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Abstract

Hodges and Lehmann (1956) have shown that the asymptotic rela-
tive efficiency of Wilcoxon rank tests with respect to Student's t tests,
in location models with independent observations, never falls below
0.864—a lower bound which is attained at a parabolic density related
with the so-called Epanechnikov kernel. This result actually holds for
under general linear models with independent observations. A sim-
ilar result is proved here, in a time series context, for the so-called
Spearman-Wald-Wolfowitz autocorrelation coefficients. It is shown
that the asymptotic relative efficiency of the corresponding tests, with
respect to the classical everyday practice based on traditional autocor-
relations, is never less than 0.856; the bound is attained at a cosine
density.
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1 Hodges and Lehmann's .864 bound

Hodges and Lehmann (1956), in a famous paper that had quite an impact
in the history of rank-based inference, established the striking fact that the
asymptotic relative efficiency (ARE) of Wilcoxon tests (this includes the
one-sample signed rank test, the two-sample Wilcoxon test, as well as the
Kruskal-Wallis test for one-way analysis of variance) with respect to their
normal-theory competitors (one- and two-sample Student tests and F-tests)
never falls below 0.864. This result apparently was unexpected, and caused
quite a surprise in the statistical community. As stated by E.L. Lehmann
himself in his 1984 Statistical Science interview (De Groot, 1986), "this paper
was influential in the sense that it dispelled the belief that while nonpammet-
ric [rank-based] techniques are very convenient because you don't have many
assumptions, they have so little power that they are no good1.

Interestingly enough, thirty years later, E.L. Lehmann still considers
his ".864 paper with Joe" [Hodges] as one of his favourite. Along with the
Chernoff-Savage (1958) result—showing that the ARE, with respect to the
same normal-theory competitors, of normal-score rank and signed rank tests
is never less than one—the ".864 pape^ certainly played a triggering role in
the subsequent developments of rank-based inference.

In a more precise setting, Hodges and Lehmann's result can be described
as follows. Consider the linear rank statistic (of the Wilcoxon type)

where

(i) q , i = 1,... , n denotes a triangular array of regression constants,

with mean c ^ ^

(ii) R/n) = (i?i , . . . , Bn ) is the vector of ranks computed from some
n-tuple of residuals Z^ = (z[n\ . . . , Z^]) which, under the null
hypothesis to be tested, reduce to white noise—an i.i.d. sequence with
unspecified density function.

Similarly, define the linear signed rank statistic (of the Wilcoxon type)

)RM, (1.2)
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where

(iv) sgn(^ n ) ) is the sign of z\n\ and

(v) R+ = (-R+. \, . , R+ nϊ iβ the vector of ranks computed from the

absolute values of the Z± 's.

The normal-theory statistic associated with (1.1) and (1.2) is

rp(n) <tef V ^ f (n) _γ;{n)\ i /-i o\

"~ Z^ \ i ) σ\n) ' v J

where

n / n \2

(vi) ( σ ^ ) 2 =' n " 1 ^ I Zfn)- n " 1 J ^ z\n) denotes the empirical vari-

ance of the residuals.

Under very general assumptions on the regression constants (see Hajek
and Sidak 1965) and the density / of the residuals (which, for the signed-rank
statistic (1.2), always include symmetry with respect to the origin), S^n\
S+\ and T^n\ after suitable standardization, are asymptotically normal, as
n —> oo, under any sequence of null hypotheses for which the residuals Z\
are white noise.

These distributional results can be extended, under adequate conditions,
to aligned rank statistics (see, e.g., Puri and Sen 1985), and also to regres-
sion rank score statistics (Gutenbrunner, Jureckova, Koenker, and Port-
noy 1993), yielding a complete toolkit of rank tests of the Wilcoxon type
which basically allow for testing arbitrary sets of linear constraints on the
parameters of general linear models with independent errors. The asymp-
totic relative efficiency (ARE), under error density / and with respect to
the corresponding normal-theory tests, of the Wilcoxon rank tests based on
(1.1) or (1.2), or based on quadratic forms involving vectors of such statistics
(cf. the Kruskal-Wallis test for one-way analysis of variance) is

[/i 2 [ / l / i 2 ( x ) d χ ] ' (L4)

where /i stands for the standard version of /.
The Hodges-Lehmann result then states that

inf 12 f Γ fl{x)άx\ = 108/125 = 0.864, (1.5)
/ VJ-oo J
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a lower bound which is attained at the parabolic density

(5 - x2) I [-χ/5 < x < Vδ] . (1.6)

This parabolic density also enjoys remarquable properties, as a kernel, in
density estimation problem, where it is known as the Epanechnikov kernel
(Epanechnikov 1969). Actually, such densities can be traces back as far as
Lagrange (1776) and Daniel Bernoulli (1778). Lagrange in a long paper had
it as one density that he could cope with via a "Laplace transform"; see
page 228 of Volume 2 of Lagrange's Oeuυres (1868). Bernoulli (1778) used
it as a density to find a MLE; see Kendall (1961), and Stigler (1997).

Two simple applications of Hodges and Lehmann's result are

(a) the one-sample location model, where a n-tuple of i.i.d. observations
X^ , . .. , Xn has unspecified density, symmetric with respect to
some μ 6 R, and the null hypothesis to be tested is μ = μo; let-
ting Z\n) d=f X\n) - μ0 and c\n) = 1, a test can be based on (1.2),
yielding the classical Wilcoxon signed rank test, or on (1.3), which,
after adequate standardization, reduces to the classical Student test
statistic;

(b) the two-sample location model: under the null hypothesis to be tested,

a n-tuple of independent observations x[n\ . . . , Xm\ ? Xn are

i.i.d., whereas, under the alternative, Xχ\ . •• , Xm and

* £ + ! , . . . , Xin) differ in location; letting z\n) d=f x\n\ c\n) = 1,

i = 1, ... , m and q ' = 0, i = m + 1, ... , n, a test can be based on
(1.1), yielding (after due standardization) the classical Wilcoxon rank
sum test, or on (1.3), which (still, after standardization) reduces to
two-sample Student statistic.

The intuitive interpretation of (1.5) in these two cases is that using the
Wilcoxon tests instead of Student's traditional t-tests never entails a serious
loss of efficiency: the cost, in terms of additional observations, indeed never
exceeds 1 — 0.864 = 13.6%. On the other hand, the benefit, still in terms of
sample sizes, can be infinite.

2 Spearman correlograms

Rank-based inference for a long time has been essentially limited to the
context of independent observations. The invariance arguments (invariance
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here is with respect to the group of order-preserving transformations acting
on residuals) leading to rank-based methods in linear models with inde-
pendent error terms however still hold under much more general situations
under which the observed series constitutes the realization of some stochas-
tic process, and, more particularly, in time series analysis: see Hallin and
Puri (1992), or Hallin and Werker (1999) for a review. A systematic treat-
ment of rank and signed rank testing methods for autoregressive-moving
average (ARMA) models has been developed in a series of papers by Hallin
and Puri (1988, 1991, 1994). In the presentation given here, we avoid giv-
ing precise lists of technical assumptions, for which the interested reader is
referred to the literature.

The normal theory in linear time series models leads to test statistics
which are linear or quadratic forms in residual autocorrelations, of the form

rk — [n — k)
t=fc+l v }

where

(i) Z\n\ t = 1, . . . , n again denotes a n-tuple of residuals which, under
the null hypothesis to be tested (linear constraints on the parameters
of the underlying ARMA model), are centered white noise, and

(ii) ( σ ^ ) 2 is defined as in (1.3), so that (n - k)^2r^\ is asymptotically
standardized.

Under Gaussian assumptions, residual correlograms indeed are locally asymp-
totically sufficient in the sense of Le Cam (namely, ( r ^ , k = 1,2,...)-
measurable central sequences exist), so that locally asymptotically optimal
tests can be based on residual autocorrelations.

Rank tests for the same problems can be based on a rank-based gener-
alization of (2.1), of the form

(n) def

where

(iii) R[n\ t = 1, . . . , n denotes the rank of z[n) among z[n\ t = 1, ... , n,



254 Hallin & Tribel

(iv) J\ and J2: (0, 1) —• R are nondecreasing, continuous score functions
satisfying

jf(u)du < 00, i = 1, 2,

(v) m}Jj2 and Sj™ j 2 are exact standardizing constants.

When the underlying innovation density / can be assumed symmetric, signed
rank residual autocorrelation coefficients also can be substituted for the
unsigned ones (2.2). These signed rank autocorrelations are of the general
form

where

(vi) the score functions J+ and J^ (—I, 1) —> R are odd and square-
integrable,

(vii) the ranks R±)t are those of the absolute values of the residuals zψ' ,

and

(viii) s+. j l t / 2 is an exact standardizing constant.

The score functions J\ and J% (or J* and J ^ ) can be adjusted to

the underlying innovation density / in such a way that the correspond-

ing correlograms ( r γΊ .. or r \ ' . + ), just as the traditional one {ri1)

under Gaussian densities, be locally asymptotically sufficient in Le Cam's
sense. This yields signed or unsigned normal-score (van der Waerden),
Wilcoxon or Laplace rank-based correlograms, associated with Gaussian,
logistic or double-exponential innovation densities, respectively. Unsigned
Wilcoxon correlograms, for instance, are characterized by J\(u) = u—the
usual Wilcoxon score function—and J2&) = F^ι(v), where Fc stands for
the standard logistic distribution function.



Efficiency of Rank-Based Competitors 255

Alternative, much simpler, extensions of the nonserial Wilcoxon statistics
(1.1) and (1.2) are the Spearman-Wald-Wolfowitz autocorrelations Wolfo-
witz 1943)

(n) def (n-fc) " 1

(2.4)

with exact standardizing constants (s$)2 satisfying (s$)2 = (n4 /144) +
O(n3) as n —» oo, and the signed Spearman-Wald-Wolfowitz autocorrela-
tions

(2 5)
- +;5>'fc [(n - fc) (n + fc) (20n3 + 24n2 - 5n - 6)]1 /2

Both (n — fc)1//2 r ^ and (n — fc)1/2 £+.5.^ are exactly standardized, and

asymptotically standard normal, when Z^ is white noise; clearly, Zsk

can be interpreted as a serial version of the classical Spearman correlation
coefficient for bivariate i.i.d. samples—an idea that first appears in Wald
and Wolfowitz (1943), whence the terminology.

When (2.4) or (2.5) (the latter requiring, as usual, a symmetric innova-
tion density) are substituted for the traditional autocorrelations (2.1) op-
timal Gaussian test statistics (typically, the Gaussian Lagrange multiplier
test statistics), the ARE, under innovation density / and with respect to
the corresponding Gaussian procedures, of the resulting tests is

<2 6)

(/i stands for the standard version of/, F\ for the corresponding distribution
function; the technical assumptions on / , which are not explicitated here,
include absolute regularity, with a.e. derivative / ' ) .

For fixed / , this ARE is strictly smaller than the corresponding nonserial
one (1.4). Indeed, integration by parts yields

[Jo /(F-f1^)) J [J-oo J L/-OO J
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whereas the Cauchy-Schwarz inequality implies

12 I / uFf ̂ uJdJ < 12 ί (u - i J άu ί°° x2f1(x)dx = 1.

The infimum, over all possible densities /, of (2.6) thus has to be less than
0.864. A natural question then arises: is this new lower bound substantially
less than 0.864? The answer, which is provided in Section 3, fortunately is
negative.

3 From .864 to .856

The infimum, over all possible densities /, of the asymptotic relative ef-
ficiency, with respect to traditional correlogram-based methods, of testing
procedures based on the signed or unsigned Spearman-Wald-Wolfowitz au-
tocorrelation coefficients, is

inίiul f1 uFϊ\u)du [\ψ£^du}2= M 2 * 0.856. (3.1)
/ L/o Jo fi(F1

 L(u)) J L 3 2 J

This infimum is not a minimum: strictly, it is not attained at any density
satisfying the required technical assumptions required in the derivation of
(2.6) as an ARE. But, if the density / in (2.6) is chosen as the cosine density

. * , v def

f*(χ) zd
«/ 1 \ /

with

/?(*)...} S = tan x I[ ===== < x <

then the integral expression in (2.6) yields ^ - « 0.856, which, as we

shall see, is the infimum we are looking for. However, (3.3) is not square-
integrable, so that the cosine density has infinite Fisher information. And, a
finite Fisher information was one of the assumptions required in the deriva-
tion and the interpretation of (2.6) as an ARE value. Nevertheless, the
cosine density (3.2) can be obtained as the limit of a sequence of densities
satisfying all the assumptions required in the derivation of (2.6), and thus
can be considered as a limiting case.
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The proof of (3.1) relies on simple variational arguments. Put

POO /»OO

= / fi{x)dx / xf^F^dx. (3.4)
J—oo J—oo

,̂Prom the definition of X(/), it is clear that the infimum is to be obtained
1 f'

for a density /i such that either both Fj~ and v- are symmetric or antisym-
metric with respect to u = ^. Since F j " 1 is nondecreasing, it only can be
antisymmetric. This corresponds to a density /i which is symmetric with
respect to zero, which automatically implies an antisymmetric y- Hence, we
can restrict ourselves to symmetric densities f\.

The Euler-Lagrange equation associated with (3.4) is

-2f[{x) J zf1(z)F1(z)dz - Fr(x) J ft{z)άz - 2z\χ - λ2 = 0; (3.5)

λi and λ2 are the Lagrange multipliers of the problem. In (3.5), let

y(x)d^f Fl(x), y(x)^/i(ϊ) and y(x) & f[(x).

Also, define

1 JfKz)dz dg 2Λiω 2 /zf1(z)F1(z)dzί

and
λ 2

Equation (3.5) then takes the form

y + ω2y- αω2x - βω2 = 0, (3.6)

the real solutions of which are

y — A sin(α x) + B cos(u α ) + αx + β,

with the constraints that y should be nonnegative, monotone nondecreasing,
twice diίϊerentiable, and such that

y(-oo) = 0, y(oo) = 1, (3.7)
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ί zy(z)dz = 0 and ί z2y(z)dz = 1. (3.8)

Assume that f\ has a bounded (symmetric) support [—α; α]. The conti-
nuity of y = /i at ±α implies

Oί

cos(ωα) = — ~j— and β sin (ωα) = 0.

Condition (3.7) yields y(—α) = 0 and y(α) = 1, whence β = ^ and

. , N l - 2 α α
sm(α α) = — — — .

Due to the symmetry of y, the first part of condition (3.8) is automatically
satisfied; the second part implies that

Summing up,
α = 0

yielding the cosine density f{ given in (3.2). It is easily checked that

Γ°° ί°° I 2 Γ^TΓ2!2

ff(x)dxj^ x/i(x)Fi(x)da:J = [^-J «0.856,

which establishes the desired result.

4 Conclusions

Rank tests, which are daily practice in biostatistics, psychometrics or the
planning of experiments, are almost totally ignored in such other fields as
econometrics, hydrology or environmental statistics, where the data essen-
tially take the form of time series. All the attractive properties—distribution-
freeness (exact or asymptotic), similarity and unbiasedness, robustness, ...—
that make rank tests so attractive in the presence of independent observa-
tions appear even more appealing, though, in the time-series context.

The only serious objection against rank-based methods in this area thus
would be their eventual low power, when compared with the traditional
correlogram-based methods. The power of a rank-based test of course de-
pends on the score functions considered, and on the underlying density (in a
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time-series context, the innovation density). The result which is proved here
shows that, when the very simple Wilcoxon scores are adopted, yielding the
so-called Spearman-Wald-Wolfowitz autocorrelations, the ARE of the re-
sulting tests with respect to their traditional counterparts (e.g., Gaussian
Lagrange multipliers), based on classical correlograms, is never less than
0.856—a lower bound which is hardly worse than the celebrated Hodges-
Lehmann 0.864 obtained for Wilcoxon rank tests in the i.i.d. context. This
lower bound is approached when sequences of innovation densities converg-
ing to the cosine density (3.2) are considered. Some other ARE values are
(see Hallin and Werker 1999): 0.912 under Gaussian densities, 1.000 under
logistic densities and 1.226 under double-exponential densities. The upper
bound is +oc.

Another result (Hallin 1994), extends to the time-series context the well-
known Chernoff-Savage (1958) property of normal-score (van der Waerden)
tests, whose ARE efficiency (with respect to Student's t tests in the i.i.d.
case, to classical correlogram-based methods in the time-series case) is al-
ways larger than or equal to one.

These two results, of an asymptotic nature, are confirmed by small sam-
ple simulation studies: see Hallin and Melard (1988) or Garel and Hallin
(1999). The fear that rank-based methods would have low power is thus
completely unjustified, quite on the contrary, and rank-based methods defi-
nitely deserve entering time-series practice.

Acknowledgement. The authors are grateful to Lucien Le Cam and
Stephen Stigler for their historical comments on Laplace and Bernoulli, in
connection with the so-called Epanechnikov kernel.
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