
Chapter 8 

Other estimation methods 
for GLMMs 

8.1 Introduction 

In this chapter I consider alternatives to maximum likelihood, which we saw are 
computationally demanding. Generalized estimating equations (GEEs) are a pop­
ular approach to fitting a related class of models. I also consider Penalized Quasi­
Likelihood (PQL) and variants and the more general topic of estimating equations 
as a unifying theme. In a number of points in this chapter I fall back on the lin­
ear mixed model to give insight in a situation in which calculations are a bit more 
straightforward. 

8.2 Generalized estimating equations 

Generalized Estimating Equations (GEEs) is a computationally less demanding 
method than ML estimation. It has mainly been designed as a marginal modeling 
approach for longitudinal data, wherein data is collected on "subjects" on two or 
more occasions. It works best when the number of occasions is small compared to 
the number of subjects. 

To motivate the ideas it is easiest to return to linear models. Consider the 
standard linear model with a full-rank X matrix: 

E[Y] = X/3 

with well-known ordinary least squares estimator (OLSE) 

(8.1) i:Jols = (X'X)- 1X'Y. 

The OLSE is optimal (best linear unbiased or best unbiased) in the situation in 
which the data can be assumed to be homoscedastic and uncorrelated (with a fur­
ther normality assumption to get best unbiased). However, it works well in many 
situations for which those assumptions are not met. In particular it is always unbi-
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ased when X can be regarded as fixed: 

(8.2) 

E[,Bozsl = E[(X'X)-1X'Y] 

= (X'X)-1X'E[Y] 

= (X'X)-1X'X,B 

=,B. 

Furthermore, it is often relatively efficient. To see this we need to calculate the vari­
ance of the OLSE, which is straightforward. Let V denote the variance-covariance 
matrix of Y. Then we have 

(8.3) 

Var(,£3018 ) = Var ((X'X)- 1X'Y) 

= (X'X)- 1X'Var(Y)X(X'x)- 1 

= (X'X)-1X'VX(X'X)- 1 . 

If V were known we could use the weighted least squares estimator (WLSE), which 
is then more efficient than OLS 

(8.4) 

with variance 

(8.5) ( ' ) ( I -1 )-1 Var ,Bwls = X V V . 

From this we can make some comparisons. Consider the simple linear regression 
model 

(8.6) 

for i = 1, ... , k clusters and Xj = -2, -1, 0, 1, 2 as j goes from 1 to 5. Let Yi 
represent the vector of five measurements within cluster i for j = 1, ... , 5 and 
consider various assumptions for Vi =Var(Yi)· 

If Vi = 15 then WLS reduces to OLS and, of course, OLS is fully efficient. If 
the observations within a cluster are equicorrelated, namely Vi = (1- p)l5 + pJ5 
(where Jn denotes an n x n matrix of all ones) then OLS is again fully efficient. 
This is perhaps a bit surprising, but takes advantage of the fact that, with many 
forms of balanced data the OLSE is exactly equal to the WLSE (Zyskind, 1969). 
Finally, consider an example with an autoregressive structure with Cov(}ij, Yik) = 
a 2plj-kl. Table 8.1 gives the ratio of the variances of the OLSE and WLSE (assuming 
Vi known) of estimating /31 in the model (8.6) for various values of p and the 
autoregressive structure and using k = 10. When p = 0 we are back to the situation 
in which the WLSE reduces to the OLSE and the ratio of variances is one. Perhaps 
surprisingly, the efficiency is always quite high and does not decrease monotonically 
as p increases. 

While it is certainly possible to find situations in which the OLSE performs 
arbitrarily poorly compared to the WLSE, there are a wide variety of situations in 
which the OLSE is relatively efficient. 

If the OLSE is relatively efficient, easy to calculate, and does not require esti­
mation of the variance covariance structure, why not just perform OLS estimation 
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TABLE 8.1. 
Efficiency of OLS to WLS in a simple linear regression model 

Autoregressive correlation p 
0 0.1 0.3 0.5 0.7 0.9 0.99 

Var(/3wls)/Var(/3ols) 1 0.997 0.980 0.962 0.952 0.955 0.961 

on a regular basis? The answer is that, while the estimator is fine, estimation of 
its variance by the usual methods can be far from correct. It is not at all unusual 
for the estimated variance of an OLSE using the standard OLS calculations (which 
assumes all the observations are independent) to be off by a factor of two or more. 
And, unfortunately, it can be either too big or too small. 

a. Non-normal data 

In modeling non-normal data it is often common to use nonlinear models. This 
leads to a distinction between the marginal and conditional models, which can be 
quite different (see Section 1.2a). Examples of the marginal modeling approach 
include Zhao and Prentice (1990); Prentice and Zhao (1991); Liang et al. (1992); 
Zhao et al. (1992); Fitzmaurice and Laird (1993) and Fitzmaurice et al. (1994). 

GEEs work most naturally for models specified marginally. In contrast, GLMMs 
are specified conditional on the random effects. We now elaborate on this difference 
in the context of an example. 

Let Yij = 1 if the ith woman miscarries during her jth pregnancy and is 0 
otherwise. We hypothesize a probit model, 

Yij I u rv indep. Bernoulli (Pij)' 

Pij = E[Yij lu] = cp(J.L + f3xij + ui), 

which yields 

(8.7) 

with (3* = (3/ J1 + u~. Thus, (3 represents the conditional effect of Xij on a probit 
scale and (3* represents the marginal effect of Xij. What are the interpretations of 
(3 and (3*? 

The interpretation of (3 is the increase in cp- 1 (·) of the probability of a mis­
carriage for each woman associated with each increase in the order of childbirth. 
The interpretation of (3* is the increase in cp-1 ( ·) of the probability of miscarriage 
averaged over all women associated with each increase in the order of childbirth. 
Because of the nonlinear model, averaging before versus after applying the function 
<I?- 1(·) gives different answers. 

The use of GEEs typically proceeds by specifying a marginal model. For example, 
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for binary data, we could specify 

(8.8) 
E[lij] = Pij, 

logit(pi) = Xi(3. 

Estimates are obtained by solving the generalized estimating equations for /3: 

(8.9) 

where WVar(·) indicates a "working" or assumed covariance structure, possibly 
dependent on unknown parameters. 

This has properties similar to the estimating equations for the linear mixed 
model, which is given by 

n 

(8.10) L X~Vi 1 (Yi - Xi/3) = 0. 
i=l 

b. Comparison of marginal versus conditional modeling 

In some cases, the inferential goals of a problem lead one clearly to marginal or 
conditional specification of the model. In other cases it is less clear and hence it is 
useful to contrast the approaches. 

Marginal models have the following advantages: 

1. Marginal models avoid the specification of the conditional structure; when 
only marginal questions are of interest, misspecification of this portion of the 
model can be avoided. 

2. When paired with a GEE approach to estimation, estimates of the marginal 
parameter estimates are consistent, even under misspecification of the associ­
ation structure. 

3. When the underlying random effects distribution is heteroscedastic, assum­
ing it is homoscedastic and using a conditional approach can lead to biased 
estimators (Heagerty and Zeger, 2000; Heagerty and Kurland, 2001). 

However the marginal approach also has drawbacks. These include: 

1. The form of a conditional mixing distribution required for typically assumed 
marginal models may be unusual (e.g., Wang and Louis, 2002). 

2. The form of the marginal distribution may not be the same as any of the 
conditional models. In extreme circumstances, features of scientific interest 
present in every conditional model may not be present in the marginal model. 

3. If the question is of marginal interest, a longitudinal design may not be the 
most appropriate. 

4. Marginal analyses are subject to the Ecological Fallacy and Simpson's para­
dox, potentially giving misleading results. 
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5. Marginal quantities can be calculated from a conditional model but the con­
verse is not typically true. 

A more detailed discussion of some of the critiques of marginal modeling can be 
found in Lindsey and Lambert (1998). 

c. Comparison of GEE and random effects estimation meth­
ods 

A big advantage of the GEE approach is the ability to use a "robust" variance 
estimate. In such a case the inferences about the mean structure are asymptotically 
valid, even when the working variance is incorrect. This offers a useful tool for 
inference or, at least, model checking. 

Drawbacks to standard application of GEEs include: 

• Difficulty in adapting GEEs for GLMMs. GEEs are most naturally adapted to 
marginal models, not the conditional random effects models of GLMMs. But 
see Zeger et al. (1988) and Heagerty (1999) for some results in this direction. 

• GEEs by themselves do· not help to separate out different sources of variation. 
It is often an advantage to be able to attribute variation as being associated 
with different factors. 

• GEEs are not directly a technology for best prediction of random effects. 
Besides not having the random effects naturally imbedded, best prediction 
requires further knowledge of the distribution than is typically provided for 
GEEs. But see Waclawiw and Liang (1993). 

• GEEs are not the best technique for other-than-longitudinal data, either 
crossed or nested random factors. 

• GEEs may not perform well in situations where the number of time points 
is large in comparison to the number of "subjects" or when there is much 
missing or unequally spaced data. 

• GEEs may be inefficient when the goal is estimation of the variance covariance 
structure. 

To address this last concern, an improvement over the standard GEE methods 
was developed, called GEE2 (Prentice, 1988; Zhao and Prentice, 1990; Prentice and 
Zhao, 1991). GEE2 uses sums of squares and cross-products of the data vector in 
a secondary set of estimating equations to supplement the equations for (3. This 
comes at a cost. First there are a large number of squares and cross-products. 
Second, we now need to specify a working correlation structure for the squares and 
cross-products. Finally, we lose one of the attractive properties of GEEs, the con­
sistency under misspecification of the association structure. Further improvements 
to overcome this last deficiency are addressed in Qu et al. (2000). 
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8.3 Dispersion-mean model 

GEE2 is closely related to an earlier idea, due to Pukelsheim and developed by 
Anderson et al. (1984) for approximately normally distributed data. The description 
below borrows from Searle et al. (1992). Consider the variance components linear 
mixed model (2.9), 

(8.11) 
YJu,...., N (x,a + t Ziui, R) , 

ui,...., indep. N(o, Iat), 

and define M =I- X(X'X)- 1X' along withY= MY® MY. In words, MY are 
the residuals after an OLS fit on the column space of X and the Kronecker product 
creates the sums of squares and cross-products. It is not surprising that estimation 
of the variance components is based on Y. 

To deduce how to use Y to estimate the variance components we start by calcu­
lating its expected value 

(8.12) 

E[Y] = E[MY ®MY] 

= E[M(Y- X,B) ® M(Y- X,B)] 

= E[(M ® M)(Y- X,B) ® (Y- X,B)] 

= (M ® M)E[(Y- X,B) ® (Y- X,B)] 

= (M ® M)E[vec{(Y- X,B)(Y- X,B)'}] 

= (M ® M)vec{E[(Y- X,B)(Y- X,B)']} 

= (M ® M)vec(Var(Y- X,B)] 

= (M ® M)vec(V), 

where V=Var(Y),vec(·) is the matrix operator that stacks the columns of a ma­
trix into a large column vector, vec(V) = {vec(ZiZDat} and{·} indicates a block 
"column" matrix with blocks given inside of the parentheses. 

On defining X= M ® M{vec(ZiZ~)} we can rewrite (8.12) as 

(8.13) E[Y] = Xa-2 • 

In words, (8.13) is a linear model for the variance components with a data vector 
given by the sums of squares and cross-products of the residuals. OLS applied to 
(8.13) yields an old variance components estimation technique called MINQUEO 
(Hartley et al., 1978). Generalized least squares applied to this model gives the 
REML equations. 

8.4 Penalized quasi-likelihood 

Estimation in GLMs proceeds by developing a "working variate" through a Taylor 
series expansion of the link function. Will this work for GLMMs? I start with the 
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GLMM of ( 4.5) written somewhat more informally: 

Next I expand g(·): 

Ylu ,...., exponential family with mean /-L, 

g(IL) = X{3 + Zu, 

u "'"N(O, D). 

g(y) ~ g(J..L) + (y -IL)g'(IL) 

= X{3 + Zu + (y -IL)g'(J..L) 
= X{3 + Zu + eg'(IL)· 

The idea is then to treat w == g(IL) + (y- IL)g'(IL) as a LMM with 

(8.14) var(w) = ZDZ' + DgRDg, 

where Dg = diag{g'(IL)i} and R = var(y -jL). 
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One way to use this working variate approximation is to solve the mixed model 
equations (2.22) for (3 and ii.blup· The Ublup is then used to obtain an estimate of 
D and the approximation is repeated, using the updated values of {3 and u. Schall 
(1991) proposed a method along these lines as well as ways to get approximate 
standard errors. 

The development so far does not explain the name penalized quasi-likelihood. For 
that we give some details of a Poisson-normal model. The development is patterned 
after Breslow and Clayton (1993). 

Consider the following simple model with a single random effect and variance 
proportional to the mean: 

E[Yijlui] = /-Lij, i = 1, 2, ... , m;j = 1, 2, ... , ni, 

log /-Lij = x~j{3 + ui, 

(8.15) var(Yijlui) = r 2 f..Lij, 

Ui "' i.i.d. N(O, cr;). 

In this model, the data come in m correlated clusters, indexed by i. The log quasi­
likelihood corresponding to (8.15) would be 

(8.16) logQL({3, u) = (y'X/3 + LYi·Ui- Leu; 2;:ex:jf3) jr2 . 

' ' J 

Since this includes the latent and unknown u it is not clear exactly how to use this 
log quasi-likelihood. One way would be to consider integrating the quasi-likelihood 
against the distribution of u giving 

Integrated Q L 

(8.17) 
= j · · · j exp{log QL({3, u)- u'u/2}(2ncr~)-mf2du. 



64 GENERALIZED LINEAR MIXED MODELS 

This is no easier to evaluate than the likelihood (it is the likelihood for a Poisson­
normal model excepting the additional 7 2 ). However, the form of (8.17) suggests 
the use of a Laplace approximation. 

That is, to approximate an integral of the form J~: e-"-(u) du, we utilize a Taylor 
series expansion on "' to obtain 

(8.18) "'(u) ~ "'(uo) + "''(uo)(u- uo) + ~"'"(uo)(u- uo) 2 • 

If we chose u0 so that "''(u0 ) = 0 (i.e., a mode of"') then the expansion simplifies 
to 

(8.19) 

Using the approximation (8.19) in place of"' in the integral gives 

(8.20) 
j +oo j+oo 1 "( )( )2 
-oo e-"-(u)du ~ -oo e"'(uo)+ 2"' uo u- Uo du 

= e-"-(uo)y'27r/"'"(uo). 

Applying the multidimensional analog of this to our integral (8.17) requires u0 as 
the solution to 

(8.21) 

with an approximation to the log of the integrated quasi-likelihood of 

-~log II+ Z'WZD/72
1 

(8.22) 
+ [y'(X/3 + Zuo)- 2:= ex;j/3+u,l /72- ~uoD- 1 uo, 

>,J 

where W is diag{JL} /72 for this Poisson-like model. Ignoring the fact that the 
term involving W depends on the unknown parameters, the remainder of (8.22) 
is the log likelihood or log quasi-likelihood with the additional "penalty" term of 
u~D- 1 uo added on. We can view the penalty function either as arising from a 
normal distribution for the random effects u or merely as a penalty function that 
prevents u from getting too "big." 

This suggests an algorithm as follows: 

1. Obtain starting values for /3, 7, D and u. 

2. Solve for u0 using (8.21). 

3. Use uo to get an estimate of D. 

4. Maximize (8.22) as a function of f3 and 7 for given values of u0 and D. 

5. Iterate to convergence. 
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The big question is whether, after all these approximations, the method works 
well? The answer is not when it is needed most. That is, when the conditional dis­
tribution of the data given the random effects is approximately normal (i.e., Poisson 
with mean counts above 7 or so) then the approximations and methods work well. 
But for distributions far from normal, that is, binary data with observation specific 
covariates, the method does not work well. Extensive investigations (Breslow and 
Clayton, 1993; Breslow and Lin, 1995; Lin and Breslow, 1996) show that the method 
can fail badly for such distributions. 

Why does the method fail to work well? The short answer is that there are too 
many approximations. But here is a more complicated answer that explains why 
this method works for the normal, linear, mixed model, but not non-normal models 

Whenever the marginal density of Y is formed as a mixture, with separate pa­
rameters for Yfu and u, we saw that the ML equations could be formed as 

(8.23) [ 8lnfYiu(yfU,O) I ] 
E 80 y = 0, 

(8.24) E [ 8 ln fa~v I D) I Y J = 0. 

To see how these relate to BL UP and PQL and a different technique called maximum 
hierarchical likelihood or MHL (see Lee and Neider, 1996) it is instructive to start 
with the linear mixed model 

(8.25) Y = X,B+Zu+e 

with the usual normality assumptions. For this model, (8.23) for ,B is 

(8.26) E[X'(Y- X,B- Zu)/u2] = 0, 

or, since ii = E[ufY], 

(8.27) X'Y - X'X,B - X'Zii = 0, 

which is the equation for ,B from the mixed model equations, (2.22). 
Since 8logfYiu/8u = 8logfuiY/8u, setting this derivative equal to zero and 

solving gives the mode of fuiY· This is the same as the first step in the Laplace 
approximation: finding the mode of the joint distribution of Y and u. 

In the case of the linear mixed model, since the distribution of u given Y is 
normal, the mode is the mean, which is ii. Lee and Neider (1996, 2001), in their MHL 
technique, use this approach directly: form the joint distribution JY,u and maximize 
simultaneously with respect to u and ,B. This "joint maximization" method thus 
finds ii that is needed to solve for the MLE of ,B. It therefore works quite well for 
the normal-normal linear model. 

In contrast, for non-normal distributions, the conditional distribution of u given 
Y is not normal and hence maximizing !Y,u with respect to u locates the mode 
which may not be ii. Furthermore, the likelihood equation may involve functions 
more complicated than u alone. 

Hence conditional expected values of other functions of u are required to calculate 
the MLE of (3. Engel and Keen (1996), in their discussion of the Lee and Neider 
paper, note this discrepancy, but seem to downplay its importance. 
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a. Higher-order Laplace approximations 

In addition to investigating the performance ofPQL, Breslow and Lin (1995) and Lin 
and Breslow (1996) looked at higher-order Laplace approximations, extending (8.18) 
to an extra third-order term in an attempt to improve the approximation. This 
worked well for small variance components, but not for larger ones and led to some 
instability in the estimation procedures. More recently, Raudenbush et al. (2000) 
have investigated extending the approximation to yet another term (the fourth 
order) and have obtained promising results. Their investigations are limited to a 
two-level nested structure and it would be nice to see if the excellent performance 
holds up in more difficult situations, for example, crossed random factors. 

8.5 Choosing good estimating equations 

The general theory of estimating equations (EE) offers some guidance to compare 
various methods of estimation, such as PQL and ML. A frequent place to start is 
to try to form an unbiased estimating equation, that is, to find a function G(Y, 8) 
such that 

(8.28) E[G(Y, 8)] = 0 'VB. 

Solutions to G(Y, 8) = 0 in(} for given Yare, under regularity conditions, consistent 
and asymptotically normal. Familiar examples include 

ML: 

QL: 

GEE: 

Potential advantages (Heyde, 1997) to approaching the problem from the estimating 
equations point of view rather than the estimator itself are: 

• Automatic invariance to 1- 1 transformations of the parameter. 

• Information and information-like quantities are functions of the EE, not the 
estimator. 

• Asymptotic properties of the estimator are typically derived first for the EE 
and then transferred to the estimator. 

• It is easy to combine EEs. 

• There is flexibility in the choice of a family of estimating equations (perhaps 
followed by optimization within that family). 

An obvious disadvantage is that it does not directly give properties of the estimator, 
which is what is used in practice. 
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Since it is advantageous to consider optimal EEs and since they are invariant to 
scalar multiplication, it makes sense to standardize them. A common standardiza­
tion is to modify the basic estimating function G by 

(8.29) cs = -E[8G/88]'(E[GG'])-1G. 

This standardized form has two nice features: 

• The large sample variance of iJ is [var(G8 )]- 1, so we can compare estimators 
on the basis of the variance of their EEs. 

• var(G8 ) = -E[oG8 /88], that is, it satisfies a score equation. 

a. Illustration: REML 

To illustrate the calculation of optimal estimating equations we consider REML 
estimation for the linear mixed model. Consider the ANOVA linear mixed model 

(8.30) 

where ui ~ N(O, Ia}) and e ~ N(O, Ia2 ), all mutually independent. The basic idea 
behind REML is to estimate the variances in a way that "takes account of'' and is 
invariant to the choice of values of Xf3. 

One way to do this is to restrict attention to residuals after removing the fixed 
effects, either by using MY, where M = I - X(X'X)- 1 X' or, more flexibly, by 
considering K'Y, where K'X = 0 and K' is (N- rank[X]) x N and of full row 
rank. 

It is easy to show that K'Y rv N(O, K'VK) so the log likelihood is (up to a 
constant) 

(8.31) -~log IK'VKI- ~y'K(K'VK)- 1 K'y. 

With some tedious algebra (Searle et al., 1992) the equations that result after dif­
ferentiating (8.31) and equating to zero are 

(8.32) 

where P = v-1 - v-1x(X'V- 1X)- 1XV- 1. 

This same result can be derived by alternate means (Heyde, 1997) via optimal 
EEs with a slight gain in generality. Suppose Y is distributed with mean Xf3 and 
with variance 2::i ZiZ~al + Ia2 , with third and fourth moments to match the normal 
distribution (so not quite assuming normality). 

Then, within the family of EEs of the form 

(8.33) 

(i.e., Ai completely arbitrary) the REML EEs are optimal. 
This idea, of using the REML EEs for non-normal data, was applied to binary 

data by Drum and McCullagh (1993). Other derivations of REML rely on marginal 
likelihood: the REML equations can be derived by integrating f3 out of the likelihood 
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using a flat distribution (Searle et al., 1992). A third approach to REML is via 
quotient spaces (McCullagh, 1999). 

Although each of these different approaches to REML give the same answer for 
the linear mixed model, they can give different answers for non-normal and nonlinear 
models and so leaves ambiguous the "proper" definition of REML for those cases. 

Yet another justification of REML (Speed, 1991) is to regard REML as equating 
observed and expected values of a quadratic form in the best linear predicted values. 
Returning to model (8.30) it is straightforward to show that the best linear unbiased 
predicted value is given by (Searle et al., 1992) 

(8.34) 

so that the sum of squares of the BLUPs is given by 

(8.35) 

By the usual expected value calculations for quadratic forms it is easy to show that 

(8.36) 

so that equating the observed and expected sums of squares of the BLUPs [equate 
(8.36) to (8.35)] is equivalent to the REML equation (8.32). 

b. BL UP methods 

If we wish to pursue the idea of EEs, we must decide on a family of EEs. One 
idea is to directly use the family that reproduces REML for the normal linear 
model, or similarly, quadratic functions of the data. But this leads to intractable 
calculations and necessitates the same sort of approximations as with PQL. This has 
been developed in a series of papers by McGilchrist and co-workers (McGilchrist, 
1993, 1994; McGilchrist and Yau, 1995) and is essentially the idea behind GEE2 
and the discussion in Chapter 10 of McCullagh and Neider (1989). 

I think a more profitable approach is not to directly work with quadratic forms 
but instead to consider the analog of equating observed and expected predicted 
values, as was illustrated for REML above. By construction, this gives an unbiased 
estimating equation. 

For a special class of models, this idea has been partially developed in a PhD 
thesis by Renjun Ma under the direction of Bent Jorgensen at the University of 
British Columbia. Their class of distributional models is called the Tweedie class 
and it includes normal, Poisson, gamma and inverse gamma, among others. For 
this class they consider nested random effects (and arbitrary fixed effects). They 
actually use EEs based on the BPs to estimate the parameters in the mean structure 
and take a more ad hoc approach to estimating the variance parameters. 

I think there would be profit to looking at classes of EEs based either quadratic 
forms in the best predictor or the best linear predictor. For example, equations of 
the form 

(8.37) _,_ E[_'_] 
UU= UU. 
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TABLE 8.2. 
Parameter estimates and SEs (subscripts) for the Progabide data 

Estimation Method 
Parameter 
Intercept 
TRT 
POST 
POSTxTRT 

0"2 s 

1SAS GENMOD. 
2 SAS NLMIXED. 
3Diggle et al. (1994). 

0.96o.os 1.00o.I4 
-0.07o.o7 -O.Olo.I9 

0.11o.os 0.1lo.os 
-0.30o.o7 -0.30om 

a-; = 0.52o.Io a-; = 0.53o.Io 

1.35o.I6 
-O.llo.I9 

O.llo.12 
-0.30o.I7 

p = 0.60 
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Of course, calculation of ii is often problematic so it might be advantageous to 
work only with the best linear predictor: 

(8.38) 

where C is the covariance between u and Y and V = Var(Y). Even this does not 
exist in closed form but involves at most a two-dimensional integral. 

c. Composite and working likelihoods 

Another suggestion involves only using the distribution (and actually only their 
variances and covariances) of the Yi taken two at a time (in V) or the Yi and the 
u1 taken in pairs in C. 

The ease with which EEs can be combined (e.g., weighted average) suggests that 
likelihoods for only portions of the data or simpler, "working" likelihoods might be 
a fertile ground for finding relatively efficient EEs. A common example of this is 
the use of GEEs with a working independence variance structure. 

Working with the true likelihood of only two observations at a time gives tractable 
computations and combining them into a composite likelihood can be relatively 
efficient (e.g., Heagerty and Lele, 1998). 

8.6 Progabide and seizures revisited 

I now return to the Progabide and seizures dataset previously discussed in Section 
5.3 to contrast the estimation methods. Table 8.2 displays the estimates using ML, 
PQL and GEE. The maximum likelihood and penalized quasi-likelihood estimates 
are quite close, undoubtedly because the average counts were around 7, giving 
approximately normally distributed data, for which PQL would be expected to 
perform like ML. The estimates for GEE are similar except for the intercept. This 
similarity is perhaps surprising since GEE is fitting a marginal model, while the 
ML and PQL approaches fit a conditional model. For example, with the probit 
model we saw attenuation of all the coefficients in (1.8). However, with a log link 
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and random intercepts, the only coefficient that will differ between the marginal 
and conditional approaches is the intercept. The intercept would be expected to be 
larger by u; /2, which makes them much more comparable, though still somewhat 
different. 

What does appear to be different are the standard errors, in particular for the 
coefficient of primary interest, that associated with the pre- versus post-baseline by 
treatment interaction. ML and PQL give the standard error as 0.07, while GEE 
gives 0.17. Two logical explanations present themselves. First, GEE is known to 
estimate standard errors with higher variability (Kauermann and Carroll, 2001) 
so perhaps it is just an inaccurate standard error estimate. Second, the robust 
estimation in GEE may be picking up a model specification error since its variance 
estimates are less affected by specification errors. 

In this case it appears to be the latter. Some further analysis using SAS PROC 
NLMIXED indicates that there is a random POST effect. Inclusion of this extra 
source of randomness yields the following estimates and standard errors: Intercept = 
1.07o.13, POST x TRT = -.35o.15, u; = 0.45, u; = 0.22, O"sp = 0.02, where u; is the 
additional subject-specific variance component in the post-baseline period and Usp 

is the covariance between it and the subject intercepts. Now the standard error for 
POST x TRT is much more comparable and the intercept is larger by ~0.45 = 0.23 
in the pre-baseline group and ~(0.45 + 2(0.02) + 0.22) = 0.35 in the post-baseline 
group, or, averaging the two, about 0.29 larger. The difference between the GEE 
estimated intercept and the intercept in this new ML fit is 0.28, quite close to that 
predicted by the conditional model. 

8. 7 Further notes 

Non- and semi-parametric regression methods and accommodation of measurement 
error for generalized linear models with correlated data are developed in Carroll 
et al. (1997); Wang et al. (1998); Lin and Carroll (1999); Wang et al. (1999); Lin 
and Carroll (2000, 2001) and Welsh et al. (2002). Heagerty (1999) develops an 
interesting melding of the marginal and conditional approaches. Jiang (1998) uses 
an alternate approach, "simulated moments" to fit GLMMs. 
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