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Abstract: In this paper we formulate a corporate bond (CB) pricing model
for deriving the term structure of default probabilities (TSDP) and the recov-
ery rate (RR) for each pair of industry factor and credit rating grade, and
these derived TSDP and RR are regarded as what investors imply in forming
CB prices in the market at each time. A unique feature of this formulation is
that the model allows each firm to run several business lines corresponding to
some industry categories, which is typical in reality. In fact, treating all the
cross-sectional CB prices simultaneously under a credit correlation structure
at each time makes it possible to sort out the overlapping business lines of the
firms which issued CBs and to extract the TSDPs for each pair of individual
industry factor and rating grade together with the RRs. The result is applied
to a valuation of CDS (credit default swap) and a loan portfolio management
in banking business.

1. Introduction

In the financial industry credit risk is a central theme of interest in banking, in-
vestment and derivatives. In the past financial economic theory and no-arbitrage
theory in mathematical finance has provided many important results and thoughts
for looking into many credit-risk-related problems. These normative theories are
very important as a benchmark for those in financial industry. However, a blind
application of the theories to the real world may cause a big problem, which hap-
pened in the 2008 Financial Crisis. In fact, rating agencies wrongly applied the
theories to valuation of mortgage-backed securities and expanded the serious Sub-
prime Problem, while insurance companies issued credit risk swaps beyond their
capacity of possibly taking risks and made a serious impact on the US economy,
which in turn has been badly affecting world economies. In this paper, the author
often emphasizes the importance of testing the empirical validity of “theories” and
the limitation of the framework of no-arbitrage theory from a practical viewpoint
below. But he never intends to deny the importance and value of theory itself,
and thinks it important to now discuss openly about what caused the crisis among
academics and practitioners in order not to let it happen again.
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In credit risk analysis in mathematical finance, a time-continuous model is usu-
ally formulated together with no-arbitrage concept and it is often the case that
a spot rate process is used for instantaneous interest rates, the default-event gen-
eration process is associated with such a model as hazard model or Merton-type
model and the instantaneous recovery rate at each moment is constant. The result-
ing model is usually Markovian and univariately stochastic, it individually evaluates
the default probability of each product or each firm and the data used in applica-
tions is mostly past default rates, rating scores, and firms financial data together
with stock prices. It should be pointed out that the Markovian properties, which
are the results of the assumption of time-continuous diffusion model, do not hold
for credit risk processes in reality in general. It is because business cycles that
are closely associated with credit variations of firms are not Markovian, which is
a limitation of the model. On the other hand, Kariya and Liu (2003) treated a
time-discrete theory to include non-Markovian models.

In addition, since credit risk in reality is related to many factors such as indus-
try business cycles which may depend on import-export relations, exchange rates,
resource prices, etc, it does not admit a complete model except for the case in
its theoretical assumption, meaning that the no-arbitrage concept in mathematical
finance is not necessarily effective in reality. This in turn implies that in practice
there is no unique valuation via the no-arbitrage.

In this paper we formulate a corporate bond (CB hereafter) pricing model that
enables us to derive the term structures of default probabilities (TSDPs hereafter)
and the recovery rates (RRs hereafter) consistently with rating factors and industry
factors, where the TSDP is the set of default probabilities that a firm gets defaulted
by a future time s where s belongs to a positive interval from 0. Our model is a
cross-sectional empirical model valuing all the given CB prices simultaneously at
each time.

In this formulation we take into account the fact that each enterprise has a port-
folio of multiple business lines corresponding to some different industries, and we
explicitly incorporate the business portfolio structures of individual firms together
with rating factors into the model in order to derive the TSDPs and RRs implied
in CB prices. In our case the portfolio ratios of business lines are measured by the
sales ratios of industry-wise business lines. Hence in estimation we need the sales
and rating data together with the CB price data and bond attributes (coupon and
maturity period).

Our modeling is based on three fundamental assumptions or viewpoints. The first
one is about the information content contained in CB prices. The CB prices are
assumed to be efficiently formed in the market at each time and so reflect or contain
the investors’ views on the term structure of future default probabilities for each
CB over its maturity period. In fact, their investment decision makings are usually
based on sufficient information and analysis on firms and hence almost all the CB
prices should be supposedly consistent with the investors’ views. Consequently the
TSDPs we aim to derive for each firm from all the current CB prices are regarded
as the investor’s forward-looking TSDPs.

Second, it is viewed in our that the credit condition or credit quality of each
firm in general depends on its future cash (profit) flows, which in turn depend on
the business portfolio structure. Therefore, the credit condition or credit quality of
each firm in general depends on economic trends or business cycles that are often
different industry-wise.

The third point is related to the fact that the specification of default correlation
is very crucial in credit risk analysis. In our CB price modeling, the default correla-
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tions are naturally introduced from the model structure through considering those
of stochastic discount functions and the cash flow structure of CBs with defaults.
On the other hand, in time-continuous setting, the correlations are often assumed
to be constant though they in fact change constantly and increase in the phase
of downturn economy where industry-wise business cycles are relevant. Concerning
modeling the stochastic correlations, in discrete time series analysis Engle (2009)
extensively treats multivariate return processes with conditional stochastic volatili-
ties and conditional stochastic correlations. As terminology, when a credit analysis
contains the credit risks of multiple firms, it is often referred to as multi-name case
where the correlation structure needs to be specified. Otherwise it is referred to as
single-name case.

In applications, the implied TSDP and the implied RR that we derive from the
formulation of our CB pricing model can be applied to price such credit derivatives
as CDS (credit default swap). In fact, in this paper we also give a formula for
valuing a CDS of CB in our discrete-time approach. Since our TSDP depends on
the business portfolio structure of the issuer, so does the pricing formula of a CDS,
though the form of the formula itself is rather well known.

There is a vast literature in the area of credit risk. Most recent researches take a
time-continuous setting. The books by Duffie and Singleton (2003), Lando (2004),
and McNeil, Frey and Embrechts (2005) are well known. Most of the articles treat
a single-name (univariate) case though some recent works consider a multi-name
case, e.g, Filipović, Overbeck and Schmidt (2011). But most of the papers do not
take into account the feedback structure of economies and simply assume exogenous
processes for credit movements without considering business cycles. Duffie and Kan
(1996) viewed interest rate processes as dependent and used a state space model
though they assumed a single Markovian process for the univariate state variable.
Some papers consider a specific factor for each firm, but the specific factors are
simply treated as some exogenous processes independently of a common factor.

In our modeling the stochastic behaviors of the CB prices correspond to those
of the attribute-dependent discount functions, which are formally expressed with
attribute- specific forward rates. In association with this viewpoint, Collin-Dufresne
and Solnik (2001) considers the term structure of default premia in the swap and
LIBOR markets. Feldhutter and Lando (2007) decomposes swap rate into a common
swap rate and swap spreads that are specific to credit or counter party risk, where
the spreads are referred to as convenience yields.

The organization of this paper is as follows. In Section 2, some important prob-
lems are discussed in the formulation of credit risk model to be used in practice.
In particular, some differences between time-continuous models and our model are
discussed from a practical view point. In a line with the arguments in Section 2,
Section 3 presents an extension of the government bond (GB) model that Kariya
and Tsuda (1994) and Kariya and Tsuda (1996) proposed, where the model is
shown to have a one-month ahead predictive power for Japanese Government bond
prices. And we discuss about the relation between the stochastic discount functions
and spot and forward interest rates which are both attribute-dependent. In Sec-
tion 4 the non-defaultable bond model is specified in detail for empirical work and
an estimation procedure is proposed. The important parts are the specifications
of the mean discount function and covariance structure of the bond prices, which
separates our model from the other models. In this paper GB and non-defaultable
bond are assumed to be synonymous.

In Section 5, we formulate the CB pricing model that enables us to derive the
implied TSDPs and RRs. This formulation is quite different from the models in
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the literature in that in our modeling the concept of the investors’ forward-looking
views on the TSDPs is introduced and implemented into the model. In Section 6, we
apply our results to credit risk management in banking and pricing credit default
swap (CDS) among others.

2. Problems in credit risk analysis

In Section 1, concerning credit risk models developed in mathematical finance, we
discussed about some features of the models from a practical viewpoint. Those fea-
tures come from the continuous-time setting; Markovian, univariate, instantaneous
recovery rate, etc. In addition, the following points should be well considered in the
formulation:

(1) Data source to be used for credit-risk modeling–past data or current data;
(2) Default correlation problem–univariate (single-name) model or multivariate

(multi-name) model;
(3) Conditional model or unconditional model; and
(4) Information on industry factors and rating factors.

The point (1) is important for practical effectiveness of a model so long as the model
is used for a forward-looking decision-making or investment. In fact, economic, fi-
nancial and technological environments surrounding firms are evolving constantly
and rather quickly and hence models using past data on defaults and non-defaults
and past financial data of firms do not necessarily give us a forward-looking infor-
mation to get a future credit perspective for each firm. The model based on past
data may tend to deliver a rather backward-looking information, which may be the
case of Markovian transition model or hazard rate model, where data on defaults
and non-defaults over some past period is often used. On this point, it is noted
that each default event in the past is very firm-specific in its nature, and defaulted
firms do not exist any longer. Credit risk models that use current market price data
on existing firms are more forward-looking as the investors try to be rational and
analytical to make gains. Hence the CB prices that are formed in the market are
supposed to reflect the views of investors. In this sense our TSDPs whose informa-
tion is based on current cross-sectional data of CB prices can be regarded as the
TSDP of investors’ perspective views and so it will be more practically effective for
decision makings.

Concerning (2) and (3), note that credit risk factors in credit-related instruments
and derivative products are generally significantly correlated through industry fac-
tors and business cycles and so credit correlations should be well modeled consis-
tently in valuation. In addition, business cycles in each industry are often different,
differently affecting firms that have different portfolios of business lines with some
overlapping for each other. Furthermore default processes in practice affected by
such business cycles is in general non-Markovian and mutually dependent. In the
literature a Merton-type model, which is basically univariate Markovian (condi-
tional) geometric Brown model for stock (firm value) prices, is often extended to
a multi-name case where the correlations may be treated as constants with copula
functions. It is noted that it is not easy to derive the TSDP from stock prices as
stock does not have a finite time horizon.

Considering (4), note that the future cash flow (profit) structure of an enterprise
depends on the portfolio structure of business lines associated with industry fac-
tors. The cash flow structure matters mostly for the credit quality because most
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of defaults occur due to the lack of liquidity or cash, not through the imbalances
in the financial balance sheets of firms. Since the industry factors make a correla-
tion structure among different credit risks of firms to a great extent, the portfolio
structure of business lines associated with industries should be taken into account
for valuing CBs, CDSs and some other credit-related products though the concept
of industry is relative and needs to be defined in advance.

Furthermore it is remarked that in reality the recovery rate (RR) after default is
determined after a long procedure of asset evaluation and negotiation process among
those of interests, which is costly and very time-consuming. In our formulation it
is derived as the RR that investors expect at current time and recovery is assumed
to takes place at the next coupon-paying time, as will be discussed in Section 5.

3. Pricing non-defaultable bonds

Suppose that there are G government bonds (GBs) or equivalently non-defaultable
bonds whose prices are denoted by Pg (g = 1, . . . , G). Let t = 0 denote the present
time and let

(1) sg1 < sg2 < · · · < sgM(g) g = 1, . . . , G

denote the future time points at which the gth bond generates the cash flows
(coupons or principal) in view of t = 0. These sgj values are measured in years,
where sgM(g) is the maturity period. In this section and the next section future
time points are measured continuously in years. Assume that the face value is 100
(yen or dollar) and let cg be its coupon rate (yen or dollar). If coupons are paid
biannually, the cash flow function Cg(s) of the gth bond is expressed as

(2) Cg(s) =

⎧⎪⎨
⎪⎩
0.5cg s = sgm ,m �= M(g)

100 + 0.5cg s = sgM(g)

0 s �= ssgm

.

However, in our argument the cash flow function can be arbitrary, so long as the
future cash flows and their time points are given in advance.

Let Dg(s) be the attribute-dependent stochastic discount function of the gth
bond defined on 0 < s ≤ saM(a) with saM(a) = maxg sgM(g), where the whole
values of Dg(s) are realized all at t = 0 and Dg(s) discounts cash flow Cg(s) by
Cg(s)Dg(s). Under these notations, our basic formulation for modeling G bond
prices simultaneously at t = 0 is based on the following expression:

(3) Pg =

M(g)∑
j=1

Cg(sgj)Dg(sgj) g = 1, . . . , G .

This is an unconditional cross-sectional expression. In (3), we regard the realization
of price Pg as equivalent to the realization of the whole function {Dg(s) : 0 ≤ s ≤
sgM(g)} with g = 1, . . . , G. Hence the realizations of G bond prices correspond to
those of Dgsam, (m = 1, . . . , saM(a); g = 1, . . . , G) and the correlation structure of
these stochastic discount functions implies those of prices.

In the spot rate approach in mathematical finance a non-defaultable bond price
at t = 0 is specified as the conditional expectation with attribute-free discount
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function given the past and present information, which is expressed as follows; for
each individual price

(4) Pg(1) =

M(g)∑
j=1

Cg(sgj)
¯̄D(sgj)

with

¯̄D(sgj) = E0

[
exp

(
−
∫ sgj

0

ru du

)]
≡ H(r0, sgj , θ) ,

where {ru : 0 ≤ u ≤ saM(a)} is a process of instantaneous spot interest rates
{ru} that is common to all the bonds and E0[ ] denotes the conditional expectation
given r0 at 0 with respect to a risk neutral measure. But the measure is not uniquely
identified. Here θ denotes a set of possible parameters when a specific model such as
CIR (Cox-Ingersoll-Ross) model or Vasicek model is used for the spot rate process
{ru}. In mathematical finance the conditional expectation can be regarded as being
taken under a risk neutral measure and (4) is claimed to hold a.s. for all the bonds in
its no-arbitrary theory. In fact, conditioning variable r0 is the only random variable
making all the G bond prices realized. Hence in reality it does not follow that (4)
holds a.s. as the bond prices are not functionally related and in fact maturities
and coupon rates are different. In such a spot rate approach, modeling the spot
rate process yields the conditional discount function through which the zero yield
curve {Ru : 0 ≤ u ≤ saM(a)} defined by H(r0, s, θ) = exp(−Rss) or equivalently
Rs = (−1/s) logH(r0, s, θ) is obtained. In the sequel we use the real measure that
generates real data.

Another remark on this approach is that this specification of spot rate process for
bond-pricing ignores such bond attributes as coupon rate or maturity. Empirically
speaking, it is often observed that bond prices formed in the market depend on
such attributes, in which case it is required to take into account such attribute-
dependency in the specification of the spot rate process. In modeling a swap rate
process Collin-Dufresne and Solnik (2001) and Feldhutter and Lando (2007) take the
dependence of swap rates on credit attributes into account and specify a swap rate
process as the sum of an abstract risk-free rate process {x1s} and a convenience yield
process {x2gs} where they are assumed to be independent. Here the convenience
yield represents such attributes as liquidity premium, credit premium (collateral
condition), etc.;

rgs = x1s + x2gs .

The attribute-dependent convenience process {x2gs} can play an adjusting factor
for fitting the model as it can be arbitrarily specified. Using this process the discount
function in (4) becomes attribute-dependent;

¯̄Dg(sgj) = E0

[
exp

(
−
∫ sgj

0

rgs ds

)]
.

In this paper we do not use this spot rate approach in (4) with conditional expec-
tation but take a forward rate approach with unconditional expression, and make
it the following attribute-dependent model as in (3);

(5) Pg =

M(g)∑
j=1

Cg(sgj)Dg(sgj) with Dg(s) = exp

(
−
∫ s

0

fgu du

)
,
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where {fgs : 0 ≤ s ≤ saM(a)} is an instantaneous forward rate term structure
process whose values are realized all at t = 0. In other words, for each g a realization
of Pg corresponds to that of the whole path {fgs : 0 ≤ s ≤ saM(a)}. Note that (5)
is equivalent to (3).

On the other hand, as an attribute-free forward rate process one may use the
time-continuous HJM (Heath, Jarrow and Morton (1992)) model, which describes
for each individual g a process of term structures {fts : 0 ≤ s ≤ staM(a) , t ≥ 0}
with the discount function D∗

t (sgj) = exp
(− ∫ sgj

0
fts ds

)
attribute-free. The HJM

model is specified conditionally and the Markovian expression is usually explored
with the no-arbitrage argument. Even in this case, one single path {fs : 0 ≤ s ≤
saM(a)} does not make (5) hold a.s. for all g either and so we use (5).

Finally it is remarked that a specific cash flow pattern guaranteed by holding
some GBs will be a big value to such institutional investors as pension funds or
life insurance companies because they need to match cash inflow with cash outflow
over a long time horizon. In other words, coupon and maturity are important at-
tributes which affect investment decisions with a future perspective. For example,
depending on cash inflow-outflow structures of investors and on future perspectives
on movements of interest rates, it may happen that a GB of 2 year maturity and 5%
coupon is less preferred to a GB of 6 year maturity and 3% coupon. It is noted that
those institutional investors do not necessarily prefer de-coupon or stripped bonds
engineered by investment banking as making a portfolio from these stripped bonds
to match the cash inflows and outflows is costly and involves additional credit risk
of investment bankers.

4. GB pricing model

In this section, we implement an attribute-dependent GB pricing model with a
stochastic discount function Dg(s) in (3) or (5). First, let Dg(s) be decomposed
into the mean function and the stochastic deviation function as

(6) Dg(s) = D̄g(s) + Δg(s) .

Substituting this into (5), it follows that

(7) Pg =

M(g)∑
m=1

Cg(sgm)D̄g(sgm) + ηg ηg = C ′
gΔg =

M(g)∑
m=1

Cg(sgm)Δg(sgm) ,

where
(8)

Cg =
(
Cg(sg1), . . . , Cg(sgM(g))

)′
and Δg =

(
Δg(sg1), . . . ,Δg(sgM(g))

)′
.

The expression (7) corresponds to the case in (5), but without specifying the
attribute-dependent forward rate process {fgs : 0 ≤ s ≤ saM(a)}, the correspond-
ing mean discount function D̄g(s) on [0, saM(a)] is assumed to be continuous in s
and then it is uniformly approximated by a pth order polynomial;

(9) D̄g(s) = 1 + (δ11z1g + δ12z2g + δ13z3g)s+ · · ·+ (δp1z1g + δp2z2g + δp3z3g)s
p ,

where z1 = 1, z2 = cg, and z3 = sgM(g) are the attribute variables of the gth bond.
In this specification the parameters are common to all the mean discount functions
for g = 1, . . . , G and hence they are estimable with G bond prices, so long as G
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is greater than the number of the parameters contained. Substituting (9) into (7)
yields

M(g)∑
m=1

Cg(sgm)D̄g(sgm) = ag + δ11dg11 + δ12dg12 + δ13dg13 + · · ·

+ δp1dgp1 + δp2dgp2 + δp3dgp3 ,

where

ag =

M(g)∑
m=1

Cg(sgm) and dgij =

M(g)∑
m=1

Cg(sgm)zgjs
j
gm .

Here i in dgij denotes the attribute suffix and j the polynomial order. Thus letting

xg = (dg11, dg21, dg31; dg12, dg22, dg32; · · · ; dg1p, dg2p, dg3p)′

and
X = (x1, x2, . . . , xG)

′

we have a regression model

(10) y = Xβ + η ,

where y = (y1, y2, . . . , yG)
′ with yg = Pg − ag, η = (η1, . . . , ηG)

′ and

β = (δ11, δ12, δ13; δ21, δ22, δ23; . . . ; δp1, δp2, δp3)
′ .

In (10) the specification of the covariance matrix η is crucial since specifying the
covariance structure of P = P1, . . . , PG)

′ or equivalently the covariance structure
of η stochastically describes a structure of the joint realizations of G bond prices.
In view of (7) the specification is directly related to that of the covariances of the
stochastic discount factors Dg(sgj) and Dh(shm) at each cash flow point sgj and
shm of the gth and hth bonds. We specify it as

(11) Cov(Dg(sgj), Dh(shm)) = σ2λghfgh·jm ,

where σ2 is a common covariance and covariance factor, λgh is a covariance part
related to the differences of maturities and fgh·jm is another covariance part related
to the difference of the cash flow points sgj and shm. These two parts are further
specified as

(12) λgh =

{
egg g = h

ρegh g �= h

with
egh = exp

(−ξ|sgM(g) − shM(h)|
)

and

(13) fgh·jm = exp (−θ|sgj − shm|) ,
where we assume that 0 ≤ θ, ρ, ξ ≤ 1. These specifications imply;

(1) as is expressed in egg of λgg, the longer the maturity of each bond is, the
larger the variance of each price is,
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(2) as is expressed in egh of λgh, the larger the difference of the maturities of two
bonds, the smaller the covariance is, and

(3) as is expressed in fgh·jm, the closer the two cash flow points are, the larger
the covariance of the discount factors Dg(sgj) and Dh(shm) is.

Under this specification, the covariance matrix of η is given by

(14) Cov(η) = (Cov(ηg, ηh)) = (Cov(Pg, Ph)) = σ2(λghϕgh) ≡ σ2Φ(θ, ρ, ξ)

with

ϕgh =

M(g)∑
j=1

M(m)∑
m=1

Cg(sgj)Ch(shm)fgh·jm .

As in Kariya and Kurata (2004), the unknown parameters are efficiently esti-
mated by the GLS (generalized least squares) method, in which we minimize

(15) ψ(β, θ, ρ) = [y −Xβ]
′
[Φ(θ, ρ, ξ)]

−1
[y −Xβ]

with respect to the unknown parameters. First, for given (θ, ρ, ξ), the minimizer of
this function with respect to β is known to be the GLSE;

β̂(θ, ρ, ξ) = [X ′Φ(θ, ρ, ξ)−1X]−1X ′Φ(θ, ρ, ξ)−1y

and then the marginally minimized function ψ(β̂, θ, ρ, ξ) with substitution β̂(θ, ρ, ξ)

is minimized with respect to (θ, ρ, ξ), yielding the GLSE (β̂, θ̂, ρ̂, ξ̂) where a grid
point method for split points of (θ, ρ, ξ) may be used.

In Kariya and Kurata (2004, pp 55–63), an empirical performance due to Kariya
and Tsuda (1994) is demonstrated as an example of GLS estimation where the order
of the polynomial in (9) is set to 2 with z1 = 0, z2 = coupon, and z3 = maturity.
Even in this case, the residual standard deviations are 0.338 yen for December
27, 1989 with G = 70 and 0.312 yen for January 31, 1990 with G = 70 where
the face value is 100. Recently, the effectiveness of this model is empirically and
comprehensively tested with Japanese bond data in Kariya et al. (2011).

It is noted that in the specification of the attribute-dependent mean discount
function in (9), setting z1 = 1, z2 = 0, and z3 = 0 yields the attribute-free specifi-
cation. In this case the parameters involved are estimated in the same manner to
get the attribute-independent mean discount function D̄(s). This D̄(s) is converted
to a yield curve by Rs = −s−1 log D̄(s), which is often referred to as a risk-free
yield curve. This attribute-free discount function may be used to price a CDS in
Section 6 because the cash flows in CDS does not reflect the same cash flow pattern
as the corresponding CB.

5. CB pricing model for deriving TSDBs

In this section we propose a formulation of the CB pricing model that enables us to
derive the TSDPs and RRs for each pair of industry index and rating index where
(1) CB price data, (2) data on industry-wise sales ratios of firms that issued the
CBs and (3) credit rating data are assumed to be given at t = 0. As has been stated
in Sections 1 and 2, in our modeling the differences of the business line portfolios
of firms are taken into account in terms of sales ratios of the firms. As a matter of
a fact, each firm has different exposures to industry-wise business factors and so it
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has a different profit structure in association with industry business cycles, which
is greatly relevant to analyzing credit qualities of CBs.

To formulate our model, suppose that at t = 0 there are K CBs to analyze
and let {skl; l = 1, . . . ,M(k)}, k = 1, 2, . . . ,K with sk1 < sk2 < · · · < skM(k)

denote the future cash flow time points of those CBs as in the case of GBs. Also
let saM(a) = maxk skM(k) and let the cash flow function Ck(s) of the kth CB be
defined on 0 < s ≤ saM(a) for all k though it is zero except for the above finite
points.

On the other hand, if the firm that issued a CB gets defaulted before its maturity,
the coupons to be paid thereafter are not paid and some portion of the face value
100 may be paid after a long procedure of legal and practical settlements, where
the portion relative to 100 is called recovery rate (RR), which is in general of a
stochastic nature. The expected or empirically averaged value of the RR is known
to depend on its credit grade via a rating agency. Hence actual cash flows from
a CB depend on how likely a firm that issued a CB is to get defaulted and what
the expected RR is when it gets defaulted. In the market the TSDPs are evaluated
simultaneously and consistently together with the expected RRs and are implicitly
reflected in their market prices of CBs.

5.1. Basic formulation of CB pricing model

On this viewpoint, let τk be the first random time of the kth CB to default and let

(16) Lks =

{
0 τk > s

1 τk ≤ s .

Then Lks defined at t = 0 is the indicator function of default event {τk ≤ s} and
identifies if the kth CB gets defaulted before or on a future time point s. Then
the actual cash flow function C̃k(skj) at a future coupon generating time skj is
expressed as

(17) C̃k(skj) = Ck(skj)(1− Lkskj
) + 100γ(i(k))Lkskj

(1− Lkskj−1
) .

This means that C̃k(skj) = Ck(skj) if Lkskj
= 0, or equivalently if the firm has

not defaulted until skj , and C̃k(skj) = 100γ(i(k)) if Lkskj
(1 − Lkskj−1

) = 1, or
equivalently if it had not defaulted at skj−1 and has defaulted at skj . Here γ(i(k))
is the mean RR of the kth bond with rating grade i(k), where the credit rating is
indexed by natural number i = 1, 2, . . . , I and the smaller the number is, the higher
the credit grade is. Here this specification implicitly assumes that the recovery
payment is made at skj if a default event occurs in interval (skj−1, skj ]. Note that
skj − skj−1 is typically about a half year.

However, the expression (17) itself exhibits the future relation and has never been
realized at t = 0. Therefore investors expected cash flow at t = 0 is formulated as
for interval (skj−1, skj ]

C̄k(skij) = Ck(skj)[1− pk(sjk : i(k))](18)

+ 100γ(i(k))[pk(skj : i(k))− pk(skj−1 : i(k))]χk(skj) ,

where pk(sjk : i(k)) = E[Lkskj
] is the default probability corresponding to the

event {τk ≤ skj}, which is the probability that the kth CB gets defaulted before or
on skj and χk(skj) is the indicator function of the cash flow time points {skl; l =
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1, . . . ,M(k)} of the kth CB. With investors expected cash flows in (18) we formulate
our CB model as

(19) Vk =

M(k)∑
j=1

C̄k(skj)Dk(skj) .

Before we proceed further, it is remarked that a typical model in the mathemat-
ical finance literature is the conditional univariate model that introduces the credit
element into the discount part;

Vk =

M(k)∑
j=1

Ck(skj)E0

[
exp

(
−
∫ skj

0

(ru + λk
u) du

)]
,

where {ru} is a Markovian spot rate process and {λk
u} is an instantaneous Marko-

vian default intensity process that discounts cash flows together with the spot rate
process. In this expression it is assumed that {ru} is independent of {Lks} , which
is unlikely but yields

E0

[
(1− Lks) exp

(
−
∫ s

0

ru du

)]
= E0

[
exp

(
−
∫ s

0

(
ru + λk

u

)
du

)]

by the Doob-Meyer Theorem and hence the default intensity {λu} are assumed to
be exogenously independent of {ru} . It is often the case that such processes as CIR
model are assumed for {λu} , the discount function E0[ ] is evaluated analytically
and then the unknown parameters therein are calibrated or estimated with the
present or past data of the kth CB only. This model is sometimes extended to a
multivariate case where the correlation of λk

u and λj
u is often assumed to be constant.

Clearly this modeling approach is quite different from ours.
Another remark is that the expression (18) may be regarded as the conditional

expectations of investors and in that way the discount function in (19) and hence
the model (19) itself may be regarded as a conditional expression to get a dynamic
model. Now coming back to our case, the expression in (19) corresponds to the one
in (5) and hence the rest of the argument is similar to the non-defaultable case.
That is, the stochastic discount function is decomposed as

(20) Dk(s) = D̄k(s) + Δk(s)

and as D̄k(s) we use the mean discount function estimated with G government bond
prices where the attributes of the kth bond are inserted into the discount function
in evaluation. Consequently

(21) {D̄k(skj) : j = 1, . . . , skM(k) ; k = 1, . . . ,K}
is a set of known values and it follows from (19) and (20) that the CB pricing model
is

(22) Vk =

M(k)∑
j=1

C̄k(skj)D̄k(skj) + εk with εk =

M(k)∑
j=1

C̄k(skj)Δk(skj) .

It is remarked that a joint model of GBs and CBs can be formulated in which the
common mean discount functions are estimated simultaneously, though we do not
follow this because of its complexity. Note that there are about 3,000 CBs in the
Japanese market and about 50,000 CBs in the US market.
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5.2. Specification of TSDPs with business portfolio structures and
credit discounts

Next we specify the default probability function of the kth bond in (18) as

(23) Pk(s : i(k)) ≡
J∑

j=1

wk(j)p(s : i(k), j) ,

where wk(j) ≥ 0,
∑J

j=1 wk(j) = 1. Here

(24) p(s : i, j) i = 1, . . . , I, j = 1, . . . , J

is the generic or common TSDP with credit grade i and industry j , which is
independent of specific CBs. In this paper it is assumed to be approximated by a
polynomial of the qth order;

(25) p(s : i, j) = αij
1 s+ αij

2 s
2 + · · ·+ αij

q s
q .

On the other hand, {wk(1), . . . , wk(J)} in (23) is the set of the sales ratios of the kth
CB issuer corresponding to the industry indices j = 1, . . . , J and it is regarded as a
business portfolio in terms of industry-wise sales, where the industry categorization
is determined in advance.

Now from (23) and (25) the TSDP of the kth bond is expressed as

pk(s : i(k)) = sw′
kα

i·
1 + s2w′

kα
i·
2 + · · ·+ sqw′

kα
i·
q(26)

= (sw′
k, s

2w′
k, . . . , s

qw′
k)β(i)

≡ wk(s)
′β(i)

where

wk = (wk(1), . . . , wk(J))
′,

αi·
h = (αi1

h , . . . , αiJ
h )′ h = 1, . . . q,

β(i) ≡ (αi·′
1 , . . . , αi·′

q )′

wk(s)
′ = (sw′

k, . . . , s
qw′

k) .

Also the expected cash flow function in (18) is expressed as

(27) C̄k(skj) = Ck(skj) + zk(skj , skj−1 : γ(i(k)))′β(i) ,

where

zk(skj , skj−1 : γ(i(k)))′ = −Ck(skj)w(skj)
′

+ 100γ(i(k))χk(skj)[w(skj)
′ − w(skj−1)

′] .

Therefore the pricing model in (22) is given by

Vk =

M(k)∑
j=1

Ck(skj)D̄k(skj) +

M(k)∑
j=1

D̄k(skj)z
′
k(skj , skj−1 : γ(i(k)))β((i(k)) + εk

= P̂k + [uk + γ(i(k))vk]
′β(i) + εk ,
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which yields a regression model

(28) y
i(k)
k = [uk + γ(i(k))vk]

′β(i) + εk

with

y
i(k)
k = Vk − P̂k ,

P̂k =

M(k)∑
j=1

Ck(skj)D̄k(skj) ,

uk = −
M(k)∑
j=1

Ck(skj)D̄k(skj)wk(skj) and

vk = 100

M(k)∑
j=1

D̄k(skj)χk(skj)[wk(skj)− wk(skj−1)] .

In this expression, P̂k is regarded as an expected (or a theoretical) GB price with

non-defaultable cash flow {Ck(skj) : j = 1, . . . ,M(k)}, and hence y
i(k)
k is the

difference between the kth CB price with credit grade i(k) and the corresponding

non-defaultable bond price. The difference y
i(k)
k tends to be non-positive, because

C̄k(skj) ≤ Ck(skj) and a CB is of the less creditability and less liquidity than the

corresponding GB. We simply call y
i(k)
k the credit risk discount of the kth CB price.

Consequently (28) forms a regression model for the credit risk discounts. In fact,
supposing that there are Ki CBs of credit grade i and letting y(i) = (yi1, . . . , y

i
Ki

)′,
X1(i) = (ui′

1 , . . . , u
i′
Ki

)′ and X2(i) = (vi
′
1 , . . . , v

i′
Ki

)′ the pricing model for CBs of
credit grade i is reduced to a regression model;

(29) y(i) = X(i, γ(i))β(i) + ε(i)

with X(i, γ(i)) = X1(i) + γ(i)X2(i), i = 1, . . . , I. Here Ki ≥ 2Jq is assumed for
the identifiability and estimability of β(i) and γ(i). In fact, Ki ≥ 2Jq is a neces-
sary condition for the uniqueness of (β(i), γ(i)) in the sense that X(i, γ(i))β(i) =
X(i, γ(i)∗)β(i)∗ implies β(i) = β(i)∗ and γ(i) = γ(i)∗. It follows from (29) that the
credit risk discount vector y(i) of the ith credit grade is explained by the regres-
sion matrix X(γ(i)) which depends on the unknown RR γ(i). Combining all the
regression models over i = 1, . . . , I yields

(30) y = Xβ + ε

with X ≡ [X(i, γ(i))] and [X(i, γ(i))] is the K × IJq block-diagonal matrix with
the ith block matrix X(i, γ(i)) and β = (β(1)′, . . . , β(I)′)′ with K = K1+ · · ·+KI .

5.3. Specification of covariance structures

To specify the covariance structure, we write the dependency of the mean cash flow
function on unknown parameters as C̄k(skj) ≡ C̄k(skj : β(i), γ(i(k))). Then the
error term in (22) is given by

εk =

M(k)∑
j=1

C̄k(skj : β(i), γ(i(k)))Δk(skj) .
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Hence the covariance of two error terms of the kth and lth CB prices with rating
i(k) and i(l) respectively is assumed to be

Cov(εk, εl) =

M(k)∑
j=1

M(m)∑
m=1

C̄k(skj : β(i), γ(i(k)))C̄l(slm : β(i), γ(i(l)))Cov(Δkj ,Δlm)

(31)

= σ2λklϕkl ,

where

λkl =

⎧⎪⎨
⎪⎩
ekk k = l

ρiiekl k �= l, i(k) = i(l) = i

ρijekl k �= l, i(k) = i, i(l) = j, i �= j

with
ekl = exp

(−ξij
∣∣skM(k) − slM(l)

∣∣) i(k) = i, i(l) = j,

and

ϕkl =

M(k)∑
j=1

M(m)∑
m=1

C̄k(skj : β(i), γ(i(k)))C̄l(slm : β(i), γ(i(l)))bkl·jm

with
bkl·jm = exp (−θ |skj − slm|) .

In this specification, when the kth CB and the lth CB are of the same credit rate,
i.e., i(k) = i(l) = i , then the covariance is of the same form as the one in the non-
defaultable case. If the two CBs are not in the same credit category, ρij will account
for the cross-correlation between the two categories. Using the above specifications,
the covariance matrices for regression models are obtained;

Cov(ε(i)) = (Cov(εk, εl)) = σ2(λklϕkl) = σ2Φ(β(i), γ(i), ρii, ξii) ≡ σ2Φii

Cov(ε(i), ε(j)) = σ2Φ(β(i), β(j), γ(i), γ(j), ρij , ξij) ≡ σ2Φij i �= j and

(32)

Cov(ε) = (Cov(ε(i), ε(j))) = σ2{Φij} .

(33)

In the CB case, the covariance matrices depend on the regression coefficient β(i)’s.

5.4. Estimation procedure

Under these formulations we propose the following grid procedure to simplify the
model estimation.

(1) For each credit category, the GLS estimation is pursued: fix i.

(a) For each given (γ(i), ρii, ξii), each of which moves over 0, 0.1, . . . , 0.9,
β(i) is estimated by a repeated procedure. Setting β(i) = 0 in Φii and
minimizing

ψ ≡ [y(i)−X(i, γ(i))β(i)]′[Φii(β(i), γ(i), ρii, ξii)]
−1[y(i)−X(i, γ(i))β(i)]
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yields the first step GLSE with Φ
(0)
ii = Φii(0, γ(i), ρii, ξii);

β̂(i)(1) = [X(i, γ(i))′Φ(0)−1

ii X(i, γ(i))]−1X(i, γ(i))′Φ(0)−1

ii y(i) .

Substituting this β̂(i)(1) into Φii to get Φ
(1)
ii = Φii(β(i)

(1), γ(i), ρii, ξii),

applying the same procedure yields the second step MLE β̂(i)(2). Re-
peating this procedure a couple of times with a performance evaluation

rule, we obtain an approximate minimizer (β̂(i)(n), Φ
(n−1)
ii ) for given

(γ(i), ρii, ξii).

(b) Repeating the procedure in (a) over possible values of (γ(i), ρii, ξii), we

obtain (β̂(i)∗,Φ∗
ii, γ(i)

∗, ρ∗ii, ξ
∗
ii) that minimizes the objective function ap-

proximately. Once we obtain this, we may repeat (a) in the neighborhood
of the approximate optimal value by splitting the neighborhood with a
finer division.

(2) A simultaneous estimation procedure for the combined model is obtained as

follows. Fix (β̂(i)∗, γ̂(i)∗, ρ̂∗ii, ξ̂
∗
ii) i = 1, . . . , I in the matrix

Φij = Φ(β(i), β(j), γ(i), γ(j), ρij , ξij) i �= j ,

meaning that the full covariance matrix in (32) carries the I(I − 1) unknown
parameters {ρij , ξij : i �= j}. Hence in the same way as in (1) we minimize

Ψ(β, ρij , ξi) = [y −Xβ]′[{Φij(ρij , ξij)}]−1[y −Xβ]

to obtain the first approximate simultaneous GLSE β̂
[1]
full. One may replace

β̂(i)∗’s in the fixed (β̂(i)∗, γ̂(i)∗, ρ̂∗ii, ξ̂
∗
ii) i = 1, . . . , I by β̂

[1]
full and repeat the

minimization procedures again to get the second approximate simultaneous

GLSE β̂
[2]
full.

(3) This minimization procedures are repeated over the degrees q = 2, . . . , 6 of

the polynomials in (25) to get an optimal simultaneous GLSE β̂full.

With this model, an extensive empirical research is under a way with Japanese CB
data. A simple empirical work is demonstrated below in a limited model. In this
model we do not take into account the fact that each firm has a specific business
portfolio over industries. In other words, we set J = 1 and pick the AA class
of 208 CBs with the assumption of recovery rate γ = 0. A plot of the residuals
{ε̂AA

k = Vk − V̂k} shows that even in this simplified model the performance are
rather good and hence our full model will be more promising as a model to derive
the TSDPs. In fact, the standard deviation of ε̂AA

k ’s is 0.419 yen.

6. Applications

Once a full estimator β̂full is obtained, the following applications are considered.
[1] The whole implied TSDPs in (25) for each pair of credit grade index and

industry index are given by

(34) p̂(s : i, j) = α̂ij
1 s+ α̂ij

2 s
2 + · · ·+ α̂ij

q s
q i = 1, . . . , I j = 1, . . . , J

together with the implied RRs {γ̂(i)∗ : i = 1, . . . , I}. These TSDPs and RRs are
basic information sources for credit-related products.
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[2] The TSDP of the kth CB or its issuer with credit grade i(k) and business
portfolio {wk(1), . . . , wk(J)} over J industries is obtained from [1] as

(35) p̂k(s : i(k)) =

J∑
j=1

wk(j)p̂(s : i(k), j) .

This is the TSDP {P (τk ≤ s) : s > 0} 0f the issuer of the kth CB where τk is the
default time as in (16). The expected RR is γ̂(i(k))∗ ≡ γ̂(i) with i(k) = i.

[3] Inserting β̂full into (28) and using (27), the credit risk discount level of the
kth CB or its issuer with credit grade i(k) and business portfolio {wk(1), . . . , wk(J)}
over J industries is given by

ŷ
i(k)
k = [uk + γ̂(i(k))∗vk]′β̂full(36)

=

M(k)∑
j=1

D̄k(skj)W (p̂k(skj : i(k)), p̂k(skj−1 : i(k)); γ̂(i(k)))

with

Ŵ (skj) ≡ W (p̂k(skj : i(k)), p̂k(skj−1 : i(k)); γ̂(i(k)))(37)

= [100γ̂(i(k))χk(skj)− Ck(skj)]p̂k(skj : i(k))− 100γ̂(i(k))

× p̂k(skj−1 : i(k))χk(skj)

where the discount is relative to the fair value P̂k = V̂k+(−ŷ
i(k)
k ) of the correspond-

ing non-defaultable bond. Here P̂k is the model value of non-defaultable bond with
the same coupon and same maturity as those of the kth CB. Consequently the fair
spread rate of the kth CB relative to the corresponding (attribute-dependent) GB
is given by

(38) sp̂k ≡ (P̂k − V̂k)/P̂k = −ŷ
i(k)
k /P̂k .

Hence if the actual spread (P̂k− V̂k)/P̂k = −ŷ
i(k)
k /P̂k is too low or too high relative

to this fair spread, one may use the information for investment decision making
with the expectation that the actual spread eventually converges to the fair level.

[4] CB Portfolio Management. The fair value of a portfolio {�k} of CBs is given
by

K∑
k=1

�kV̂k =
K∑

k=1

�k

M(a)∑
m=1

ˆ̄Ck(sam)D̄k(sam) =
K∑

k=1

�k[P̂k + ŷk](39)

=

M(a)∑
m=1

[Aam +Bam] ≡
M(a)∑
m=1

Cam

where {�k} is a portfolio of CBs in terms of physical units,

(40) Aam =

K∑
k=1

�kCk(sam)D̄k(sam)

and

(41) Bam =

K∑
k=1

�kD̄k(sam)W (p̂k(sam : i(k)), p̂k(sam−1 : i(k)); γ̂(i(k))) .
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Here Aam is the present value of the cash flows at future time sam if none of the
bonds are defaulted before or on sam where {sam} is the combined set of cash flow
points, while Bam is the present value of the expected loss at sam, which is generally
negative.

What is important in this expression is that these are regarded as fair present
values of those of the corresponding loan portfolio in a bank since a fixed-rate loan
is regarded as a CB and a variable-rate loan may be converted to an equivalent fixed
loan via interest swap rate at the time of evaluation. Though we do not elaborate it,
based on this expression, the portfolio can be adjusted to a desirable loss structure
relative to industries and rating grades via

p̂k(s; i) ≡
J∑

j=1

wk(j)p̂(s : i, j) ,

where (37), (39) and (41) are combined to sort out the overlapping structure of
firms portfolios and extract the industry positions for each p̂(s : i, j).

Another example is about the durations of expected losses. Putting bm = Bam/B
where

B =

M(a)∑
m=1

Bam ,

{bm} represents the relative sizes of losses distributed over {sam} and hence

M∑
m=1

bmsam

is the average duration of the losses. On the other hand, {am} with am = Aam/A
and

A =

M∑
m=1

Aam ,

represents the relative sizes of the cash inflows distributed over {sam} if none of
the CBs or loans get defaulted, and so the duration is

M∑
m=1

amsam .

The two durations are in general different and the expected actual duration becomes

M∑
m=1

cmsam

with cm = Cam/C and

C =

M∑
m=1

Cam ,

The above argument can be extended to the case where the portfolio contains GBs
as well as CBs.

[5] CDS Pricing. Now we apply the result to the valuation of credit default swap
(CDS). The CDS is notorious as a credit derivative for enlarging and broadening
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the financial crisis because the protection sellers like AIG sold CDSs more than
their capacities. However CDS itself is an important instrument because it is an
insurance-type product (contract) guaranteeing the principal of a specific CB (or
loan) for the protection buyers by covering the loss when the issuer C of the CB gets
defaulted. A protection (insurance) buyer B in this contract is the one who pays the
protection premiums quarterly or biannually to a protection seller A over a certain
period till its contract period or default of C in the period in order to protect the
principal. The CDSs of this type are quoted in the market for trades of credit risk
on GBs and CBs. The quotation includes the ask-side as well as the offer-side of
protection against each bond, from which a market value of the credit risk of a
CB is found. Here we first give a price (premium) formula for CDS in a discrete
time setting, which is different from those in a continuous setting. As is stated in
Section 1, a discrete time setting is more suitable in credit risk analysis than a
continuous time setting. For example, a credit variation process is not Markovian
and a settlement process after a default takes often 3 months through 6 months. In
the discrete-time setting, the uncertainty of the time delay for settlement is directly
incorporated into the model if necessary.

Now to price a CDS, let m = 0, 1, . . .M be daily counted time points at 0 where
the time unit h of day is measured in year as h = 1/365. Time point m corresponds
to mh years from 0. Let

(42) Υ = {0 ≤ m1 ≤ m2 < · · · < mk}
be the biannual premium payment time points counted in days viewed at 0, and
at these time points the protection buyer pays premium x for principal value 100.
Further let NC be the default time of firm C as in (16) and let the default process
be denoted by

{Lm} with Lm = χ{NC≤m} .

To derive a theoretical premium x , we distinguish the two cases; m /∈ Υ or m ∈ Υ.
When m /∈ Υ the cash flow at m of the protection buyer B occurs from the

protection seller A only if firm C gets defaulted at m. Hence the payoff of A is
expressed as

(43) UA
m = −100(1− Lm−1)Lm + 100γm(1− Lm−1)Lm .

In (43), if C had defaulted at m− 1, Lm−1 = 1 and so UA
m = 0 , i.e., no cash flow

at m. Here this expression assumes that on the day of default, protection seller A
pays 100 and receives recovery 100γm , which is not realistic, but we can change it
in a way as we wish. In fact, if the protection seller A pays the principal to B in
14 days after default and A gets the recovery money in 90 days after default, the
expression can be modified as for the payoff of A at m
(44)
UA
m = −100(1− Lm−1−14)Lm−14 and UA

m+90 = 100γm+90(1− Lm−1−14)Lm−14 .

However, for simplicity we here assume (43) in which the payments are made at m
when the default occurs in (m− 1,m].

When m ∈ Υ, B pays 100x to A if the default has not occurred until m and
hence combining this with (43) the payoff of A becomes

(45) UA
m = −100(1− γm)(1− Lm−1)Lm + 100x(1− Lm) .

Note that by the definition of Lm, for m < n, Lm = 1 implies Ln = 1 and hence
UA
m = 0. Now to value a theoretical premium x in a way as in no-arbitrage theory,
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each payoff Um at m is regarded as a derivative and is valued relative to cash
managed up to m with daily spot rate process {rj};

(46) Bm = exp

⎛
⎝m−1∑

j=0

rjh

⎞
⎠ .

Then the martingale condition gives the value at 0 of Un by

(47) νA(m) = E∗
0 [Um/Bm] = E∗

0 [d(m)Um] ,

where in the theory the measure is risk neutral though it is not uniquely identifiable.
If the interest rate process is independent of Un, which would not hold in reality,
the value is expressed as

(48) νA(m) = 100D̄(m)[−(1− γ̂(i(C)))Q(NC = m) + δ(m)xQ(NC > m)] ,

where δ(m) = 1 if m ∈ Υ, and it is 0 otherwise. Here we use an attribute-free
discount function;

D̄(m) = E0[1/Bm] = E0[d(m)] .

This discount function can be chosen as the one stated at the end of Section 4.
Therefore the expected payoff at 0 of A is

V A =

M∑
m=1

νA(m) .

On the other hand, the payoff of B should be fair to that of A, meaning that it is
equal to V A and V B = −V A. Consequently the premium x must satisfy V A = 0.

The CB-CDS premium described above is valued as a fair value;

(49) x =
(1− γ(i(C)))

∑M
m=1 D̄(m)Q(NC = m)∑K

k=1 Q(NC > mk)D̄(mk)
,

where γ(i(C)) is the recovery rate of the CB issuer C and {mk} is the set of premium
payment times. In our case, γ(i(C)) is the implied recovery rate and the default
probability is the implied TSDP,

Q(NC ≤ m) = pC(mh : i(C)) =

J∑
j=1

wk(C)p(mh : i(C), j) ,

where the industry-wise business structure of the issuer C is taken into account. In
(36), one may replace

M∑
m=1

Q(NC = m)D̄C(m)

by the continuous time expression

∫ SM(C)

0

D̄(s)p′C(s : i(C)) ds ,

where p′C(s : i(C)) is the derivative of the TSDP pC .
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7. Conclusion

In this paper, we formulated a CB pricing model from which the TSDPs are derived
for each industry index and each rating index and the recovery rates are derived for
each rating index. A notable feature of this model is to take into account the fact
that each firm has a different portfolio structure of business lines over industries.
The TSDPs and recovery rates are basic inputs in credit derivatives and credit risk
management. Though we wait for a thorough empirical work, the model itself and
derived outputs will be very useful for practical decision makings. Further these
results can be also applied to pricing some multi-name credit derivatives.
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