h(η) is given by (2.1). This shows that (3.2) is
equivalent to

±ti(η)-±h2(η)>0 for η > 0.

So, now it is sufficient to show that

G(η) = -logP(A)-^h\η)>0 for η > 0,

because (see the proof of Theorem 2.2) h'{rj) > 0 for all η. But G(0) =

- log(Φ(c) - Φ(-c)) > 0 because h(0) = 0. Further,

d = - ^ + c \ - ^ ~ c \ _ h{η)h'{η)

dη v / y Φ(τj + c) - Φ(τy - c) w y v / ;

- h(η)ti(η) = h(η)V{Y \ A) > 0 for r/ > 0.

which proves the result. D

4. Concluding remarks

Statistics is rooted in uncertainty. Yet despite its importance, few measures
of that quantity have been proposed in contrast to its cousin, "information."
That seems especially surprising in light of the knowledge that at least for
aleatory uncertainty, they would seem to be complementary concepts.

In this paper, we have studied two of the most common measures seen
in statistical contexts, the variance and the entropy. We investigate how
they behave when partial information about a random variable Y becomes
available namely, that Y belongs to a subset A.

Although the subject of our investigation seems simple, we have not been
able to give any general conclusions. For example, we cannot assert that the
residual uncertainty about Y given Y e A "increases" as A increases, as one
might naively expect. Instead, we have obtained results for a number of
special cases, leaving many questions for future study.
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