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ABSTRACT. Amazons is a board game which has enjoyed some popular-
ity since its appearance on the Internet a few years ago. It can be played
on boards of arbitrary size. Like subtraction games studied by Fergu-
son [1974], Amazons is two-person, perfect-information, and zero-sum.
Nevertheless, sums of games such as Amazons offer very interesting ex-
amples of "central limit theorems" which turn out to be considerably
stronger than those encountered in probability theory.

As an illustration of the power of combinatorial game theory, we offer
an analysis of all starting positions of Amazons played on sums of N x 2
rectangles, in which each player has one Amazon in each rectangle. The
analysis reveals two common yet important phenomena which many
players overlook.

Although we assume no special background, seasoned combinatorial
game theorists will find that Amazons provides our motivation for a
novel exposition of the subject, starting with "results-oriented" ther-
mography. This approach gets to the main results about hot games
much more directly than prior expositions, which begin with Conway's
theory of canonical forms and a special emphasis on numbers. Prom the
new perspective, numbers appear much later as a special case: they are
the games whose temperatures are negative.

1. INTRODUCTION TO AMAZONS

An Amazon is an immortal chess queen who, after completing a move of
her own, then shoots an arrow which also moves like a chess queen. The

FIGURE 1. White to move and win. (Blank areas are burned out.)
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square on which the arrow lands is burned off of the board. Neither Amazons
nor arrows may jump over a burned square or over an Amazon. Each player
controls several Amazons, exactly one of which must be moved at each turn.
The initial board may also contain some squares which have been burned
a priori A player who is unable to move loses, and that ends the game.

For readers who enjoy especially challenging problems, we offer Figure 1.
A sketch of our solution appears in Appendix B at the end of this paper.

Notation. The study of games such as Amazons has been abstracted, for-
malized, generalized, and developed by Conway [1973] and by Berlekamp,
Conway, and Guy [1982]. This work has grown into the subject now called
combinatorial game theory [Nowakowski 1996]. In Conway's now-standard
notation, a (two-person, perfect-information, loop-free) game (with the last
move winning) is defined recursively as two sets of games separated by a
vertical bar, known as a slash:

G = {GL\GR}.

The elements of GL are the games (i.e., positions) to which Black can move;
they are also known as the Left followers or Left options of G. Likewise, GR

is the set of Right followers or Right options, the set of positions to which
White can move. (L, or Left, is synonymous with bLack, while ϋ , or Right,
is identified with whITE.) For example:

wx
X

χ
X
If

Xχ
X

where X indicates a burned square. In general, each game in GL and GR

may be similarly defined via further sets.
A small set of commonly occurring abstract games have special names,

including the game in which neither player can move, so that GL and GR

are both empty:

m=o.
Here are two games in which one player can move but the other cannot:

In these terms, the current example becomes

= { - 1 , {0|0} , 0 , {0|0} I +1 }.

To shorten the expressions we often omit braces and use larger and/or
multiple slashes to indicate the order of precedence, as

- 1 , 0|0, 0, 0|0 II + 1 .
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Here are some other abbreviations, or special names, for commonly occurring
abstract games:

{0|0} = *, called "star";

{0 |*}=t, called "up";

{*|0}=+, called "down".

If G = {A, B,... I X,F,. . . } and G' = {Af,Bf,... | X',Y',... }, the sum
G + G is defined recursively as

{A+G1, B+G',..., G+A1, G+Bf... \ X+G', Y+Gf,..., G+X', G+Y'}.

That is, a Left move consists in choosing between G and G' and then choos-
ing a Left move in the chosen subgame; and likewise for Right. In the sum
of * with another game, the plus sign is often omitted: thus, 1* means 1 + *
and t * means | + *•

2. ENVIRONMENTAL AMAZONS

Environmental Amazons is a variant of the game which also includes a
stack of cards, called the environment. Each card represents a number. The
stack I have found most useful in classroom demonstrations consists of the
following 52 cards: Top card = 5; 9 | , 9§, 9§, 9±, 9 | , . . . , | , - | , - § ,
— | , — | , —1, —1, . . . , —1; —^ = bottom card. This stack is said to have
temperature 9 | and decrement ~. In general, a stack with temperature t and
decrement δ begins with a special top card, called the initial komi, followed
by cards whose values decrease in steps of size δ down to a value in the
interval (—1+5, —1], followed by some number (6, in the present case) of
cards of value —1, terminated by an exceptional card of value — \, which
is called the terminal komi. Each card has no back; its value is printed on
both sides. As in accounting, positive values are printed in black; negative
values, in red.

The value of the initial komi is the alternating sum of all the other cards:

5 = 9 | _ 9 | + 9 | - . + ( - | ) - ( - ί ) + (-l) -•• + (- i )

Environmental Amazons rules require the initial komi be given to the
second player as compensation for the fact that his opponent is allowed to
make the first move. If S denotes the card Stack (excluding the initial komi),
then

Initial komi = LP(S),

where LP denotes the optimal net payoff if Left plays first. If instead Right
plays first, we have the Right payoff,

RP(S) = -LP(S).

Once the game begins, each player, at his turn, has the option of either
taking the top card or making any legal play on the board. The game con-
tinues until the terminal komi on the bottom card is taken; that move is
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by definition the final move of the game. The position on the board after
the terminal komi has been taken is no longer relevant. Each side receives a
score equal to the net sum of all of the cards he has taken, and the difference
between these scores is the "payoff" which the player with the higher score
receives from the player with the lower score. The goal of each player is to
maximize the difference between his score and the opponent's score. Tied
outcomes are possible, and near-ties (i.e., very small net differences in score)
are considered insignificant. A victory by a very small margin results only
in a very small payment, without any associated titles, trophies, boasting
rights, or other rewards. This is an important difference from popular Ama-
zons, in which the payoff is a step function, allowing the winner to receive the
same full prize no matter how close the contest. However, it turns out that
it is often much easier to find optimal strategies for playing environmental
Amazons, and these strategies often carry over to the popular variant of the
game.

Before studying several specific Amazons positions, it is instructive to
investigate optimal strategies in the degenerate case in which the game con-
sists entirely of cards. Since each player then has a unique choice for each
move, there is only one legal sequence of play, and the result is easily de-
termined: both players receive the same total score, and the net difference
between their scores is 0. We can also study modifications of this game ob-
tained by deploying an additional optional card of value C, which is placed
separately on the table. After the compulsory initial komi, and until the
optional card is taken, each player, at his turn, is given the option of taking
either the card of value C or the top card from the environmental stack. It
is easily shown that the optimal strategy for each player is to play exactly
as if the card of value C were absorbed into the stack in order. The same
result holds if there are several optional cards with assorted values. The
best move is always to take the highest available card, whether it resides on
the stack or elsewhere.

It is also instructive to compute the resulting scores of games consisting
of the specified environment and a few optional cards. The simplest case
consists of a single optional card, of value 0. In that case, the optimal net
score is also 0. The initial komi cancels out the net effect of all of the other
positive cards in the environment, and the terminal komi cancels out the net
effect of all of the other negative cards in the environment. More generally,
if all optional cards have values which are integers in the range between 10
and —1 inclusive, then a short computation will show that, with optimal
play by both players, the net difference between their scores will still be
zero. This remains true if the values on the optional cards are allowed to be
half-integers or quarter-integers, but it fails if one of the optional cards has
value which is not a quarter-integer.

To circumvent this problem, we introduce the fully enriched environment,
denoted by the symbol Ĉ . This is an idealization of a very thick stack of
cards of temperature t. To specify an "implementation" of this idealized
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environment for a particular contest, each player bids a proposed value of
£, which can be any positive real number, and a proposed multiplicity of
— Is, which must be a positive integer. All bids are then revealed. Ties,
if any, may be resolved by coin flipping. The player bidding the smaller
multiplicity of —Is then specifies a number larger than his opponent's bid,
and the player bidding the higher bound on δ then specifies a positive value
of δ smaller than his opponent's bid. This protocol allows either player to
ensure any desired (small) upper bound on <5, although his opponent may
then try to manipulate within the range between zero and δ. The initial
komi of the fully enriched environment is between t/2 and t/2 + 5, inclusive.
The cards occur at small equal decrements ranging from t down to —1. After
the specified multiplicity of cards valued at —1, the bottom card on the stack
is the terminal komi of value — \.

For any given specified Amazons board position, a player specified to
move "first" (meaning that his opponent receives the initial komi), and a
specified value of temperature, t, we might seek expert appraisals of the
optimum payoff from experienced gurus. Another guru wishing to challenge
an allegedly inaccurate appraisal would do so by specifying the sign of the
alleged error and a positive number e smaller than the magnitude of the
alleged error. The issue could then be resolved via an ensuing contest. Both
contestants would submit bids used to specify an implementation of the
environment; the challenger would choose which side he desired to play, and
play would commence. In order for the challenger to be successful, he must
achieve a net score at least e better than the appraisal.

Since an implementation of a fully enriched environment may contain a
very large number or cards, it can be helpful to expedite play by introducing
a referee. After both players take the top card on any pair of consecutive
moves, the referee interrupts the game and requires each player to submit a
sealed bid specifying the temperature (of the top card) at which they next
plan to play on the board, assuming that the opponent always takes cards in
the meantime. The referee than picks a new temperature equal to the higher
bid (possibly incremented by an amount not to exceed 2£), and removes an
even number of cards from the top of the stack. In lieu of dealing these
cards out appropriately between the two players, the referee ensures the
same result by awarding a net score of (toid — tnew)/2 to the player who was
about to take the top card when the referee intervened.

The only reason for the sealed bids and the referee is to prevent the
winning bidder from discovering the size of the losing bidder's bid. A guru
confident of his perfect strategy would have no need for such a referee, as
he would be willing to let his opponent know his future strategy.

In the jargon of thermodynamics, the presence of a fully enriched envi-
ronment facilitates an adiabatic temperature decrease. Suppose the board
game is such that there is some integer, iV, which provides an upper bound
on the maximum possible number of moves that can be made on the board.
Suppose further than either player player thinks that perhaps the entire
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board should be played out at the same temperature. Then he might choose
to insist that

δ < e/N.

3. THERMOGRAPHY

A Results-Oriented Definition. A thermograph for a given game posi-
tion, G, is a pair of functions of the temperature t. One function, called the
leftwall and denoted by LW(G, ί), gives the optimal net score for the game
G + fit if Left plays first; the other function, called the rightwall and written
RW(G, ί), gives the optimal net score for the same game if Right plays first.
In equations,

LW(G, t) = LP(G + εt) - LP(£ t),

RW(G, t) = RP(G + εt) - RP(εt),

where the value of the initial komi is LP(ε$) = —RP(£t) = i/2.

By universal convention, thermographs are plotted with the independent
variable increasing upward along the vertical axis and the values of the
walls as the horizontal coordinate, increasing toward the left rather than the
right. Although these conventions differ from those which are common in
subjects such as calculus and analytic geometry, they have several desirable
properties:

1. The analogy between thermographs and probability distributions is
more apparent.

2. The thermographs correspond more directly with the corresponding
game graphs, in which play, like temperature, normally progresses in
a top-down direction, and Left generally strives to move Leftwards.

Examples. The cardstack £_χ has initial komi of — ̂ , no matter whether
the number of —Is is even or odd. The cards are then —1, —1, ... , —1;
— 5 = terminal komi. Since both the initial and final komis have value — ̂ ,
and all non-komi cards are integers, it is clear that for any board game, G,
the values of LW(G,-1) and RW(G,-1) are integers. If LW(G,-1) and
RW(G, —1) are the same integer, fc, we say that G is also an integer, k.

If G = fc, an integer, then for all t, LW (G,t) = RW(G,ί) = k. As long as
the environment, £*, contains cards bigger than —1, both players will prefer
to take cards instead of playing in G. However, when the temperature of
the environment reaches —1, then the player favored by the sign of k will
start using up his moves in G while his opponent is forced to take cards of
value —1.

Thermographs of three Amazons positions are shown in Figure 2.
In Figure 2a, Right cannot move, but Left can retreat and then shoot

back into his own footprint. The tactic of moving like a chess king and then
shooting into her own footprint is called a plod. Plodding often turns out to
be a good Amazons endgame tactic. In this case it ensures that Left gets
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IXI
value = 2

JSL
value = 2|0 value = 4 | | - l | - 3

- 12 3 2 1 0 - 1 54 1
(a) (b) (c)

FIGURE 2. Thermographs for some 1 x N Amazons positions.

two consecutive moves while Right gets none. These two moves can be taken
when the temperature of the environment is — 1, and White gets stuck with
two cards of value —1 while Black is able to play two moves on the board.
Since neither player will move from this board position until the temperature
reaches —1, the position is worth a net score of two points for Left. This
and other integer values are independent of the initial temperature, t.

In Figure 2b, each player can move adjacent to the other and then throw
away by shooting the arrow as far as possible. After a first board move by
Left, she has a board position worth two points, but after a first board move
by Right, the net board position is worth zero. So 2b behaves as the sum
of a 1-point card and a constant 1-point advantage for Left. If the initial
temperature exceeds 1, both players will play in the environment until its
temperature is played down to 1. At temperatures below 1, both players
will play on the board. If the initial temperature is 0, we have

LW(0) = 2 , RW(0) = 0.

In 2c, if Left plays first, she will move into contact with one of the oppo-
nents and then shoot her arrow onto the square next to the other. If Right
moves first, he will lay claim to 2 of the three empty squares on the east side
of the board. When the temperature of the environment exceeds 3, both
players will play in it. At temperatures between 3 and 1, both players will
want to make the first move on this board position, but if Right makes the
first move on the board, neither player will want to play on the board again
until the temperature falls to 1.

Bottom-up Thermography. The definition of thermographs introduced
in the prior section was "results-oriented", or "top-down". A major ad-
vantage of this definition is that it is directly applicable to even the more
complicated models of loopy positions in Go [Spight 1999]. However, for
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many calculations, a "bottom-up" approach is more effective.1 This defini-
tion is recursive, working from the leaves of the tree of positions of G back to
its root. For this purpose, the values of the leaves may be taken as integers.
Before computing the thermograph of G, we assume we already have the
thermographs of GL and GR.

To build walls from the bottom-up, we construct scaffolds and frames.
There are two of each (scaffolds LS and RS, and frames LF and RF), de-
pending on who plays next. Each of them is a function of the temperature,
£, and each position of G has a complete set of all four functions. They are
defined as follows:

Scaffolds:

)
GL

RS(G, t) = mm LF(GR) +1.

Frames:

if LS(G,t) > RS(G,ί) define LF(G,t) = LS(G,t),

if LS(G,t) < RS(G,ί) define LF(G,ί) = RF(G,t) = LF(G,r),
where r is the smallest real such that LS(G,τ) = RS(G, r).

r is called the temperature of G, and LS(G,τ) = RS(G, r) is called the
mast of G.

Theorem: WALLS = FRAMES-

An analytic proof is given in Appendix A.

Hotstrat and sentestrat. There are several strategies one might employ
which use thermographs to determine where to play on a sum of several
board positions plus a fully enriched environment, such as

The most naive strategy, called Hotstrat, advises one to play on the hottest
available position. This strategy turns out to be flawed.

A better strategy, called Sentestrat, advises the player to make a local
response to his opponent's prior move if that move left a local position there

lrΓhe bottom-up approach to thermographs requires subtle revisions to handle locally
loopy positions such as kos in Go. The situation is very interesting; see [Berlekamp 1996].
The theory partitions kos into two classes, called "placid" kos and "hyperactive" kos. Mast
values of hyperactive kos depend on which player has the greater number of kothreats, but
mast values of placid kos do not. Even very good Go players have difficulty distinguishing
or articulating the difference. The bottom-up theory presented in [Berlekamp 1996] has
been very successful at handling sums of regions including at most one hyperactive ko
plus any number of placid or kofree regions, but global board positions involving multiple
hyperactive kos require top-down techniques [Spight 1999].



SUMS OF N x 2 AMAZONS

whose temperature exceeds t, the temperature of the environment. If not,
then the opponent's prior move is not urgent, and the player can revert to
hotstrat.

Using sentestrat, it can easily be shown that

RW(G + H,t)> , ί) , ί)

and, equivalently,

This yields the proof of the following

Theorem: MEANS ADD.

Subzero Thermography. Figure 3 shows the thermographs of some games
whose temperatures are negative, and Figure 4 shows the thermographs of
some games whose temperature is zero. All of these are common games with
special names.

tito

FIGURE 3. Thermographs of some numbers at negative temperatures.

i t - . 0 -1

Mil

FIGURE 4. Thermographs of some infinitesimals.
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Prom the rules for constructing scaffolds and frames, it is apparent that
as temperature decreases, each wall of the thermograph can have only two
slopes: vertical, or at 45° away from the vertical in the appropriate direction.
If not vertical, the leftwall must slope downward to the left; the rightwall,
downward to the right. As temperature moves upward, the left and right
walls cannot approach each other at any rate faster than 2 units per degree
of temperature. At t = —1, all walls are integers. If the walls do not
yet coincide, they must be at least one unit apart, so they cannot meet at
any temperature between — 1 and — \. Hence, at t = — ̂ , all walls must
be half-integers. Repeating this argument, at t — — j , all walls must be
quarter-integers. Continuing this fractal-like argument, it follows that at
t = —2~k, the only possible wall values are quantized to integer multiples of
2-fe

Furthermore, if one knows the value of a wall at t — —2~k, its down-
ward slope is easily determined. It must be vertical or 45°, accordingly as
Wall( , 2~k) is an even or odd multiple of 2~fc, because this is the only way
the wall can meet the quantization constraint at t = —21~/c. So evidently,

given a pair of thermographic walls at any negative temperature,
there is a unique way to extend them downward to t = — 1.

In particular, if the base of the mast of a game has negative temperature,
we can construct the entire thermograph from the mast value alone. Such a
game is called a number, and named according to the value of its mast. The
games shown in Figure 3, whose trees are {0|l} and {0 || 0|l}, are known as
^ and j , respectively. It is easily seen that a sum of numbers must be the
appropriate number.

However, a downward extension of a wall from t = 0 is not unique; it can
be either vertical or at 45°. But this single bit of information is sufficient
to determine the continuation of the unique extension downward to t = — 1.
This bit can have a significant effect on the mean of a game of which it is a
position. For example, 5|01| 1 and 5 | | || 1 have mean 0, but 5|* || 1 and 5|t || 1
have mean ^.

All games such as those in Figure 4, having thermographs whose mean
and temperature are both 0, are called infinitesimals. The number 0 is
also considered an infinitesimal. It is easily seen that sums of infinitesimals
are infinitesimal. Further discussion of infinitesimals appears in Section 6
(page 18).

Henceforth, we will suppress those portions of thermographs which occur
at temperatures significantly below zero. Since a change of slope at t = 0 is
relatively rare, whenever a wall is discontinued at t = 0, the reader should
assume an implied continuation of the slope just above 0.

For many purposes, a game of Environmental Amazons can stop when
both players are about to begin taking negative cards. If both players have
played well, the value of the board position is then necessarily a number,
x, which may be interpreted as the "score". The leftscore and rightscore of
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G are defined as LW(G,0) and RW(G,0), respectively. Since both players
know that competent play for the remainder of the game will result in a
net increment of uxn to whatever net cardscore already exists, they might
very plausibly agree to view V as the "final" score on the board, and halt
the game at temperature zero. Prom this perspective, the only purpose
of continuing to play at below-zero temperatures would be to resolve the
scoring dispute which would arise if the players did not agree on the value
of the number x.

4. CENTRAL LIMIT THEOREMS

Many typical endgames in Amazons or Go can be partitioned into the
sum of several disjoint subpositions, each occurring in its own region of the
board. Each of these subpositions can be viewed as a separate "game". We
are then interested in the sum of these games, which is the whole board.
On a very large board, we should expect to find an endgame composed of a
large number of summands. Hence, the gamesman should be interested in
sums of many games.

As in probability, the mean value of the sum of things is the sum of their
mean values. For games, this is the boldfaced theorem on page 9, "means
add". But the dispersion about this mean is much more constrained in
combinatorial game theory than it is in probability. In probability, the
standard deviation of the sum of n objects typically grows as the square
root of n. On the other hand, in combinatorial game theory, the dispersion
is constrained by an upper bound independent of n.

To see this, one need only observe that the walls of the thermograph of
any loopfree game are a continuous concatenation of straight line segments,
each of which has a slope that is either vertical or at 45 degrees. It follows
that if the base of the mast occurs at temperature ί, then both walls of the
thermograph must intercept the t — 0 axis at a distance no more than t
from the mast. Since the sum is itself a game, the same result still applies.
The Leftscore cannot exceed the mean by more than ί, and the Rightscore
cannot be less than the mean minus t. Since temperatures maximize, t may
be taken as the temperature of the hottest summand. So in combinatorial
game theory, we have an extraordinarily strong law of large numbers.

Adding a fully enriched environment of sufficiently high temperature, t,
to any sum of games eliminates the dispersion completely. The Leftscore
becomes the mean plus t/2; the Rightscore becomes the mean minus t/2.
We view the quantity t/2 as the komi given to the second player to balance
against the advantage of playing the first real move.

5. THE BIG PICTURE OF ORTHODOX AMAZON OPENINGS

Moves which determine the walls of the thermographs are called orthodox
moves. Orthodox moves which determine the masts are especially impor-
tant.
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We are now ready to address a central problem of N x 2 Amazons. If a
pair of opposing Amazons occupy arbitrary initial positions in an otherwise
empty board, what are their orthodox opening moves? Let x denote the
fraction of the total playable area of the initial board (including the squares
occupied by the two Amazons) which are south of the center of the row ini-
tially occupied by White. Let x' denote the same fraction measured relative
to the initial location of Black.

Among the many types of positions which might arise after the first move,
we focus our primary attention on those shown here:

A: B: X C: wx D: E: F: G: X

Each of these positions, or "games", includes a pair of opposing Amazons,
in contact with each other. The diagram may also show an X , indicating
as usual a burned square near the two Amazons. All other burned squares,
if any, are assumed to be adjacent to the top or bottom edges of the board,
where they might be accommodated by redefining those edges, which might
then become jagged. With each position are associated the following pa-
rameters:

k = number of empty squares no higher than W

n — number of empty squares no lower than #

m = n — k

Each of these games has several close relatives. Reflections of the board
about the vertical axis yields another games which is equivalent. If we
exchange Right and Left (White and Black), we have a similar class of
positions which we denote by A', B', ... , G', with parameters A/, n', and
m!. Finally, turning the games upside down yields V, ff, O, d, 3", î Γ, and
O. These upside-down letters are used to warn the reader of a significant
difference from the right-side up letters. Thus, for example, if Black moves
onto the same row as White, she might shoot diagonally either to reach B
or to reach 3. Here 3 is equivalent to B with different values of fc, n, and
m.

Since the games A, i?, ... , G depend primarily on m, we call m the
inner index. In fact, if m is a positive integer, then from either A[ra,n] or
C[?τι, n], White's best move is a plodding confrontation, and Black's best
move is a plodding retreat. Neither player will want to make such a move
at any temperature above —1, and so for any n, A[m, n] = C[m,n] — m.

Opposite files. We first consider the case in which the Amazons start on
opposite files. Intuitively, if x < ^ — - ,̂ Black's opening move to A looks
very strong. It concedes the bottom portion of the board to White, but
reserves the larger portion at the top of the board for Black. If instead
x > \ + j ^ , then Black can play a centrally symmetric move which yields
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an upside-down version of A. This move looks so very strong that there is
a strong temptation to conjecture that, at least for purposes of computing
its mean value, we might accurately estimate the initial position S as

S ~ A,V\Af,V = m\-m' if \x - \\ > ± and \x' - \\ > £ .

A closer investigation uncovers a relatively minor exception: if \x — x'\ < -^,
then possibly Black's Amazon initially occupies the square to which it desires
to move. However, in this case, Black can plod to C. This leads to the refined
conjecture,

If \x - \\ π a n d W ~ \\ F> t h e n ,C\A',Y\C = m\-mf.

In the limit as N goes to infinity, this conjecture turns out to be true in
only i | i °f the unit x,x' square. The reason is that within a region of area
τ̂ >, Left has another move that yields a full point improvement over both A
and y, and there is a complementary region wherein Right can do likewise.
Figure 5 reveals the awesome truth. It shows Left's orthodox opening move
everywhere within the unit x,x' square except in the very close vicinity of
the center, a singular point whose detailed study is deferred until subsequent
sections. When the Amazons initially occupy the same file, Black's orthodox
opening is shown in Figure 6.

BAQ

1

B'AS

FIGURE 5. Black's orthodox opening move when Amazons
start on opposite files.
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FIGURE 6. Black's orthodox opening move when Amazons
start on the same file.

When the Amazons initially occupy different files, a surprising position
that often proves superior to A[m, oo] is ff, a value equal to B[—m—4, oo]:

5 [ - ra -4 , n] = n - 2 m + 2 —m—1

xx
wx

tx till;X
X
X X

till/
X

X
With n = oo, its thermograph appears as the solid picture in Figure 7,

superimposed on the dashed thermograph of A[ra,oo]. At temperatures
below 2ra+l, A is the better left option from 5, but at higher temperatures,
B is better than A if n is sufficiently large. Figure 7 is used to construct
the left scaffold of an approximation to the starting position 5, as shown in
Figure 8.

So two conditions need to be met in order for the mast of S to be deter-
mined by option B rather than by option A:

(1) n must be sufficiently large to ensure that B[—m—4, n] behaves like
B[—m—4, oo].

(2) The right scaffold of S must be sufficiently far away that the temper-
ature of S is not less than 2m + 1.

Condition 1: The relevant expression for B[—m — 4, n] is

n-2|ra+2||-m-l,
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BR

m+2 m — m—1

FIGURE 7. A = m (dotted) and B = oo|ra+2 || - m - 1 .

whose temperature first exceeds 2m + 1 precisely when the temperature of
n — 2 I m + 2 exceeds 2m — 1. This occurs when and only when

n - 2 2(2m-l) ,

or

n > 5m + 2.

The numbers of squares above and below-or-equal the white Amazon is

a — # above = n + 1,

fe = φ below-or-equal = n + m + 2,

whence the condition we seek can be restated as

6α > 56 - 2,

or, in words,

Black's Option B is orthodox only if the White Amazon is located
strictly within the central eleventh of the board.

m —m — 1

If n > 5m + 10

m

If n < 5m + 2

FIGURE 8. Left scaffold of 5 = {m, n-2|m+2 || - m - 1 ||| SR}.
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(To make this assertion precise, "strict" should be interpreted in accordance
with the prior inequality.)

If the White queen is not located strictly within the central eleventh
of the board, then Black's plan to trap her in three consecutive moves is
unorthodox because after White is trapped, Black owns only the smaller
side of the board, which isn't a large enough payoff to compete successfully
with Black's straightforward option A.

Condition 2: In order for option B to prevail, it is also necessary for the
temperature of S to be at least 2m + 1, and this imposes a constraint on
S β , which depends only on the starting location of the Black Amazon. By
symmetry between Black and White, the right options of S include — m' and
ra'-blllra7—2|— n'H-2. The desired high temperature of S occurs only when
w! — (m + 1) > 2m + 1, or m! + 1 > 3m + 3. Since the magnitude, in
quarter-rows, of the distance between the White Amazon and the centerline
of the board is precisely m + 3, we may restate this condition as follows:

Black's option B is orthodox only if the row above the Black
Amazon is more than 3 times as far away from the center of the
board as White's.

Interpretation: When the values of x and xr lie in the appropriate regions
of Figure 5, Black's orthodox opening move goes onto the same row as white
and then places an arrow directly behind her, impeding her retreat from the
center.

If White plays elsewhere, the purpose of Black's opening move becomes
apparent when Black completes his second move. This threatens a third
Black move which would trap White in a region with only one empty square,
while Black claims nearly half of the original board. In the typical cases,
this threat is sufficiently large that White must respond, after which White
has avoided the trap, but Black is now two points better off than if he had
played option A originally. In other words:

Option A (block center): move sequence = L; result is +m

Option B (impede retreat): move sequence = LLR; result is +m + 2

So option B becomes the orthodox choice whenever the temperatures of
the relevant positions have the proper order, and this occurs precisely when
the values of x and x' lie in the appropriate regions of Figure 5.

Toss-aways. In Figure 6, Black's orthodox opening to JD, E, or F entails a
throw-away, which shoots the arrow against a distant edge of the board. One
might instead play a toss-away, in which the arrow lands short of the board's
edge. The only case in which this yields an improvement is F[—3,f], and
then only when the jaggedness is favorable and the arrow lands one square
short of the edge. We denote this position by ίF. It will be illustrated in
Appendix B.
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TABLE 1. Values of nearly centered, sparse, AT x 2 Amazon positions

k = number of empty squares no higher than W

n = number of empty squares no lower than #

m — n — k

u = any infinitesimal game for which 0 < u\, « f

m

n

A:

B:

C:

D:

Mil X
—1

yH
X

vVji;

w
X

• * •

w

V

lio
A4=*

u*

1

c 2-*

*

i |0

E8=*
EA=*

- 1

d

u,

*

B7=u*
B3=0

1

cl=ι2

*
1

or — j
D\ is Bi

or — B\

*

^ 0 unless

2n - m = 7 or 3

0

1
2

#8=0

0

0

1| 1

or
or...

0

d

1
2

A 5 =0

0

0

0

il i

except

β v , C

1

V

1

| | 0

•D10—-*
-D6-—*

1

*
_ 1

4
Όi is βi

or -Bi

*

d

1

*

Bg=U*

1

*

o| i

^0 except

A, C, or unless

2n - m = 7 or 3

2

Dl |-

2

_

J_ 1

2

d

2

—-M

2

1 1|-1

D - 1 ! x

=0 D 3 = *

u* 1|*

£7g = l | - t i *

S=ίΓi

^* except

C, and E 5
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6. CENTRAL AMAZONIAN DETAILS

Table 1 provides an overview of the values of five classes of TV x 2 Amazon
positions, or games. The table considers only positions for which m = — 1,
0, 1, or 2. The parameter n may be arbitrarily large, but the Amazons must
both be very near the center of the board. The results depend primarily on
ra, the inner index, and also somewhat on the parity of n, which is denoted
by the letter v or d, for eVen or oDd. The boldface entries shown in the table
apply to all sufficiently large n of the appropriate parity. All exceptions for
small n are specified explicitly. Since the value of m is constant in each
column, only the n subscript is included for each exceptional case.

Although some entries have novel meanings to be explained below, the
table also includes many familiar games such as 0, ^, and *. Each entry la-
beled -u* has the same thermograph as *. Except for the distinction between
n* and *, some properties of -B[2, •], and -E[0,2], our primary emphasis is
still on thermographs and means.

Many Amazons players are surprised by the fact that the value \ continues
to persist even for very large n. The reasons for this, which we will soon
explain, are subtle.

This table was generated by a diligent "top-down" approach. Rather
than working upwards from positions with smaller numbers of squares to
positions on increasingly large boards, in many instances it proved easier
to analyze the large boards first. The major difficulty of the "bottom-up"
approach to these positions is that many of the games classified in Table 1
can lead to more complicated positions which are much less well understood.

Most of the Amazons positions categorized in Table 1 have many followers.
But typically there are only a very few orthodox followers. For example,

C[0,3] = #x XX
UΠ/

'#X
_ 1
" " 2*

Depending on the parities of n and ra, the edges of the board may be
either smooth or jagged. The top edge of the version of C[0,3] shown here
in the text is jagged but its bottom edge is smooth. When an edge is
jagged, it is conceivable that the value of the position depends on whether
it is left-jagged or right-jagged. However, in the case of C[0,3], it is easily
verified that the direction of jaggedness does not affect the game. In fact,
this is nearly always the case. The only exceptions are D[—1,3] (which is an
upside-down version of the identically valued Z)[l,4]), D[— 1,1] (upside-down
version of 2?[1,2]), and £7[0,2], whose four variants are all distinct.

Invasions which beat 0 to gain ^ point. We use the term gain to refer to
the difference between the actual value, which includes the invading move,
and the hypothetical default value the game would have if the invading
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option were disallowed, or if it were not worthwhile. (Be careful not to
confuse these hypothetical "gains" with the "incentives" that appear later in
this paper. Left's half-point gain results from the existence of a worthwhile
option. His incentive to play it is actually —\ )

We have already stated that A[m, n] = C[m,n] = m for m > 1. In all
such cases, Black can do no better than a plodding retreat. At first, one
might mistakenly think that a similar argument ought to work when m = 0.
For C[0, n], it does work for all values of n except 3 and 1. It is only in those
two cases that Left has a worthwhile invading option which gains \ point.

The general case depends critically on subzero thermography.
Given a game G, we say that G < 0 if and only if there exists some

negative temperature, £, such that LW(G,t) < 0. Similarly, we say that
G > 0 if and only if there exists some negative temperature, t, such that
RW(G,t) > 0. Since walls are monotonic functions of t, it is apparent that
the most promising negative values of t are those very close to zero. Since
RW(G + H,t) > RW(G,£) + RW(if,t), it is apparent that the sum of two
games that are > 0 is also > 0.

The above formula for C[0,3] is a special case of the general formula for
A[0,n] and£[0,n]:

JO
{-1, V\+l\ - I i

if n o F > 0 ,
i f s o m e y > but no > i,

where V is the set of Left's invading moves, and where —1 and +1 are
the values of the positions reached respectively by Left's plodding retreat
and Right's plodding confrontation. The relevant temperature range of the
thermograph of V is near t = 0 and/or ί = — ̂ .

We first show that any worthwhile invading move played from A[0, n] must
shoot back onto the square from which Left came, thereby sealing off the top
half of the board. If instead Left completed her turn in any way which left
that square empty, then Right could win by plodding there. So if Left has a
worthwhile invasion, it must reduce the size of the board in play. After Left's
invading move, Right plays next on a new, initially empty board on which
the Amazons occupy opposite files. However, the relevant temperature range
is much lower than in the assumptions underlying Figure 5.

For example, consider

A[0J] =

X

X =

X

X X

X

X X

X

X
X
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X
tilίf

X
X

X

w

In general the two Left moves shown here dominate all others. To show
that the invading move is worthwhile, we must show that it has no Right
follower < 0. The four most promising candidates are

vR =

but each of these can be thwarted by Left's move to the position directly
below:

γRL =

In order to compare these positions with those listed in Table 1, it is helpful
to negate them by swapping the locations of the two Amazons. The positions
in this set then become

-VR = A[-1,2], B[l,3], £>[1,3], £[1,3].

We could also reach this set of positions by negating the original A or B
position, and considering Right invasions from — A[0,7]. Thus, the assertion
that there is a worthwhile invading move from A[0, 7] (or equivalently, from
its negative) is equivalent to the assertion that the following positions are
all ^ 0:

X
X

Ulj; X
X

I? X

X
X

X

], £[1,3].

The bounds shown at the bottom of Table 1 reveal that, except for certain
very specific small n, all other tabulated values with odd m are ^ 0. The
diligent reader can then verify that this implies that worthwhile invading
moves do indeed exist from A[O,cZ] and from £?[0, i>], unless \_n/2\ = 4 or 2.

In general, an invasion from A, i?, —A, or — B cannot be worthwhile unless
the invader jumps to a square fairly close to the center of the lower half of
the board. If the invader lands too far from the center, the defender can
respond with a move to a position equivalent to type A or —A (possibly after
reflection about some vertical or horizontal axis, and possibly after changing
sign by swapping the two Amazons), in which \m\ > 2 and the defender has
achieved a very desirable value by blocking the invader away from the center.
So the assiduous reader can show that the invasion locations which merit
the most consideration are those for which the defensive response yields a
position equivalent to one of those shown in Figure 1, with m = — 1, 0, 1,
or 2.

Amazonian thermographs. In our earlier discussion of Figure 5, we
noted the existence of an exceptional line at x = | . The array of ther-
mographs presented in Figure 9 provide the basis for further study of these
exceptional lines. Each column of Figure 9 shows the thermographs of all
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O CM - * -

8 «
« Λl £

8 s -o

CM

I

<<=> Ξ s° I

oq ^

I i

8

8
co

8

cq

8

FIGURE 9. An array of thermographs. All horizontal lines
(as seen with the page sideways) correspond to t = 0. The
diagrams for A[—l,oo], A[0,oo], B[0,cx)], and JB[1,OO] are
actually superpositions of two different thermographs, corre-
sponding to even or odd n.

'4S 6
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[m]:

C[m, oo] :

m :

D[m, oo] :

[m]:

£7[ra, oo] :

[-2]

[0]

[0]

[-3]

[1]

0 - 1 0 - 2 0 - 3 - 1

[2]

1 - 1

[-1] [-2] [-3]

[3]

1 - 1 1 0 1 0 - 1 0 - 1 - 2 0 - 1 - 3

[m]:

F[m, oo] :

FL:

[-1] [-2] [-3] [-4] [-5]

- 2 0 - 3 - 1 - 4

B[-3] D[2]

FIGURE 10. More thermographs. As in Figure 9, some of
the diagrams are superpositions of two thermographs, for
even and odd n. Such doublings are immediately apparent
except in the case of E[— l,oo], where one thermograph is
exactly as shown, whereas the other is just the mast starting
at t = 0. When jaggedness is favorable, Left can improve on
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[m]:

C[ra, oo] :

[-6]

- 1 - 5

[-7 > m

5+ra 1+ra

For -7 > m,
if ί > 1, CL = Z[m+3],
else C1' = -£[ra+3].

D[m, oo] :

[4]

1 - 1 - 2

For 4 > |m|,
.D[m, oo] has T = m - 3.

E[m, oo] :

F[m, oo] :

[-6 > m

-4 m+7 - 2

- 2

JD[5]

For -2 > m,
F L options appear
in columns of Figure 9.

ra+1

[-11 > m]

-1 ra+6

+ 3]

ra+1

F[—3,υ] = \\—2 by a toss-away. We call the resulting posi-
tion JF. It looks exactly like F[—3, υ] in the vicinity of the
Amazons, but it contains a block located one square away
from the distant edge of the board. Its value is | |—2. This
is the only case in which a toss-away yields an improvement
in the thermograph.
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positions of type A or B that might result from an opening Black move
against a centrally situated White Amazon. As summarized by the equa-
tions at the bottom of each column of Figure 9, Black's orthodox choice
within each column depends on the temperature. In each of the first four
columns, the result can also depend on the parity of n. In the rightmost
column and beyond, the White Amazon is far enough from the center for
Left to reach Λ[m, ], where m is a positive integer. So these columns all lie
in the region discussed in the "Big Picture", where on a sufficiently large
board, Black's orthodox opening move is to B[—m—4, oo].

Except for the infinitesimals A[-l,d], B[—l,oo], and £[l,d], all other
thermographs in Figure 5 have walls with slopes that are continuous at the
temperature t = 0. This is also true for the thermographs of almost all of
the entries in Table 1, the exceptions being the infinitesimals and the value
£[2,9].

Thermographs of positions C, D, E, and F are presented in Figure 10.
These results depend not only on A and JB, but also on a particularly easy
left follower of C, namely

Z =

It is easily seen that if k is the magnitude of m, then Z[m, n] = k—l|fc+l, in-
dependent of n. We recommend that the diligent reader seeking to verify the
thermographs in Figures 9 and 10 should work through them in alphabetical
order.

Parity. The parity of an Amazons board position is defined as the parity of
the number of empty squares eventually accessible to at least one Amazon.

Some game values can also be said to have a definite parity.
A game has even parity if it is zero or if all of its canonical followers are

odd. It has odd parity if all of its canonical followers have even parity.
If a game has both odd and even followers, or mixed followers, then its

parity is said to be mixed. Others are said to be fixed.

- The games 0, 2, 4, 6, ... are even.
- The games 1, 3, 5, 7, ... are odd. So are *, 2|—2, and many others.
- The games 1|*, 1| — 1, and many others are even.
- The games 5, | , and *2 are mixed. More generally, all numbers except

the integers have mixed parity, as do all nimbers except 0 and *.

In fact, game values of fixed parity are very restricted.
Table 1 reveals a strong tendency for odd boards to have values of odd

parity, and for even boards to have values of even parity. The explanation
for this tendency is straightforward. Most moves change the parity of the
board. In fact, the only moves which preserve the parity of the board are
those which seal off some empty region containing an odd number of squares.
Hence, a mixed value such as \ or \ can occur only if it has a canonical
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position from which one player has a worthwhile move which seals off an
odd number of squares. This observation helps explain why there are no
worthwhile invading moves from A[0,υ] or from B[0,d\. In both cases, the
seal would isolate an even number of squares in the top portion of the board,
and that would not preserve the board's parity. The board's parity would
become odd, suggesting odd values such as * rather than even values such
as 0.

Parity also plays an important role in at least four other games: Checkers,
Blockbusting, Domineering and Go.

7. ORTHODOXY AND CANONICAL THEORY

So far in this paper, we have emphasized orthodoxy and avoided any direct
use of the fundamental results of combinatorial game theory. This theory,
which resembles algebra much more than analysis, was pioneered by John
Conway, then continued and expanded by many others (see [Nowakowski
1996], for example). Good expositions of the fundamentals can be found
in [ONAG] and in [WW]. This theory emphasizes getting the last move
in any environment. The minimal set of options which might be needed
do so are called canonical moves. Perhaps the major differences between
orthodoxy and the canons are philosophical. Canonical theory is tempted
to work upward from 0 in the traditional way: 1, 2, 3, . . . . Orthodoxy is
more tempted to begin at oo and work back down. Orthodoxy is more like
classical minimax theory [von Neumann and Morgenstern 1944].

In general, orthodoxy is helpful for studying very hot games such as Ama-
zons and Go. Professional Go players teach and practice their own rather
imprecise version of orthodoxy, which is often sufficient to help them find
good moves quickly. Efforts to teach them the canons have thus far met
with only limited success. Canonical theory, on the other hand, is universal.
It proves especially powerful at handling infinitesimals, including nimbers,
about which orthodoxy has nothing useful to say.

For numbers, which have subzero temperatures, orthodox moves and
canonical moves coincide. But at temperatures of 0 and higher, many games
have unorthodox canonical moves, sometimes an embarrassingly large num-
ber of them.

One such example is Black's unorthodox opening option from S to the
position G defined on page 12. This move is certainly not orthodox; it
differs from option A by a term which decreases the mean by one. From
an orthodox perspective, this move seems just as likely to cost Black three
points as to gain her one. Yet, in a subsequent section, we shall show that
Black's move from S to G is among her canonical choices.

All orthodox moves are canonical, but many canonical moves are unortho-
dox. Any canonical move on a game G will provide the only route to victory
on G + X, for some suitably contrived value of the game X. A top-down
perspective reveals that the most challenging case is inevitably the choice
X = —G, the study of which leads to the canonical form. This can be
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rephrased to sound like a theorem in psychiatry: If you can deal with your
own negative image, you can deal with anything else in the world!

Only orthodox moves are needed to obtain the optimal payoff when G is
played in a sufficiently rich environment. Even if the overall endgame has
no cards, it may contain several independent board positions with which
the local position G is summed. In such cases, it often happens that from
the local perspective of G, moves in other summands serve the same role as
moves in an environment consisting of cards. Orthodox moves are sufficient
to win in many or even most reasonably rich environments. Unorthodox
moves become necessary only in certain rather impoverished environments.
The orthodox point of view also provides the basis for an accurate account-
ing system introduced by Berlekamp [1996]. Throughout the game, this
accounting system maintains a record of the current "forecast", which con-
sists of the mean, adjusted by half the ambient temperature to account for
whoever currently has "sente". As detailed in the reference, this accounting
system allows one to assess the costs and potential payoffs of every unortho-
dox move. Many a contemplated move of this type can be discarded from
consideration because its immediate cost is seen to exceed its maximum
potential benefit.

Programs which must find a winning play in an impoverished sum of
several endgame positions need to be prepared to search the full canonical
trees. However, it is well-known [Knuth and Moore 1975] that the fastest
search algorithms are those which pursue the more promising moves first.
Although to date this result has been used primarily with game trees gen-
erated by artificial intelligence heuristics, we are confident that it will also
apply to Go and Amazon endgames. Complete searches of canonical trees
should go much faster if orthodox moves are considered first.

Creeping canonical complexity. One measure of the complexity of a
game is its birthday, recursively defined as one more than the birthday of its
youngest follower. There are several different kinds of birthdays, depending
on the set of allowed followers and on the initial conditions that specify which
games have the birthday of zero. Reasonable choices of the initial condition
include the empty set, the set of integers, and the set of numbers. Reasonable
choices of allowed followers include all (formal) followers, canonical followers,
and orthodox followers.

One test to determine whether a follower is canonical is to play the sum
of the game, G, with its negative image, - G = -GR\-GL. The goal is to
get the last move. If White can successfully respond to Left's opening move
from G - G to GL - G by continuing on to GLR - G, then Left's move from G
to GL is said to be reversible. Or, if White can successfully respond to Left's
opening move from G—G to GL—G by playing a significantly different option
on —G, then Left's move from G to GL is said to be dominated. Canonical
moves are those to which the opponent can successfully respond only by
playing to the precise negative image or a position strictly equivalent to it.
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We now show that some games which are very simple from an orthodox
perspective can be quite complex, canonically. To this end, we now claim
that both of the following Amazons' positions have very large numerical
canonical birthdays:

V = ^h

and

W =

A position of type V is the negative of an essential formal follower of A[0, d]
and S[0,v] in Table 1. It is the initial move of a Right invasion which is
the first position in a reversible sequence leading to 0. The position —V is
a crucial ingredient of the \ point values of A[0, d\ and J3[0, υ].

Let us set up the position W — W:

Left can play to

-+

X -+
A thorough study of this position reveals that Right's only viable response
is the negative image move to

X *x

from which Left can continue to

XX

and again, Right's only winning response is to

XIXI I ,

or the equivalent

XX

X; •#
XX

Assuming the latter choice, Left can continue to

X
X

And again, a close investigation reveals that Right's only choice is the neg-
ative image response to

X X
X
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So we conclude that all three of Left's moves are canonical. Clearly, Left
can force this loop to be repeated again and again until the canonical value
becomes a number only when the Amazons get close to the far side of the
board. From this we conclude that, if the initial position W has N empty
squares, then its numerical birthday is at least |iV — c, where c is a constant
independent of N.

Next, we then consider the game V — V:

I

Hi

from which Left can open to

I

wX
Like the first follower of W — W above, this is a position from which

White's only winning choice is the negative image, which we have already
considered above. Evidently, the canonical form of V, like W, must have
numerical birthday which for a large number of empty squares, iV, grows at
least as fast as |iV.

Canons Embraced! Despite the potential complexities exhibited in the
previous subsection, canonical theory is a rich and powerful methodology.
When properly used, orthodoxy and the canons are deeply intertwined.

We now discuss some of the subtler results presented in Table 1. This
discussion requires canonical thinking, with which we henceforth assume the
reader is familiar.

Invasions which beat * to gain more than t We now consider those
columns of Figure 1 in which \m\ = 1. Since the parity of this board is odd,
and we are in a region in which values are simple and small, we expect the
default value to be the small odd value, namely *. If there are no followers of
mixed value, and if Left's best invading move is to V, then we might expect
the value of the game to be

r* if all F £ * ,
{0, V|0} = < t* if some V = * but no V > *,

I > ΐ* if some V > *.

Not surprisingly, we find almost no worthwhile invasions from A[— l,υ],
or from B[— 1, d\ or from J5[l, d\. In all of these cases, any plausible invading
move seals off an even number of squares on the top of the board. That
ensures that the parity of the board position V is still even, so its value is
very likely to be 0 rather than anything > *. But one case slips through this
relatively strong parity barrier. From either — B[—1,7] or — j?[l,9], Right
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can play an invading move which might yield this sequence:

29

V = , then VL =
X

= 0.

This VL is a truly exceptional game. Its board parity is odd; yet its value
is 0. This same position underlies many of the exceptional values found in
Figure 1 with n = 8, 9, and 10. Many of the exceptional values with smaller
n are positions of this game.

If \m\ — 1, all unexceptional worthwhile invasions from A oτ B lead to a
board with a jagged bottom edge. The value of a typical Left invasion is

V = {bigs\0} > * = {0|0},

where "bigs" can assume a variety of values, depending on n. For example,
from U[l, 14] or B[— 1,12] Left might invade as follows:

V =

X X

X

X
= 10 , {11|7,...}| 0 , u * | - K 1 0 , { l l | 8 * } | | 0 .

Although we have shown on page 28 that the canonical value of this (not
atypical) invasion is creepingly complex, we can give it an upper bound of
ll*|0, a typical case of a game we more christen with the generic term,
bigs\0. This is sufficient to find an upper bound on its parent,

This value clearly exceeds

o,*||o = t *
However, the excess is very small, as can be seen by selecting a large

positive integer, TV, and then playing

TV- {

This sum is soon seen to be negative. Left's dominant opening move is to
replace the (TV + 1) (|*) by TV (|*), to which Right responds by removing
one of the {0, {fo'<7s|0}||0}. So the dominant line of play after TV moves by
each player leads to a value of | , and a win for Right. Thus, {0, {&i<7s|0}||0} +
^* is a positive infinitesimal of higher order than up. So I have denoted the
value of any such game as ?i*, with the understanding that u is a positive
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infinitesimal only very slightly larger than t If sums and differences of such
games are played with each other, the outcome may depend on the specifics
of the bigs. However, all such games and their sums and differences have the
same order relationships with all sums and differences of the other games in
Table 1. To first order, u behaves exactly the same as |

Hence, the dominant infinitesimal issue in compiling Table 1 is to dis-
tinguish the cases which have value u* from other cases which have only
the default value, *. This depends on whether or not Left can respond to
Right's invasion to reach a position of value > *.

Picking the proper square on which to land the invader can involve even
more subtle considerations. Including the squares occupied by the two Ama-
zons, the total number of squares on the board remaining after an invasion
from —jB[l,n] or — B[— 1, n—2] is n + 1. If n is 3 mod 4, the horizontal
centerline of the new board runs between a pair of rows; in the other three
cases, this centerline runs through a row. When n is even, the boardsize
is odd. Since the top edge of the board is smooth, the bottom edge of the
board must be jagged. In almost all such cases, Right should not undertake
an invasion which places herself on the row which straddles the centerline,
because Left can then respond to a position of type A oτ B and value +^.
Right's correct invasion typically places herself on the row directly below the
centerline. The only exception is when n = 10 and the jag at the bottom of
the board favors Left. In this case, if Right invades at the point directly be-
low the row containing the centerline, Left can respond to £?[2,5] = l|0 > *.
However, in this case Right can successfully invade to the row containing the
centerline, because Left's defensive response to JB[0,4] yields the exceptional
value of 0 which is ^ *.

Moves which gain {^|0}*. Finally, the columns of Table 1 with \m\ = 1
show several classes of positions in which Left has a non-invading option
that yields a value of ^|0 rather than *. From A[—l,υ], Left can descend
one square and then throw-away upwards to reach J3[0,υ] = \. Similarly,
from jB[l,υ] Left can ascend one square and then throw-away downwards,
yielding A[0,d], whose value is typically \. Finally, from E[—l,v] Left can
reach 5[0,υ] by descending one square and shooting northeastward.

Of course, a move to \ dominates any move to an infinitesimal such as u*.

Amazonian incentives. From a game {G = GL\GR}, Left's incentives
are all games of the form GL — G, and Right's incentives are all games of
the form G — GR. Any dominant move on a sum of games must have a
dominant incentive. Fortunately, incentives can often be ordered. Table 2
shows a top-down ordering of incentives of many of the values which appear
in Table 1.

A game of the form x\y, where x and y are numbers, is called a switch.
All of the incentives in the above list are switch-ish.



SUMS OF ΛΓ x 2 AMAZONS 31

TABLE 2. Ordered incentives.

Incentive:

Example:
Type:

m:
n:

2|0

D
2
.

E
2
3

l«*|0

E
2
d

l*|0

E
2
υ

,4
- 1

υ

u*

B
- 1

υ

t*

C
- 1

1

*

- 1
d

1

- 1
1

/I A

0 1
d •

This list is totally ordered; either player will always prefer to a move whose
incentive appears higher on this list to another which appears lower. How-
ever, some incentives which we have not listed are incomparable with some
of those on this list. The incentive of J5[2,5] is l|0, which is incomparable
with both ltz*|O and l*|0. C[—1,1] has incentive | , which is incomparable
with *. No local rule alone can always correctly resolve a choice between
two incomparable incentives. There are some environments where either
wins and the other loses.

The only entry in Figure 1 which is not Switch-ish is £?[2, •]. Prom this
position, Right's dominant move is to plod upward to a value of —1. Left
may also plod upward to a value of + 1 . This is the only move which achieves
the correct leftwall at temperature 0. However, this move does not dominate
Left's invading jump downward to a value such as bigs\0 or bigs\*. Nor do
Left's invading moves reverse out. Although they have no effect on the scores
of this game alone, these moves do indeed affect the scores of sums such as
JB[2, ] + E[0, - ]. In particular, if some big > 1, then Left can achieve a score
of 1 by playing first from the sum,

even though

1|-1 + 1|—1 = 0.

APPENDIX A: P R O O F THAT FRAMES = WALLS

Prel iminar ies . If x, oχ, α2, . . . are real numbers, we say that

x e range{αi,α 2 , . . . ,α n }

if min {α^} < x < max {α;}. We will make no effort to order the α ;̂ in the
cases of interest all of them will be fairly small.

It is not hard to show that if x = min {α, b} and y — max{c,d}, then
x+y € range{α + c, b+d}. One easy proof is simply to check all four possible
cases.

T h e proof. Let G be an arbitrary board game, and let ΛΓ be the length of
a maximal sequence of plays which can be made in G. Let 5 be a stack of
cards of temperature t and decrement 5, terminating with at least N cards
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of value - 1 before the terminal komi of -ψ Let S' be the same stack with
the top card removed, S", with the top two cards removed, etc.

We now assert that

RF(G, t) - RP(G + S) € range{LF(GR, t) + t + e1- LP(GR + S),
LF(G,t')+t-LP(G + S')},

where —δ < ei < δ. (Successive, ej's that appear below also satisfy this
condition.) To prove this assertion, we note that

RF(G, t) = min {LF(GR, t) +1, LF(G, t)}

= min{LF(G Λ , ί)+ί + ei,LF(G,ί')}

and

-RP(G + S) = max {-LP(Gκ,ί), t - LP(G + 5')}.

By interchanging the roles of Right and Left, and replacing G by GR, we
obtain

LF(GR, t) - LP(Gβ + S) € range{RF(GΛL, ί) - t + e2 - RP{GRL + 5),

RF(GR, t')-t- KP(GR + S')}

Again interchanging the roles of Right and Left, but now replacing t by t'
and S by 5', we obtain

LF(G, t') - LP(G + S') € range{RF(GL, ί') - t' + e3 - RP{GL + S'),

RF(G,t") - t' -RP{G + S")}.

Combining the prior ranges yields

RF(G,ί) - RP(G + S) € range{RF(GβL,ί) + 1 -1 + 2e4 - RP(GRL + 5),

RF(GR,t')+t-t + e5- RP(GR + S'),

RF{GL,t') + t-t' + e6- RP(GL + S'),

RF(G,t") + t - t ' - RP(G + S")}.

We next note that RP(5") = RP(5) - <5, and that RP(5") < RP(5') <
RP(S'). Making the appropriate adjustments to the prior expression, we
obtain

RF(G,ί)-RP(G + 5)+RP(5) e range{

RF(G, t") - RP(G + 5") + RP(5")}.

This expression now forms the basis for an inductive proof of the following
assertion:

|RF(G,ί) - RP(G + S)+ RP{S)\ < 3Nδ.
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For if not, let G be a counterexample with a minimal value of TV, so that the
assertion is true for all t for GR and GL, which have length at most N — 1.
That yields bounds no more then 3Nδ for each of the first three elements of
the set that constrains the range. Finally, let t be the minimal temperature
for which the assertion fails. Since t" < t, the fourth element in the range
has magnitude no greater than 3Nδ, and so the induction is completed.

Similarly, it also follows that

|LF(G,f) - LP(G + S) + LP(5)| < 3Nδ.

Evidently, as δ approaches 0, LP(G + S) - LP(5) approaches LF(G,t).
Since the left wall was defined as this limit, we have shown that

LW (G,t) = LF(G,t) and RW(G,f) = RF(G,t). Q.E.D.

APPENDIX B: PROBLEM SOLUTION

Figure 11 shows the position of the board after the eleventh move of the
main line of the solution to the problem presented in Figure 1. The burned
squares are numbered in order; White's shots are odd and Black's are even.
White's startling first move illustrates the toss-away to — ίF = 2| — | , slightly
better than the throwaway to —JF[3,ι;] = 2| — \. White 1 contacts Black
and then finds a surprisingly clever square to burn. Black 2 contacts White
diagonally. White 3 exemplifies the infamous "Option B". Black 4 moves
onto the same row as White. From this information, the reader can infer
where each Amazon went on each of her moves. After move 11, the canonical
values of the four regions add up t o * — ̂  — 1 + 1, a win for White. Note
the lack of alternating play within some local regions. In one region, White
makes the first four consecutive moves (1, 5, 9, and 13), sealing off odd
portions at both the bottom and the top of the board, while Black must
repeatedly play elsewhere.

FIGURE 11. Solution to the problem of Figure 1.
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Even though there are no cards, all of the moves in this main line of
the solution are orthodox, and consistent with sentestrat. As often seems
to happen, these four games provide "rich enough" environments for each
other.
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