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Approximations to multivariate t integrals

with application to multiple comparison

procedures
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Washington State University, University of Hannover and Tel Aviv University

Abstract: Various multiple comparison procedures involve the evaluation of
multivariate normal and t integrals with non-decomposable correlation matri-
ces. While exact methods exist for their computations, it is sometimes nec-
essary to consider simpler and faster approximations. We consider approxi-
mations based on approximations to the correlation matrix (methods which
provide no error control) as well as inequality based methods (where, by def-
inition, the sign of the error is known). Comparisons of different methods, to
assess accuracy, are given for particular multiple comparison problems which
require high-dimensional integrations.

1. Introduction

Several multiple comparison procedures involve the numerical computation of mul-
tidimensional integrals, which are not easily handled. A prominent example is to
find simultaneous confidence intervals for all-pairwise comparisons in general lin-
ear models. Current integration methods typically behave well for low to moderate
numbers of treatment groups (say less than 10, see Bretz, Hayter and Genz, 2001).
Independently of such general integration routines, research also focused on ap-
proximating the arising integrals by lower order expressions. The Tukey–Kramer
procedure is a well known approximation for the all-pairwise comparisons, where
the true covariance matrix of the estimates is substituted by the identity matrix.
Two questions arise from this approach. Firstly, because the Tukey–Kramer proce-
dure has not been proved to be conservative for all designs, there is still room for
other procedures (where an approximation is called conservative, if its critical values
are larger than the true ones). Secondly, Somerville (1993) showed that the conser-
vatism of the Tukey–Kramer procedure can be quite substantial, so that sharper
methods may exist, which are still conservative. These facts motivate us to look at
and compare different approximations to multivariate normal and t probabilities.

The paper is organized as follows. Section 2 introduces some basic notation.
Section 3 presents the methods used for our numerical comparisons. The methods
are divided into inequality based methods and methods making use of approxima-
tive correlation matrices. The results of the numerical study are given in Section 4.
The final Section 5 gives some conclusions.
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2. Motivation

Consider the k−variate t integral

Tk(a,b;R, ν) =
Γ(ν+k

2 )

Γ(ν
2 )

√
|R|(νπ)k

∫
A

(
1 +

xtR−1x
ν

)− ν+k
2

dx, (1)

with ν degrees of freedom and correlation matrix R = {ρij}; xt is used to denote
the transpose of x. The integration region A = {x ∈ R

k : a ≤ Cx ≤ b} is
a convex polyhedron for a given q × k constraint matrix C and a,b ∈ R̄

q. The
main interest lies in determining a critical value t1−α = (t1−α, . . . , t1−α)t, such
that Tk(−t1−α, t1−α;R, ν) = 1 − α for a given probability α ∈ (0, 1). Because this
problem requires repeated evaluations of Tk(a,b;R, ν) (Genz and Bretz, 2000), we
focus on the numerical evaluation of integral (1).

It is well known that particular structures of R allow a substantial dimension
reduction of the initial integration problem (Curnow and Dunnett, 1962). Consider
as an example the two-way no-interaction model Yijl = µ + αi + βj + εijl, i =
1, . . . , I, j = 1, . . . , J and l = 1, . . . , nij . Suppose we are interested in the many-to-
one comparisons α2−α1, . . . , αI −α1. Then, R = D+λλt, where D = diag(1−λ2

i )
and λi = (1 + w1/wi+1)−1/2, i = 1, . . . , I − 1 as long as the cell sizes satisfy nij =
win.j for all i and j, n.j =

∑
i nij (Hsu, 1992). Thus, R is of one-factorial structure

and the integral (1) is reduced to a two-dimensional integral, regardless of I,

∫ ∞

0

∫ ∞

−∞

I−1∏
i=1

[
Φ

(
bis − λiy√

1 − λ2
i

)
− Φ

(
ais − λiy√

1 − λ2
i

)]
ϕ(y) dyχν(s) ds, (2)

where ϕ is the standard normal pdf and χν is the
√

χ2
ν pdf and Φ′ = ϕ. But if

above proportionality rule is violated for I > 4, the integral (1) is not reducible in
general (Hsu, 1992). A similar problem arises for all-pairwise comparisons in one-
way layouts. As long as the group sample sizes ni are equal to a common n, the
integral (1) can be reduced to the double integral

I

∫ ∞

0

∫ ∞

−∞

[
Φ(y) − Φ(y − |b|s)

]I−1
ϕ(y) dyχν(s) ds, (3)

which can be efficiently computed (for the purpose of computing critical values,
−a = b = (b, . . . , b)t). But this reduction fails if ni �= n for some i.

3. Approximation methods

In the following we describe the two classes of approximations used in the numerical
study in Section 4.

3.1. Inequality methods

Inequality methods provide lower or upper bounds for the true integral value.
Let P (t) = Tk(−t, t;R, ν), and define Aj = {x : |(Cx)j | ≤ t}. In order to be

consistent with other methods we assume the constraint matrix C has been scaled
so that CRCt is a correlation matrix. If we let

S1(t) =
q∑

j=1

Prob
(
Ac

j(t)
)
,
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where Ac
j(t) is the complement of the set Aj(t), then the Bonferroni lower bound

for P (t) (see Hsu, 1996) is

L(1)(t) = 1 − S1(t) ≤ P (t).

A simple upper bound for P (t) is

P (t) ≤ 1 − min
j

Prob
(
Ac

j(t)
)

= U (1)(t).

Both of these bounds require only 1-dimensional distribution values. If t
(1)
l and t

(1)
u

are determined by solving U (1)(t) = 1 − α and L(1)(t) = 1 − α, respectively, then
t
(1)
l ≤ t1−α ≤ t

(1)
u . The bounding interval for t1−α can be found directly using the

appropriate 1-dimensional inverse distribution function:

[
t
(1)
l , t(1)u

]
=

[
t−1
ν

(
1 − α

2

)
, t−1

ν

(
1 − α

2q

)]
,

where

tν(u) =
Γ(ν+1

2 )
Γ(ν

2 )
√

νπ

∫ u

−∞

(
1 +

s2

ν

)− ν+1
2

ds.

Shorter bounding intervals can be found using bivariate distribution values
(Dunnett and Sobel, 1954) if a modified Bonferroni bound (Dawson and Sankoff,
1967) is combined with the Hunter-Worsley bound. These bounds are described in
the book by Hsu (1996, Appendix A). If we define S2(t) by

S2(t) =
∑
j<i

Prob
(
Ac

j(t) ∩ Ac
i (t)

)
,

then the modified Bonferroni bounds and Hunter-Worsley guarantee that

L(2)(t) = 1 − S1(t) +
∑

(i,j)∈T∗

Prob
(
Ac

j(t) ∩ Ac
i (t)

)

≤ P (t) ≤ 1 − 2
S1(t) − S2(t)/k

k + 1
= U (2)(t).

where k = 1 + �2S2(t)/S1(t)� and T ∗ is maximal spanning tree for the complete
graph of order q with edge weights Prob(Ac

j(t) ∩ Ac
i (t)). If we determine t

(2)
l , t

(2)
u

that satisfy U (2)(t(2)l ) = 1−α and L(2)(t(2)u ) = 1−α, then t
(1)
l ≤ t

(2)
l ≤ t1−α ≤ t

(2)
u ≤

t
(1)
u . Starting with [t(1)l , t

(1)
u ], we use numerical optimization, applied to L(2)(t), to

determine t
(2)
u . Then we use numerical optimization, applied to U (2)(t), starting

with [t(1)l , t
(2)
u ], to determine t

(2)
l .

Even shorter bounding intervals for t1−α can be determined for many problems
if trivariate distribution values are used. If we define S3(t) by

S3(t) =
∑

k<j<i

Prob
(
Ac

k(t) ∩ Ac
j(t) ∩ Ac

i (t)
)
,

then sharp bounds that use S1(t), S2(t) and S3(t) (see Boros and Prekopa, 1989)
are given by

L(3)(t) = 1 − S1(t) + 2
(2j − 1)S2(t) − 3S3(t)

j(j + 1)
,
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and

U (3)(t) = 1 − (i + 2q − 1)S1(t) − 2((2i + q − 2)S2(t) − 3S3(t))/i

q(i + 1)
,

where i = 1 + �2((q − 2)S2(t) − 3S3(2))/((q − 1)S1(t) − 2S2(t))� and j = 2 +
�3S3(t)/S2(t)�. We can use numerical optimization applied to L(3)(t) and U (3)(t),
to determine t

(3)
u and t

(3)
l . Unfortunately, it is not always true that L(2)(t) ≤ L(3)(t),

so we cannot assume that t
(3)
u will be closer to t1−α than t

(2)
u . However, Boros and

Prekopa (1989) show that U (3)(t) ≤ U (2)(t), so t
(3)
l will be at least as close to t1−α

as t
(2)
l . The cost of computing S3(t) can be quite high for problems where q is large

because of the q(q − 1)(q − 2)/6 trivariate values needed for S3(t).
There are also bounds (hybrid bounds) that use only selected trivariate distrib-

ution values. The cherry tree bounds (see Bukszar and Prekopa, 2001), which we
denote by L(2,3)(t), are lower bounds for P (t) that require only q − 2 trivariate
values. The optimal cherry tree bound can be expensive to compute, but we use a
bound defined by

L(2,3)(t) = L(2)(t)+
∑

(i,j)∈T∗∗

(
Prob

(
Ac

j(t)∩Ac
i (t)

)
−Prob

(
Ac

k(i,j)
(t)∩Ac

j(t)∩Ac
i (t)

))
,

The edge set T ∗∗ contains q − 2 of the q − 1 edges in the L(2)(t) bound edge
set T ∗. For each edge in T ∗∗ the vertex k(i,j) is selected using the method de-
scribed by Bukszar and Prekopa (2001). We always have L(2,3)(t) ≥ L(2)(t) because
Prob(Ac

j(t) ∩ Ac
i (t)) ≥ Prob(Ac

k(i,j)
(t) ∩ Ac

j(t) ∩ Ac
i (t)). If we let t

(2,3)
u be the point

where L(2,3)(t) = 1 − α, then t1−α ≤ t
(2,3)
u ≤ t

(2)
u ≤ t

(1)
u .

A class of hybrid upper bounds has been described by Tomescu (1986). Define

U (2,3)(t) = 1 − S1(t) + S2(t) −
∑

E(T 3
q )

Prob
(
Ac

k(t) ∩ Ac
j(t) ∩ Ac

i (t)
)
,

where E(T 3
q ) is the set of (q − 1)(q − 2)/2 hyperedges (i, j, k) for a 3-hypertree.

Tomescu shows that P (t) ≤ U (2,3)(t). The optimal hypertree bound can also be
expensive to compute because all possible trivariate distribution values are needed.
We use a bound determined using T ∗. We successively delete q−2 terminal vertices
from T ∗. Each time a terminal vertex k (along with its edge) is deleted, that vertex
is adjoined to each of the remaining T ∗ edges to form a set of hyperedges. The union
of the sets of q − 2, q − 3, . . . , 1 hyperedges found in this way form the hypertree
T 3

q that we use for U (2,3)(t). This bound is always less than or equal to the second
order Bonferroni 1 − S1(t) + S2(t) bound but is not necessarily less than or equal
to U (2)(t) or U (3)(t). We define t

(2,3)
l to be the point where U (2,3)(t) = 1 − α.

3.2. Approximate correlation matrix methods

A second class of approximations consists of methods that use an approximation
of the form R = D + λλt for the correlation matrix, so the t-integrals take the
form (2).

An important approximation for all-pairwise comparisons is the Tukey–Kramer
(TK) method (Tukey, 1953; Kramer, 1957). Tukey and Kramer conjectured that the
use of balanced critical values instead of the true ones is always conservative (i.e.,
the covariance matrix V of the estimates is replaced by the identity matrix). This
was proved by Hayter (1984) in the unbalanced independent one-factorial design for
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general I, where V = diag(n−1
i ). A proof of this conjecture for general designs (and

hence possibly non-diagonal V) for I = 3 was given by Brown (1984). The GT2
procedure proposed by Hochberg (1974) and based on Šidák’s inequality replaces
R by the identity matrix. This method is known to be inferior to TK, but it is
conservative for all V. More recently, Iyengar (1988) and Iyengar and Tong (1989)
investigated replacing ρij by their common average ρ̄ = 2

I(I−1)

∑
i<j ρij . It has been

shown by Iyengar (1988), that this approach is not necessarily conservative for all
choices of R, but no counter example has been found yet for the types of R that
arise with multiple comparison problems. Royen (1987) and Hsu (1992) indepen-
dently provided different techniques to find the ’closest’ R̂, which still possesses
the product correlation structure in equation (2). Both factor-analytic and linear
programming methods were investigated by Hsu (1992) and Hsu and Nelson (1998).
These methods are not applicable on all-pairwise comparison problems. We refer
to the original articles for more details. For comparison reasons we also included
the classical yet very conservative F -test of Scheffé. Finally, Solow (1990) described
a simple way for approximating multivariate normal probabilities from univariate
and bivariate marginal probabilities. Section 4 provides results from a generaliza-
tion for multivariate t integrals of Solow’s method. This generalized method uses a
decomposition of (1) into a product of conditional probabilities and approximates
each term in the product using conditional expectations.

Hochberg and Tamhane (1987, p. 145) considered several other approxima-
tions tailored to the many-to-one comparisons case. But these methods are usu-
ally inferior to the methods that we have described already, so we did not include
them in our study. Another approach is to consider the spectral decomposition
R =

∑
i eipipt

i, where ei is the ith eigenvalue in decreasing order and pi is the
corresponding normalized eigenvector. A possible approximation is to replace the
ρij by pipj and apply (2), where pi and pj are the elements of p1. But this method
did not perform well in our comparison study, so we omitted the results from the
following section.

4. Numerical comparisons

We compared the different methods for the two situations discussed in Section 2. For
the all-pairwise comparisons, we let I = 4 (q = 6) and V = diag(n−1

i ). The specific
values for ni are given in Table 1. The table further presents the estimates t̂1−α

for each method and the associated probability Tk(−t̂1−α, t̂1−α;R, ν) are given in
italics below. Critical values and probabilities were calculated with three significant
digits of accuracy using the methods of Genz and Bretz (2002). For the I = 4 cases
t
(2,3)
l and t

(2,3)
u seem to be good low-cost improvements over t

(2)
l (Dawson–Sankoff)

and t
(2)
u (Hunter–Worsley). Further on, t

(2,3)
l appears to always be better than t

(3)
l .

The TK should not be used if the sample sizes differ by a large amount. Similar
results apply to the other approximate correlation methods. We have not included
t
(1)
l values because these values never had an accuracy greater than one digit.

For the many-to-one comparisons we looked at J = 2 and I = 5 (if I ≤ 4,
then q = I − 1 ≤ 3 and (2) holds for any V if the λi’s are defined appropriately).
Table 2 specifies the values for ni. =

∑
j nij . In all cases we set ni2 = 2, ni1 =

ni. − ni2, i = 1, 2 and ni1 = 2, ni2 = ni. − ni1, i = 3, 4, 5 and. This ensures
that the proportionality rule of Section 2 is violated. Similar results as for the all
pairwise comparisons hold here. The hybrid bounds are found again to be good
approximations to t1−α. The Hsu method is usually accurate to three significant
digits and is a good competitor to t

(2,3)
l and t

(2,3)
u . The Solow method is easily



A
p
p
ro

xim
a
tio

n
s

to
m

u
ltiva

ria
te

t
in

tegra
ls

2
9

Table 1: Numerical results for all-pairwise comparisons with one-way layout (I = 4)
t
(2)
l t

(3)
l t

(2,3)
l t1−α t(2,3)

u t(3)u t(2)u t(1)u Šidák TK GT2 ρ̄ F -test n1 n2 n3 n4

2.672 2.683 2.686 2.693 2.725 2.695 2.751 2.792 2.784 2.693 2.775 2.699 2.932 10 10 10 10
0.948 0.949 0.950 0.950 0.954 0.951 0.956 0.960 0.959 0.950 0.959 0.951 0.972
2.641 2.652 2.655 2.660 2.679 2.660 2.705 2.752 2.744 2.661 2.738 2.664 2.897 10 12 14 16
0.948 0.950 0.950 0.950 0.953 0.950 0.955 0.960 0.959 0.950 0.959 0.951 0.972
2.619 2.628 2.634 2.638 2.654 2.638 2.677 2.729 2.721 2.643 2.716 2.644 2.876 10 14 18 22
0.948 0.949 0.950 0.950 0.952 0.951 0.955 0.960 0.959 0.951 0.959 0.951 0.973
2.602 2.612 2.618 2.622 2.636 2.622 2.658 2.713 2.705 2.630 2.702 2.630 2.863 10 16 22 28
0.948 0.949 0.950 0.950 0.951 0.951 0.954 0.960 0.959 0.951 0.959 0.951 0.973
2.589 2.601 2.607 2.610 2.622 2.611 2.643 2.702 2.694 2.621 2.691 2.620 2.853 10 18 26 34
0.947 0.949 0.950 0.950 0.951 0.951 0.954 0.960 0.960 0.951 0.959 0.951 0.973
2.578 2.590 2.597 2.600 2.611 2.601 2.631 2.694 2.686 2.615 2.684 2.613 2.846 10 20 30 40
0.947 0.949 0.950 0.950 0.951 0.951 0.954 0.961 0.960 0.952 0.960 0.952 0.974
2.519 2.538 2.552 2.554 2.560 2.555 2.578 2.663 2.655 2.589 2.654 2.584 2.818 10 40 70 100
0.945 0.948 0.950 0.950 0.951 0.950 0.953 0.962 0.962 0.954 0.962 0.954 0.976
2.490 2.515 2.532 2.535 2.536 2.540 2.557 2.654 2.647 2.582 2.646 2.575 2.810 10 60 110 160
0.944 0.948 0.950 0.950 0.951 0.951 0.953 0.964 0.963 0.956 0.963 0.955 0.976
2.472 2.501 2.521 2.524 2.529 2.526 2.545 2.650 2.643 2.579 2.642 2.571 2.806 10 80 150 220
0.943 0.947 0.949 0.950 0.951 0.951 0.953 0.964 0.964 0.957 0.964 0.956 0.977
2.458 2.490 2.514 2.517 2.521 2.519 2.537 2.647 2.640 2.577 2.640 2.568 2.804 10 100 190 280
0.942 0.946 0.949 0.950 0.950 0.951 0.953 0.965 0.964 0.957 0.964 0.956 0.977
2.546 2.560 2.570 2.571 2.581 2.573 2.596 2.675 2.667 2.599 2.666 2.597 2.828 80 40 20 10
0.947 0.948 0.950 0.950 0.952 0.950 0.953 0.962 0.961 0.953 0.961 0.953 0.975
2.488 2.511 2.527 2.528 2.534 2.530 2.546 2.652 2.644 2.580 2.644 2.576 2.808 270 90 30 10
0.945 0.948 0.950 0.950 0.951 0.950 0.952 0.964 0.963 0.956 0.963 0.956 0.977
2.454 2.484 2.505 2.506 2.511 2.509 2.521 2.644 2.637 2.574 2.637 2.569 2.801 640 160 40 10
0.943 0.947 0.950 0.950 0.951 0.950 0.952 0.965 0.965 0.958 0.965 0.958 0.978
2.431 2.466 2.491 2.494 2.497 2.495 2.506 2.642 2.634 2.572 2.634 2.566 2.799 1250 250 50 10
0.941 0.946 0.950 0.950 0.951 0.950 0.953 0.967 0.966 0.959 0.966 0.958 0.978
2.414 2.454 2.482 2.484 2.487 2.487 2.496 2.640 2.633 2.571 2.633 2.564 2.797 2160 360 60 10
0.940 0.947 0.950 0.950 0.951 0.950 0.952 0.968 0.967 0.961 0.967 0.959 0.979
2.400 2.445 2.474 2.477 2.480 2.480 2.488 2.640 2.632 2.570 2.632 2.563 2.797 3430 490 70 10
0.939 0.945 0.950 0.950 0.950 0.950 0.951 0.969 0.967 0.961 0.967 0.960 0.980
2.393 2.437 2.468 2.471 2.474 2.475 2.481 2.639 2.632 2.570 2.632 2.562 2.796 5120 640 80 10
0.940 0.945 0.950 0.950 0.950 0.951 0.952 0.968 0.968 0.962 0.968 0.961 0.980
2.387 2.423 2.459 2.463 2.466 2.466 2.472 2.639 2.632 2.569 2.631 2.561 2.796 10000 1000 100 10
0.939 0.945 0.950 0.950 0.950 0.950 0.951 0.970 0.969 0.963 0.968 0.962 0.980
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Table 2: Numerical results for many-to-one comparisons with two-way layout (I = 5)
t
(2)
l t

(3)
l t

(2,3)
l t1−α t(2,3)

u t(3)u t(2)u t(1)u Šidák Hsu Solow ρ̄ n1. n2. n3. n4. n5.

2.176 2.209 2.211 2.215 2.224 2.219 2.254 2.321 2.313 2.214 2.212 2.217 10 10 10 10 10
0.946 0.949 0.950 0.950 0.951 0.950 0.954 0.960 0.960 0.950 0.950 0.950
2.094 2.152 2.158 2.161 2.170 2.170 2.202 2.295 2.287 2.161 2.159 2.169 10 12 14 16 18
0.942 0.949 0.950 0.950 0.951 0.951 0.954 0.963 0.962 0.950 0.950 0.951
2.034 2.117 2.125 2.128 2.137 2.141 2.170 2.282 2.275 2.129 2.126 2.141 10 14 18 22 26
0.939 0.949 0.950 0.950 0.951 0.951 0.954 0.964 0.964 0.950 0.950 0.951
1.985 2.094 2.102 2.105 2.113 2.119 2.147 2.274 2.267 2.106 2.104 2.123 10 16 22 28 34
0.935 0.948 0.950 0.950 0.951 0.951 0.954 0.966 0.965 0.950 0.950 0.952
1.969 2.074 2.084 2.088 2.096 2.104 2.129 2.269 2.261 2.088 2.087 2.109 10 18 26 34 42
0.936 0.948 0.950 0.950 0.951 0.952 0.954 0.967 0.966 0.950 0.950 0.952
1.958 2.059 2.070 2.074 2.082 2.090 2.115 2.265 2.257 2.075 2.074 2.099 10 20 30 40 50
0.936 0.948 0.949 0.950 0.951 0.951 0.954 0.967 0.967 0.950 0.950 0.953
1.903 1.984 2.006 2.010 2.016 2.023 2.045 2.251 2.244 2.010 2.012 2.054 10 40 70 100 130
0.937 0.947 0.950 0.950 0.951 0.951 0.954 0.971 0.971 0.950 0.950 0.955
1.880 1.957 1.982 1.985 1.990 1.997 2.017 2.248 2.240 1.985 1.987 2.040 10 60 110 160 210
0.938 0.947 0.951 0.950 0.951 0.952 0.953 0.973 0.972 0.950 0.950 0.956
1.867 1.939 1.969 1.972 1.977 1.982 2.000 2.246 2.239 1.972 1.973 2.032 10 80 150 220 290
0.938 0.946 0.950 0.950 0.951 0.951 0.953 0.973 0.973 0.950 0.950 0.956
1.859 1.929 1.959 1.963 1.967 1.973 1.989 2.245 2.238 1.962 1.963 2.028 10 100 190 280 370
0.938 0.946 0.950 0.950 0.950 0.951 0.953 0.974 0.973 0.950 0.950 0.957
2.164 2.176 2.180 2.179 2.182 2.180 2.194 2.253 2.245 2.180 2.178 2.200 160 80 40 20 10
0.948 0.950 0.950 0.950 0.950 0.950 0.952 0.958 0.957 0.950 0.950 0.952
2.143 2.157 2.161 2.162 2.164 2.162 2.173 2.244 2.237 2.161 2.158 2.196 810 270 90 30 10
0.947 0.950 0.950 0.951 0.950 0.950 0.951 0.959 0.958 0.950 0.950 0.954
2.129 2.146 2.150 2.150 2.152 2.152 2.161 2.242 2.235 2.151 2.148 2.194 2560 640 160 40 10
0.948 0.950 0.950 0.950 0.950 0.950 0.951 0.960 0.959 0.950 0.949 0.954
2.120 2.139 2.145 2.145 2.146 2.145 2.154 2.242 2.234 2.144 2.141 2.194 6250 1250 250 50 10
0.947 0.949 0.950 0.950 0.951 0.950 0.952 0.961 0.960 0.950 0.950 0.955
2.115 2.135 2.141 2.140 2.143 2.141 2.148 2.242 2.234 2.139 2.136 2.193 12960 2160 360 60 10
0.946 0.949 0.950 0.950 0.950 0.950 0.951 0.961 0.960 0.950 0.950 0.956
2.108 2.129 2.135 2.135 2.137 2.136 2.144 2.242 2.234 2.135 2.134 2.193 24010 3430 490 70 10
0.947 0.949 0.950 0.950 0.950 0.950 0.951 0.961 0.960 0.950 0.950 0.956
2.104 2.125 2.133 2.132 2.135 2.133 2.141 2.241 2.234 2.132 2.130 2.193 40960 5120 640 80 10
0.946 0.949 0.950 0.950 0.950 0.949 0.951 0.962 0.961 0.950 0.950 0.956
2.097 2.121 2.127 2.128 2.129 2.128 2.135 2.241 2.234 2.128 2.125 2.192 100000 10000 1000 100 10
0.946 0.949 0.950 0.950 0.950 0.950 0.951 0.962 0.961 0.950 0.949 0.958
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implemented and performs well for the low I value that we have used for Table 2, but
other tests have shown that its performance deteriorates rapidly with increasing I.

5. Conclusions

The present paper compared several methods for approximating multivariate t prob-
abilities. The methods can be classified into inequality based methods which provide
either an upper or a lower bound of the true integral value and other approxima-
tions, which mostly rely on replacing the true correlation matrix through a more
convenient matrix. The numerical comparisons show that the true critical values are
approximated with satisfactory accuracy for practical purposes. The modification
described in this paper of the hybrid bounds by Tomescu (1986) are quickly im-
plemented and run at low computation time. These hybrid bounds usually yielded
three digit accurate values for the typical multiple comparison problems which we
looked at. All results are also valid for multivariate normal problems.
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