
Chapter 9 

Conclusions 

9.1 Introduction 

In Chapter 1 I introduced the chestnut leaf blight example and presented some 
preliminary analyses. None of these were correct since they did not accommodate 
the correlation introduced by the donor and recipient clones. A feature of the leaf 
blight example is the presence of crossed random effects. This eliminates the ability 
to use simpler models and/or longitudinal data approaches like GEEs. I now return 
to the example and illustrate the Monte Carlo ML approaches of Chapter 7. 

9.2 Chestnut leaf blight revisited 

I focus on selected portions of the model; those interested in the full analysis can 
consult Cortesi et al. (2001). Recall that the model, given in (5.1) and (5.2), was for 
the binary outcome of transmission of the virus between two (fungal) individuals 
and that repeated measurement on clones as either donors or recipients of the virus 
might introduce correlation. There is no reason to expect that the ability of a 
particular clone to transmit the virus (donor effect) is the same as its susceptibility 
to the virus (recipient effect). However, it is possible that the donor effect of a 
particular clone is correlated with the recipient effect. Accordingly, we fit a bivariate 
normal random effect distribution for the joint donor and recipient random effects 
associated with a clone. 

The model was fit using a bivariate version of the MCNR algorithm described in 
Section 7.3. Standard errors were estimated by a similar simulation scheme applied 
to the information matrix and the values of the log likelihood were estimated by 
simulation using the method of Geyer and Thompson (1992). The estimate of the 
covariance between the donor and recipient random effects was almost zero and 
contributed negligibly to the likelihood. Also, the fourth putatively contributing 
gene had no effects (main, asymmetry or even third order effects) and hence that 
gene and the covariance were dropped and the model was refit with independent 
donor and recipient random effects. For that model the estimate of the donor 
variance component was aJ = 0.28 and the recipient variance component was a;= 
1.24 with standard errors (respectively) of 0.09 and 0.34. 
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These were statistically significant, but of smaller magnitude that most of the 
fixed effects in the model. For example the effects of individual genes (other than 
the fourth) to inhibit transmission when there was a mismatch ranged from -1.5 to 
-5.4, quite large for a logit model. 

9.3 Further work 

GLMMs have gained popularity in practice but a number of areas remain to be de­
veloped beyond those already identified. Choice of link function has been addressed 
somewhat in the GLM literature by, for example, Pregibon (1980); Li and Duan 
(1989); Mallick and Gelfand (1994); Weisberg and Welsh (1994); Xie et al. (1997) 
and a natural question is whether those techniques carry over directly to GLMMs. 

a. Random effects distribution 

The issue of sensitivity to assumptions of the random effects distribution is not 
completely resolved. Some literature (e.g., Neuhaus et al., 1992) indicates that the 
choice is not so crucial; others indicate that it may be (Butler and Louis, 1992; 
McCulloch, 1997; Piepho and McCulloch, 1999). This last reference proposes a 
model-based method for checking random effects distributions. Most likely the sen­
sitivity to the choice of the distribution will manifest itself in inferences concerning 
the variances, the predicted values and quantities depending on the distributional 
shape, as opposed to the marginal mean. For an example of this see Magder and 
Zeger (1996). 

It would be nice to have easily interpreted (perhaps graphical) tools for assessing 
the random effects distribution. Plotting of the best predicted values (e.g., his­
tograms or Q-Q plots) has been suggested (Lange and Ryan, 1989), but the work 
of Verbeke and Lesaffre (1996) casts doubt on the ability of that method to discern 
distributional shape. 

The matched pairs logit model of Chapter 6 is informative. Recall the model, 
given by 

(9.1) 
Yijlai rv indep. Bernoulli(Pij), 

logit(Pij) = ai + f3xij, 

where Xij is 0 for the control and 1 for the treatment and the ai are the pair effects. 
I use this to make two points. 

First, with matched pairs and binary data, there are only four possible outcomes 
for each pair (two failures, two successes and two mixed results). A saturated model 
would therefore be a four category multinomial model. Clearly we will not be able 
to distinguish from the data any two mixing distributions that give the same four 
probabilities for the four categories. Essentially, any mixing distribution that is 
flexible enough to allow a wide range of these four probabilities will fit the data 
equally well. Hence results based on the estimated values of those probabilities will 
be similar across a variety of mixing distributions. This idea is developed more 
carefully in Neuhaus et al. (1992) and Neuhaus et al. (1994). 

Secondly, a histogram or any other distributional assessment based on the O:i = 
E[aiiYJ will be virtually non-informative since O:i can take on only four values 
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(corresponding to the four possible patterns of (Yi1 , Yi2 ) pairs). Even if the true 
underlying distribution is normal, the distribution of the iii will have at most four 
support points. 

b. Small sample distributions 

Small sample adjustments for classes of models simpler than GLMMs have been 
topics of recent interest, for example, linear mixed models (Kenward and Roger, 
1997; Lyons and Peters, 2000) and generalized linear models (Kauermann and Car­
roll, 2001). Similar work is badly needed for GLMMs, where the issue of effective 
sample size is complicated by both the non-normality and the random effects. Ap­
proaches such as Fraser et al. (1999) appear promising. 

With regard to inference for variance components even the large sample distri­
bution theory is difficult to work out (Crainiceanu and Ruppert, 2002) and there is 
evidence that, in many cases, it fails to be a good approximation to small sample 
results (Crainiceanu and Ruppert, 2002; Pinheiro and Bates, 1995). It is enough to 
make even a dyed-in-the-wool frequentist turn to the dark side. 

c. Prediction error 

In the case of linear mixed models there is some work on the effect of plugging in 
estimates to best predicted values and its influence on standard errors (Peixoto and 
Harville, 1986; Harville, 1985; Jeske and Harville, 1988), but little for GLMMs (but 
see Have and Localio, 1999, for an exception). There is even a question as to the 
proper context for the calculation of prediction error (Booth and Hobert, 1998). 

Typical interval estimates are calculated unconditional on Y. But best predicted 
values are estimated conditional means, conditional on the observed values of Y. 
Should the prediction error also be conditional, as argued in Booth and Hobert 
(1998)? 

Consider a more concrete example. Suppose you must chose a hospital from 
which to get gall bladder surgery. You happen to live in a state that publishes 
sophisticated hospital profile reports, based on the predicted random effects for 
each hospital with regard to lack of complications at gall bladder surgery. Do you 
want the interval estimates of each of those predicted values to be conditional on 
the observed data that generated them? Or do you envision a broader inferential 
framework (unconditional on Y) in which repeated samples are taken of patients, 
but best predicted values are derived for the same hospitals? 

9.4 Summary 

In summary, GLMMs have become heavily used due to the need for ways to model 
correlated, non-normally distributed data. Software is starting to mature and more 
experience has been gained in the utility and pitfalls of many of the techniques for 
analyzing GLMMs. Yet much further work remains to be performed before this 
arena can be considered a mature and thoroughly tested one. 
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