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The bootstrap Glivenko-Cantelli and bootstrap Donsker theorems of Gine and Zinn (1990)
contain both necessary and sufficient conditions for the asymptotic validity of Efron's
nonparametric bootstrap. In the more general case of exchangeably weighted bootstraps,
Praestgaard and Wellner (1993) and Van der Vaart and Wellner (1996) give analogues
of the sufficiency half of the Theorems of Gine and Zinn (1990), but did not address the
corresponding necessity parts of the theorems. Here we establish a new lower bound for
exchangeably weighted processes and show that the necessity half of the a.s. bootstrap
Glivenko-Cantelli theorem holds for exchangeably weighted bootstraps. We also make
some progress toward the conjectured necessity parts of the bootstrap Donsker theorems
with exchangeable weights.
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1 Introduction

Gine and Zinn (1990) established several beautiful limit theorems for Efron's
nonparametric bootstrap of the general empirical process. One of the key
tools used by Gine and Zinn (1990) was the multiplier inequality used ear-
lier in Gine and Zinn (1983) with Gaussian multipliers to "Gaussianize" the
empirical process and to relate the Gaussianized process to the symmetrized
empirical process, and hence to the empirical process itself via symmetriza-
tion and de-symmetrization inequalities.

Efron's nonparametric bootstrap, which involves resampling from the
empirical measure Pn, can be viewed as one instance of an exchangeably
weighted bootstrap with the weights being the components of a random vec-
tor which has a Multinomial distribution with n cells, n trials, and vector of
"success" probabilities (1/n,. . . , 1/n). The first limit theory for exchange-
ably weighted bootstraps was established by Mason and Newton (1992);
they treated exchangeable bootstrapping of the mean and of the classical
empirical process. Praestgaard and Wellner (1993) extended the direct half
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of several of the theorems of Gine and Zinn (1990) by use of a new type of
multiplier inequality involving symmetrization with ranks rather than with
Rademacher random variables. Similarly, the direct half of the bootstrap
Glivenko - Cantelli theorems of Gine and Zinn (1990) was established in
Van der Vaart and Wellner (1996); see Lemma 3.6.16, page 357. In both
Praestgaard and Wellner (1993) and Van der Vaart and Wellner (1996), the
analogue of the converse half of the theorems of Gine and Zinn (1990) could
not be proved for the general exchangeable bootstrap because of the lack
of an appropriate analogue of the lower bound in the i.i.d. version of the
multiplier inequality.

In this paper we make some progress toward filling these gaps. We first
establish an appropriate lower bound in the case of exchangeably weighted
sums of i.i.d. random elements (Section 2). We then show how this lower
bound yields the converse half of bootstrap Glivenko - Cantelli theorems
(Section 3). In the case of bootstrap Donsker theorems (Section 4), we
are able to establish some of the integrability needed for the converse half,
but still lack an appropriate analogue of the Hoίfmann-J0rgensen theorem
needed to obtain the crucial uniform integrability needed to apply the L\
inequalities established in Section 2.

For other approaches to proving bootstrap limit theorems in other cases

of interest, see Csorgδ and Mason (1989), Einmahl and Mason (1992), and

Shorack (1996), (1997).

2 Multiplier inequalities: a new lower bound

First we give a statement of the multiplier inequalities for the case of i.i.d.
multipliers.

Let Z χ , . . . , Z n be independent and identically distributed (i.i.d.) pro-
cesses indexed by a set T with mean 0 (i.e. EZ{(f) = 0 for all / G f ) ,
and let ξ i , . . . , ξ n , . . . be i.i.d. real-valued random variables which are inde-
pendent of Z i , . . . , Z n , . . . ; in the case of empirical processes, Z; = δχ{ — P
for i.i.d. random elements X{ E X where the basic probability space is
{X,A, P). For processes Z; we write | | Z i | | ^ for sup^G^ |Z;(/) | . As in Van
der Vaart and Wellner (1996), we will assume throughout that ΛΊ,X2,.
are defined as the coordinate projections on the "first" component of the
product probability space (X°° x Z,A°° x C,P°° x Q), and let ξi,ξ2, ..
depend on the last coordinate only.

L e m m a 2.1 (Multiplier inequality for i.i.d. multipliers). Let Z\,..., Zn be

i.i.d stochastic processes with E*\\Zi\\f < oo independent of the Rademacher

variables c i , . . . , e n . Then for every i.i.d. sample £ i , . . . ,ξn °f mean-zero
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random variables independent of Z\,... ,Zn, and any 1 < ΠQ < n7

2 = 1 V 2 = 1

< 2(no-l)£Ί^i||^£ma? ^

(1) +2V^||ί| |2,i max fHI
no<k<n W\/k .

Here ||ξi||2,i = f™ y/P(\ζi\ > t)dt is assumed to be finite. For a proof
of Lemma 2.1, see Gine and Zinn (1983) or Van der Vaart and Wellner
(1996). The important thing to be observed here is that both the upper and
lower bounds for the expected norm of the multiplier process ΣΓ=i &^» a r e

provided in terms of the symmetrized process Y^-i €%Zi.
Now we turn to the case of exchangeable multipliers. We will assume

that the vector ξ = (ξni > ,ζnn) is exchangeable and ||ξni||2,i < oo for
each n. The upper bound half of the following inequality is a consequence
of the multiplier inequality proved by Praestgaard and Wellner (1993).

Lemma 2.2 (Multiplier inequality for exchangeable multipliers). Suppose
that Z\,...,Zn are i.i.d. stochastic processes with E*\\Zi\\r < oo indepen-
dent of the Rademacher variables €χ,..., en and of the random permutation
R = ( i? i , . . . , Rn) of the first n integers. Then for every exchangeable random
vector ξ = (ξni> ? ζnn) independent of Z\,..., Zn, and any 1 < ΠQ < n,

2 = 1

< 2(no — 1 ) £ ^ * | | Z I | | ^ J B max

(2) | i

Proof The inequality on the right follows from Praestgaard and Wellner
(1993), Lemma 4.1, page 2063. It remains only to prove the inequality on
the left. To do this, let Z [ , . . . , Z'n be an independent copy of Z i , . . . , Zn

(canonically formed on an appropriate product probability space). Then by
the triangle inequality

2E*
i—l

>

i—l
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i=\
n

i=\

where the last equality holds because the vector (sign(£ni)ei,..., sign(£nrι)en)

has the same distribution as (e i , . . . ,e n ) and, moreover, is independent of

(fnij ? ίnn) Hence by convexity of the norm || | | ^ and Jensen's inequality

the right side of (3) is bounded below by

E\ξnl\E*\\ aiZi - Zl)\\^ > E\ξnl\E*
i=\

by convexity again and since the Z^s have mean 0; this is quite similar to
the proofs of Lemma 2.3.1, page 108, and Lemma 2.9.1, page 177, Van der
Vaart and Wellner (1996) where the measurability details of the proof are
given in detail. •

3 Bootstrap Glivenko-Cantelli theorems

Now suppose that Xi,X2? are i.i.d. P on (X,A), and let P n be the
empirical measure of the first n of the Xi&\

'.-•;£«*•

The classical Efron nonparametric bootstrap empirical measure P n is just

1 n

where X\,..., Xn is a sample drawn (with replacement) from Ψn. Gine and
Zinn (1990) established the following bootstrap Glivenko-Cantelli theorem.
Their notation NLDM(P) stands for "nearly linearly deviation measureable
for P " ; we refer to Gine and Zinn (1984), page 935 for the detailed definition.

Theorem 3.1 (Glivenko-Cantelli theorem for Efron's Bootstrap). Suppose
that T is NLDM(P). Then the following are equivalent:

(a) P(F) < oojind \\Ψn - P\\jr -> 0 in probability.

(b) P°°- a.s. \\Ψn - ¥n\\? -> 0 in probability.
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Proof See Gine and Zinn (1990), page 860. •

Here is a slight reformulation of the bootstrap Glivenko-Cantelli theorem
of Gine and Zinn (1990) which avoids the hypothesis that T is NLDM(P).
Let BLι(R) be the collection of all functions h : R —> [0,1] such that |/ι(xi) —
h(x2)\ < \xi — X21 for all xi,X2 € R.

Theorem 3.2 (Modified Glivenko-Cantelli theorem for Efron's Bootstrap).
The following are equivalent-
fa) P*\\f - Pf\\τ < oo and \\Ψn - P\\*τ -> 0 in probability,

(b) (P°°γ- a.s. | | P n - Ψn\\j: -> 0 m probability and Eh(\\Ψn - Ψn\WY ~

Eh(\\Ψn - Fn\\τ)* -*a.s. 0 for every h E BLι(R).

Proof This follows as a corollary of Theorem 3.3 below. •

Now we turn to exchangeably weighted bootstraps. Suppose that W_n =
, . . . , Wnn) satisfies the following conditions:

. W_n = (Wnχ,..., Wnn) is exchangeable for each n.

A2. Wni > 0 for i = 1,... ,n and ^ = 1 Wni = n.

A3. maxi<i<n(Wni/n) ̂ p 0.

A4. lim^ooE^i - 1| = b > 0, limsup^^l^i - 1|2 < oo.

For such a vector of exchangeable weights W^, consider the exchangeably
weighted bootstrap empirical measure Pj^ given by

It is easily seen that the classical nonparametric bootstrap empirical mea-
sure is the special case of Pjf obtained by taking W^n = M_n where M n =
(MnU... ,Mnn) ~ Multn{n, (1/n, . . . , 1/n)).

Theorem 3.3 (Glivenko-Cantelli theorem for the Exchangeable Bootstrap).
Suppose that {W_n} satisfies Al - A4. Then the following are equivalent:

(a) P*\\f - Pf\\f < 00 and \\Ψn - P\\*τ -> 0 in probability.

(b) P°°- a.8. | | P ^ - P n | | > -)• 0 in probability and Eh(\\F™ - P n | | ^ ) * -

^ ( | | P ^ - P n | W , ->β.β. 0 /or every h G BLi(Λ).
Moreover, if either (a) or (b) holds it follows that

(4) £w||py - P» Ik->«...* 0.
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Proof That (a) implies (b) was proved in Van der Vaart and Wellner (1996),
Lemma 3.6.16, page 357. It remains only to prove (b) implies (a).

Suppose that we show that (b) implies P* | | / — Pf\\τ < °° a n d that (4)
holds. It follows that
(5) E*\\Ψ™-Ψn ||jr -• 0 .

Now note that by A2 we can write

2 = 1 2 = 1

with ξni = Wni — 1 and Z2 = δχi — P. Hence it follows from the Multiplier
Lemma 2.2 and a standard symmetrization inequality (see e.g. Van der
Vaart and Wellner (1996), Lemma 2.3.1, page 108) that

n i

In view of the non-degeneracy condition A4, this together with (5) yields

which implies the convergence in probability part of (a) by Markov's inequal-

ity.

Now we show that (b) implies that P* | | / — Pf\\r < oo and that (4)
holds. Suppose that (b) holds. Let X[,X'2,... be an independent copy of
X\,X2,..., and let e i , . . . , en be independent Rademacher random variables
which are independent of the {Xi} , {X'{}, and {Wni,i = 1,... ,n,n > 1}.
Set Zi = δXi -P, Z[ = δx>. - P, and ξni = Wni - 1. Then we have

2 = 1 2 = 1 2 = 1

. = i

=d II n
i = l
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Since the left side of this display converges to 0 in probability a.s. with
respect to P^z^ so does the right side. That is, for every δ > 0,

Pte ( II~~ Σ \tni\ei(Zi -Zί)\\ > δ ) -> 0 almost surely.

By independence of £, e, and Z^,Z_\ this yields

inikiiZi - Z')\\ >δ)->0 a l m o s t
\ 2=1

and this implies that

in probability with respect to ξ and almost surely with respect to Z, Z7. But
now the summands Y{ = \ξni\^i(Zi — Z2 ), i = l , . . . , n , are, for fixed \ξni\
and Z{ — Z[, independent and symmetric. Hence by Levy's inequality (e.g.
Proposition A. 1.2, Van der Vaart and Wellner (1996), page 431) it follows
that

in probability with respect to f and almost surely with respect to Z, Z7. But

the norm is equal to

\t λ \\( 7 7fu\-\ξm\ K A - Zi)\\
I v II \\J~

and since this does not depend on ê , it follows that

in probability with respect to ξ and almost surely with respect to

That is,

(7) i \ il
almost surely with respect to Z, Z'.

Now let R be a random permutation of the first n integers. Let bn{

(l/n) | | (Z; - Zί)|| jr, and suppose that / G {1, . . . , n} satisfies maxi<i<n bni

bni. Then by exchangeability of the Wn{S we have

max \ξni\bni =d max \ξn,R(Φni'
\<ι<n \<ι<n
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Hence, conditioning on the Wni% it follows that the probability in (7) equals

lCnϋ(i)|6n.i>e|lί0 > EwP(\ξnR(I)\bnI > e\W)

i=i

ίl
- E w ( n

n

Σ
(8) =

Now for any non-negative random variable Y and a > 0 we have

E(Y) = E(Yl[γ<a]) + E(Yl[γ>a]) < a + ^ ^ ( 7 > a)

and, choosing a = c£^(F) with c < 1, this yields

- c)2(EY)2

(9) P(Y > cE(Y)) >
E(Y2)

this is the Paley-Zygmund argument. Using this with Y = \ξnι\ and cEY
y/e in combination with (7) and (8) yields

But by hypothesis A4 the first term on the right side of (10) converges to a
positive constant. Since the left side converges to 0 almost surely by (7), it
follows that

(11) n~ι max
l<< a s

0.

But it is well known that (11) holds if and only if
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by convexity of the norm together with EZ[ = 0, this implies that

This together with A4 implies that (4) holds via uniform integrability. •

4 Bootstrap Donsker theorems: conjectures and partial proofs

Suppose that P n , P n , and Ψ™ are defined as in Section 3, and define the
empirical process G n, the nonparametric bootstrap empirical process G n ,
and the exchangeably weighted empirical process G^, by

(12) G n =\/^(P n -P), Gn = ^(ίPn-Pn), @? = y/ϊiφW-Ψn) .

In this section we will consider the processes Gn, G n, and G ^ as processes
indexed by functions / G f , where T C C2(P) = C2{X, A, P). The following
bootstrap Donsker theorem results from Gine and Zinn (1990) together with
the measurability improvements of Van der Vaart and Wellner (1996).

Theorem 4.1 (Almost sure Donsker theorem for Efron's Bootstrap). The
following are equivalent:
(a) P*\\f - Pf\\2

T < oo and 3= is P-Donsker; i.e. Gn =» G P in 1°°^).

(b) su P / ι E J 5 L l \Eh(Gn) - Eh{Gp)\ ^α.5.* 0 and Eh{Gn)* - Eh(Gn)* ->α.s. 0
for every h G BL\.

Theorem 4.2 (In probability Donsker theorem for Efron7s Bootstrap). The
following are equivalent:
(a) T is P-Donsker; i.e. Gn => GP in 1°°{T^.
(b) sup / ι G β L l \Eh(Gn) — Eh(Gp)\ ->p* 0 and Gn is asymptotically measur-

able: Eh{Gn)* - Eh{Gn)* -> 0 for every h e BLλ.

Proof See Gine and Zinn (1990), page 857; for a version of Theorem 4.1
under additional measurability hypotheses; and see Gine and Zinn (1990),
page 862 for a version of Theorem 4.2 under additional measurability hy-
potheses. The above statements are from Van der Vaart and Wellner (1996),
page 347 (where complete proofs are also given). •

The strong point of these theorems is they provide necessary and suffi-
cient conditions in order for the process Gn to converge weakly either almost
surely or in probability respectively.

Now we turn to exchangeably weighted bootstraps. Our goal is to es-
tablish the analogues of the converse halves of of Theorems 4.1 and 4.2 in
the case of the exchangeable bootstrap process Gjf. The resulting Theo-
rems 4.3 and 4.4 below strengthen Theorems 2.1 and 2.2 of Praestgaard and
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Wellner (1993) (or see Theorem 3.6.13 of Van der Vaart and Wellner (1996))
to the level of equivalence established by Gine and Zinn (1990) for Efron's
bootstrap.

Suppose that W_n — {Wn\,..., Wnn) satisfies the following conditions:

B l . W_n = (Wni,..., Wnn) is exchangeable for each n.

B2. Wni > 0 for i = 1,... ,n and £?=i Wni = n.

B3. sup 11̂ ,1112,1 < oo, and lim limsupsupί2P(Wni > ί) = 0.
n>\ ' λ->oo n->oo t>\

B4. lim^oo E\Wnl - 1| = b > 0, and n " 1 Σti(wm - I ) 2 ->P c
2 > 0.

In view of Lemma 4.7 of Praestgaard and Wellner (1993), B3 and B4
together imply that {Wni} is uniformly square-integrable and hence so is
n~l YJl=ι{Wni - I ) 2 . Therefore B3 and B4 together imply that
E(Wnl - I ) 2 -> c2.

Theorem 4.3 (Conjectured Almost sure Donsker theorem for the Exchange-
able Bootstrap). Suppose that {W_n} satisfies Bl - B4- Then the following
are equivalent:
(a) P*\\f - Pfψj, < oo and T is P-Donsker; i.e. Gn => GP in

(b) sup^ G β L l \Eh(G^)-Eh(cGP)\ ^ α . 5 .* 0 andEh&)*
0 for every h G BL\.

Theorem 4.4 (Conjectured In probability Donsker theorem for the Exchan-
geable Bootstrap). Suppose that {WLn\ satisfies Bl - B4 Then the following
are equivalent:
(a) T is P-Donsker; i.e. Gn =» GP in l°°(T). ^
(b) s u p / ι € β L l \Eh(G^) — Eh(cGp)\ ->p* 0 and G™ is asymptotically mea-
surable.

Proof (Partial.) That (a) implies (b) in both Theorems 4.3 and 4.4
was proved in Van der Vaart and Wellner (1996), Theorem 3.6.13, page 355,
under additional measurability hypotheses. It remains only to prove that
(b) implies (a) in both cases.

In the converse direction, we are currently able only to show that (b)
of Theorem 4.3 implies the integrability condition of (a) of Theorem 4.3.
Suppose that (b) holds. Then, with (Z[,Z^...) an independent copy of
(Zi, Z2,...)? a n d €1, 62,... a sequence of i.i.d Rademacher random variables
independent of the W_% Z*'s, and Zt 's,
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= i

= '

In view of (b) it follows that this difference converges weakly for almost all
sequences Z\, Z 2 , . . . , Z[, Z£, •> to the tight Gaussian process c(Gp - Gp)
with values in CU{T), the space of uniformly continuous functions from JΓ
to i?. Thus the supremum c\\Gp — Gp| |^ has moments of all orders, and for
every e > 0 there exists an x sufficiently large so that

Hence, by the Portmanteau theorem, for n >

But by Levy's inequality used conditionally on the W.% the left side is

> l-EwPe (max \Wni - l\\ei\\\Zi - Z[\\τ > x

max \Wni - l\\\Zi - Z[\\τ > xy/ϊϊ) .

Thus, letting bni = n-ιl2\\(Zi - Z^\τ and ξni = Wni - 1, we have

(13) Pw (maxi<i<n|ξm|δm > x) < 2
X

Now let / G {1,... ,n} satisfy maxi<i<n bn{ = &n/. Then by exchangeability
of the Wni's it follows that

max \ξni\bni =d max |ξnjΛ(i)|6ni
l<i<n l<ι<n

where β is a random permutation which is independent of the W_'s and the
Zi% and Z?'s. Thus the left side of (13) is equal to

EWPR ( max |ξn|Λ(<)|6m > x) > EWPR (\ξn,R{i)\Ki > x)
V l<z<n y
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(ΛA\

l[bnι>2x/E\ζm\]

l{bnI>2x/E\ξnl\}

where we have used the inequality (9) with Y — \ζn\\ and c = 1/2 in the last
step. Now the first term on the right side of (14) has a positive limit inferior
as n —> oo by B3-B4. Because the right side is smaller than Ae/x2 by (13),
it follows that

1 Ax
(15) limsup -7= max \\Z{ — Z[\\r < — < 00

almost surely where b = limn_^oo -E| Wni —1| = limn-^oo ^|Cm| By a standard
argument, this implies that

E*(\\(Z1-Z[)\\2

:F)<oo.

By convexity of the norm together with EZ[ = 0, this implies that

Er(\\Z1\\%)=P*\\f{Xi)-Pf\\%<°o.

This concludes the proof. •

To complete the proof of the conjectured Theorem 4.3, it would suffice
to show that

(16) {||GjJΊl£: n>l} is uniformly integrable.

and

(17) { | | G Γ l l > - H - ^ Σ W n i ( ^ r - ^ ) | | ^ : n>\}

is P°° — a.s. uniformly integrable .

If (16) and (17) could be proved, then the proof of the conjectured Theorems
4.3 and 4.4 are easily finished by use of the left inequality in Lemma 2.2. By
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general weak convergence theory, if (b) of Theorem 4.3 holds, then, for any
δn ->> 0 and every e > 0,

pw ( | |Gf \\T6n > e) - W * 0 a s n - ^ o o ;

see e.g. Van der Vaart and Wellner (1996), Theorem 1.5.7, page 37. This
together with (17) implies that

Ew\β™\\τδn ~>α.s. 0 a s n ^ o o ,

and then, in turn,

(18) E*\\G^\\jrSn^0 asn->oo.

Combining (18) with the left inequality in Lemma 2.2 (with || | | ^ replaced
by II' ltan)> Cni — wm - 1> and Z{ = δχ{ - P, we would be able to conclude
that

^ Σ ^ n ^ < ε*\\j=J2ξniZi\\rSn

as n ->> oo, and since linin-^oo E\ξnι\ = b>0by B4, this yields (by a standard
symmetrization inequality)

as n —> oo .

It would follow (e.g. by Van der Vaart and Wellner (1996), Corollary 2.3.12,
page 115) that T is P—Donsker, so that (a) of Theorem 4.3 would hold.

Unfortunately, we have not been able to establish (16) and (17). The
missing link seems to be a suitable replacement in the exchangeable case
for either Hoffmann-j0rgensen's inequality (see Van der Vaart and Wellner
(1996), Proposition A.I.5, page 433), or the uniform in n weak-I/2 condition
for \\Gn\\j: of Van der Vaart and Wellner (1996), Lemma 2.3.9, page 113.
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