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Abstract: A Markov chain is geometrically ergodic if it converges to its in-
variant distribution at a geometric rate in total variation norm. We study geo-
metric ergodicity of deterministic and random scan versions of the two-variable
Gibbs sampler. We give a sufficient condition which simultaneously guarantees
both versions are geometrically ergodic. We also develop a method for simul-
taneously establishing that both versions are subgeometrically ergodic. These
general results allow us to characterize the convergence rate of two-variable
Gibbs samplers in a particular family of discrete bivariate distributions.

1. Introduction

Let � be a probability distribution having support X× Y ⊆ R
k × R

l, k, l ≥ 1 and
�X|Y and �Y |X denote the associated conditional distributions. We assume it is
possible to simulate directly from �X|Y and �Y |X . Then there are two Markov
chains having � as their invariant distribution, each of which could be called a
two-variable Gibbs sampler (TGS). The most common version of a TGS is the de-
terministic scan Gibbs sampler (DGS), which is now described. Suppose the current
state of the chain is (Xn, Yn) = (x, y), then the next state, (Xn+1, Yn+1), is obtained
as follows.

Iteration n+ 1 of DGS:

1. Draw Xn+1 ∼ �X|Y (·|y), and call the observed value x′.
2. Draw Yn+1 ∼ �Y |X(·|x′).
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An alternative TGS is the random scan Gibbs sampler (RGS). Fix p ∈ (0, 1)
and suppose the current state of the RGS chain is (Xn, Yn) = (x, y). Then the next
state, (Xn+1, Yn+1), is obtained as follows.

Iteration n+ 1 of RGS:

1. Draw B ∼ Bernoulli(p).
2. If B = 1, then draw Xn+1 ∼ �X|Y (·|y) and set Yn+1 = y.
3. If B = 0, then draw Yn+1 ∼ �Y |X(·|x) and set Xn+1 = x.

Despite the simple structure of either TGS, these algorithms are widely applica-
ble in the posterior analysis of complex Bayesian models. A TGS also arises natu-
rally when � is created via data augmentation techniques (Hobert, 2011; Tanner
and Wong, 1987).

Inference based on � often requires calculation of an intractable expectation.
Let g : X×Y → R and let E�g denote the expectation of g with respect to �. If a
TGS Markov chain is ergodic (see Tierney, 1994) and E�|g| < ∞, then

ḡn :=
1

n

n−1∑
i=0

g(Xi, Yi)
a.s.−→ E�g as n → ∞.

Thus estimation of E�g is simple. However, the estimator ḡn will be more valuable
if we can attach an estimate of the unknown Monte Carlo error ḡn − E�g. An
approximation to the sampling distribution of the Monte Carlo error is available
when a Markov chain central limit theorem (CLT) holds

√
n(ḡn − E�g)

d→ N(0, σ2
g) as n → ∞

with 0 < σ2
g < ∞. The variance σ2

g accounts for the serial dependence in a TGS
Markov chain and consistent estimation of it requires specialized techniques such as
batch means, spectral methods or regenerative simulation. Let σ̂2

n be an estimator
of σ2

g . If, with probability 1, σ̂2
n → σ2

g as n → ∞, then an asymptotically valid
Monte Carlo standard error is σ̂n/

√
n. These tools allow the practitioner to use the

results of a TGS simulation with the same level of confidence that one would have
if the observations were a random sample from �. For more on this approach the
interested reader can consult Geyer (1992), Geyer (2011), Flegal, Haran and Jones
(2008), Flegal and Jones (2010), Flegal and Jones (2011), Hobert et al. (2002),
Jones et al. (2006), and Jones and Hobert (2001).

The CLT will obtain if E�|g|2+ε < ∞ for some ε > 0 and the Markov chain is
rapidly mixing (Chan and Geyer, 1994). In particular, we require that the Markov
chain be geometrically ergodic; that is, converge to the target � in total variation
norm at a geometric rate. Under these same conditions methods such as batch
means and regenerative simulation provide strongly consistent estimators of σ2

g .
Thus establishing geometric ergodicity is a key step in ensuring the reliability of a
TGS as a method for estimating features of �.

The convergence rate of DGS Markov chains has received substantial attention.
In particular, sufficient conditions for geometric ergodicity have been developed
for several DGS chains for practically relevant statistical models (see e.g. Hobert
and Geyer, 1998; Johnson and Jones, 2010; Jones and Hobert, 2004; Marchev and
Hobert, 2004; Roberts and Polson, 1994; Roberts and Rosenthal, 1999; Román,
2012; Román and Hobert, 2011; Rosenthal, 1996; Roy and Hobert, 2007; Tan and
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Hobert, 2009). The convergence rates of RGS chains has received almost no atten-
tion despite sometimes being useful. Liu, Wong and Kong (1995) did investigate
geometric convergence of RGS chains, but the required regularity conditions are
daunting and, to our knowledge, have not been applied to practically relevant sta-
tistical models. Recently Johnson, Jones and Neath (2011) gave conditions which
simultaneously establish geometric ergodicity of both the DGS chain and the cor-
responding RGS chain. These authors also conjectured that if the RGS chain is
geometrically ergodic, then so is the DGS chain. That is to say, the qualitative
convergence properties of TGS chains coincide. We are not able to resolve this con-
jecture in general, but in our main application (see Section 5) this is indeed the
case.

A TGS chain which converges subgeometrically (ie, slower than geometric) would
not be as useful as another chain which is geometrically ergodic–although with
additional moment conditions it is still possible for a CLT to hold (Jones, 2004).
Thus it would be useful to have criteria to check for subgeometric convergence. We
are unaware of any previous work investigating subgeometric convergence of TGS
Markov chains.

In the rest of this paper, we extend the results of Johnson, Jones and Neath
(2011) and provide a condition which can be used to simultaneously establish ge-
ometric ergodicity of DGS and RGS Markov chains. We then turn our attention
to development of a condition which ensures that both the DGS and RGS chains
converge subgeometrically. Finally, we apply our results to a class of bivariate dis-
tributions where we are able to characterize the convergence properties of the DGS
and RGS chains. But we begin with some Markov chain background and a formal
definition of the Markov chains we study.

2. Background and Notation

Let Z be a topological space and B(Z) denote its Borel σ-algebra. Also, let Φ =
{Z0, Z1, Z2, . . .} be a Markov chain having Markov transition kernel P . That is,
P : Z × B(Z) → [0, 1] such that for each A ∈ B(Z), P (·, A) is a nonnegative
measurable function and for each z ∈ Z, P (z, ·) is a probability measure. As usual,
P acts to the left on measures so that if ν is a measure on (Z,B(Z)) and A ∈ B(Z),
then

νP (A) =

∫
Z

ν(dz)P (z,A) .

For any n ∈ Z
+, the n-step Markov transition kernel is given by Pn(z,A) =

Pr(Zn+j ∈ A|Zj = z).
Let w be an invariant probability measure for P , that is, wP = w. Denote total

variation norm by ‖ · ‖TV . If Φ is ergodic, then for all z ∈ Z we have ||Pn(z, ·) −
w(·)||TV → 0 as n → ∞. Our goal is to study the rate of this convergence. Suppose
there exist a real-valued function M(z) on Z and 0 < t < 1 such that for all z

(1) ||Pn(z, ·)− w(·)||TV ≤ M(z)tn .

Then Φ is geometrically ergodic, otherwise it is subgeometrically ergodic.

2.1. Two-variable Gibbs samplers

In this section we define the Markov kernels associated with the DGS and RGS
chains described in Section 1. We also introduce a third Markov chain which will
prove crucial to our study of the other Markov chains.
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Recall that � is a probability distribution having support X × Y ⊆ R
k × R

l,
k, l ≥ 1. Let π(x, y) be a density of � with respect to a measure μ = μX × μY .
Then the marginal densities are given by

πX(x) =

∫
Y

π(x, y)μY (dy)

and similarly for πY (y). The conditional densities are πX|Y (x|y) = π(x, y)/πY (y)
and πY |X(y|x) = π(x, y)/πX(x).

Consider the DGS Markov chain ΦDGS = {(X0, Y0), (X1, Y1), . . .} and let

kDGS(x
′, y′|x, y) = πX|Y (x′|y)πY |X(y′|x′) .

Then the Markov kernel for ΦDGS is defined by

PDGS((x, y), A) =

∫
A

kDGS(x
′, y′|x, y)μ(d(x′, y′)) A ∈ B(X)× B(Y) .

It is well known that the two marginal sequences comprising ΦDGS are themselves
Markov chains (Liu, Wong and Kong, 1994). We now consider the marginal sequence
ΦX = {X0, X1, . . .} and define

kX(x′|x) =
∫
Y

πX|Y (x′|y)πY |X(y|x)μY (dy) .

The Markov kernel for ΦX is

PX(x,A) =

∫
A

kX(x′|x)μX(dx′) A ∈ B(X) .

Note that PDGS has � as its invariant distribution while PX has the marginal �X

as its invariant distribution.
Finally, consider the RGS Markov chain ΦRGS = {(X0, Y0), (X1, Y1), . . .}. Let

p ∈ (0, 1) and δ denote Dirac’s delta. Define

kRGS(x
′, y′|x, y) = pπX|Y (x′|y)δ(y′ − y) + (1− p)πY |X(y′|x)δ(x′ − x) .

Then the Markov kernel for ΦRGS is

PRGS((x, y), A) =

∫
A

kRGS(x
′, y′|x, y)μ(d(x′, y′)) .

It is easy to show via direct computation that � is invariant for PRGS .
It is well known that PX and PDGS converge to their respective invariant distri-

butions at the same rate (Diaconis, Khare and Saloff-Coste, 2008; Liu, Wong and
Kong, 1994; Robert, 1995; Roberts and Rosenthal, 2001). Thus if one is geometri-
cally ergodic, then so is the other. This relationship has been routinely exploited in
the study of TGS chains for practically relevant statistical models (cf. Hobert and
Geyer, 1998; Johnson and Jones, 2010; Jones and Hobert, 2004; Roy and Hobert,
2007; Tan and Hobert, 2009) since one of the two chains may be easier to analyze
than the other. Recently, Johnson, Jones and Neath (2011) connected the geometric
ergodicity of PX to that of PRGS . Thus establishing geometric ergodicity of TGS
algorithms often comes down to analyzing PX . This is exactly the approach we take
in Sections 3 and 5.
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3. Conditions for Geometric Ergodicity

In this section we develop general conditions which ensure that PX , PDGS and
PRGS are geometrically ergodic. First we need a couple of concepts from Markov
chain theory. Recall the notation from Section 2. That is, P is a Markov kernel
on (Z,B(Z)). Then P is Feller if for any open set O ∈ B(Z), P (·, O) is a lower
semicontinuous function. The Markov kernel P acts to the right on functions so
that for measurable f

Pf(z) =

∫
Z

f(z′)P (z, dz′) .

A drift condition holds if there exists a function U : Z → R
+, and constants

0 < λ < 1 and L < ∞ satisfying

(2) PU(z) ≤ λU(z) + L for all z ∈ Z .

Recall that a function U is said to be unbounded off compact sets if the sublevel set
{z ∈ Z : U(z) ≤ d} is compact for every d > 0. If P is Feller, U is unbounded off com-
pact sets and satisfies (2), then Φ is geometrically ergodic. See Meyn and Tweedie
(1993) and Roberts and Rosenthal (2004) for details while Jones and Hobert (2001)
give an introduction to the use of drift conditions.

3.1. Two-variable Gibbs samplers

Johnson, Jones and Neath (2011) gave a set of conditions which simultaneously
prove that ΦX , ΦDGS and ΦRGS are geometrically ergodic. We build on their work
and show how a drift condition for PX naturally provides a drift condition for PRGS .
This allows us to develop an alternative set of conditions which are sufficient for
the geometric ergodicity of PX , PDGS and PRGS . The application of this method
is illustrated in Section 5.

The following result was essentially proved by Johnson, Jones and Neath (2011),
but it was not stated in their paper; see Johnson (2009) for related material. Thus
we provide a proof for the sake of completeness. First we set some notation. Suppose
V : X → R

+ and let

G(y) =

∫
X

V (x)πX|Y (x|y)μX(dx) .

Also, for c > 0 define

(3) W (x, y) = V (x) + cG(y) .

Lemma 1. Suppose there exist constants 0 < λ < 1 and L < ∞ such that for all
x ∈ X

PXV (x) ≤ λV (x) + L .

If 0 < p < 1 and p(1− p)−1 < c < p[λ(1− p)]−1, then there exists λ < γ < 1 such
that

PRGSW (x, y) ≤ γW (x, y) + (1− p)cL .
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Proof. Notice that∫
Y

G(y)πY |X(y|x)μY (dy) =

∫
Y

∫
X

V (x′)πX|Y (x′|y)πY |X(y|x)μX(dx′)μY (dy)

=

∫
X

V (x′)
∫
Y

πX|Y (x′|y)πY |X(y|x)μY (dy)μX(dx′)

=

∫
X

V (x′)kX(x′|x)μX(dx′)

≤ λV (x) + L .

Since

(4)
p

1− p
< c <

p

λ(1− p)

there exists γ such that

(5) (1− p)(cλ+ 1) ∨ p(1 + c)

c
≤ γ < 1 .

Then

PRGSW (x, y) =

∫
X

∫
Y

W (x′, y′)kRGS(x
′, y′|x, y)μX(dx′)μY (dy

′)

= p

∫
X

∫
Y

W (x′, y′)πX|Y (x′|y)δ(y′ − y)μX(dx′)μY (dy
′)

+ (1− p)

∫
X

∫
Y

W (x′, y′)πY |X(y′|x)δ(x′ − x)μX(dx′)μY (dy
′)

= p

∫
X

W (x′, y)πX|Y (x′|y)μX(dx′)

+ (1− p)

∫
Y

W (x, y′)πY |X(y′|x)μY (dy
′)

= p

∫
X

[V (x′) + cG(y)]πX|Y (x′|y)μX(dx′)

+ (1− p)

∫
Y

[V (x) + cG(y′)]πY |X(y′|x)μY (dy
′)

= pcG(y) + (1− p)V (x) + pG(y)

+ (1− p)c

∫
Y

G(y′)πY |X(y′|x)μY (dy
′)

= p(1 + c)G(y) + (1− p)V (x) + (1− p)c

∫
Y

G(y′)πY |X(y′|x)μY (dy
′)

≤ (1− p)cλV (x) + (1− p)cL+ p(1 + c)G(y) + (1− p)V (x)

= (1− p)(cλ+ 1)V (x) + p(1 + c)G(y) + (1− p)cL

≤ γW (x, y) + (1− p)cL .

All that remains is to show that γ > λ. Now

γ ≥ (1− p)(cλ+ 1) by (5)

> (1− p)

(
p

1− p
λ+ 1

)
by (4)

= pλ+ (1− p)

> λ since λ, p ∈ (0, 1) .
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The following is an easy consequence of Lemma 1 and the material stated at the
beginning of this section.

Proposition 1. Suppose PX and PRGS are Feller. If there exists a function V :
X → R

+ such that both V and the corresponding W (as defined at (3)) are un-
bounded off compact sets, and there exist constants 0 < λ < 1 and L < ∞ such that
for all x ∈ X

PXV (x) ≤ λV (x) + L,

then ΦX , ΦDGS and ΦRGS are geometrically ergodic.

4. Conditions for Subgeometric Convergence

Our goal in this section is to develop a condition which ensures that ΦX , ΦDGS

and ΦRGS converge subgeometrically, but first we need a few concepts from general
Markov chain theory. Recall the notation of Section 2. In particular, P is a Markov
kernel on (Z,B(Z)) having invariant distribution w. A Markov kernel defines an op-
erator on the space of measurable functions that are square integrable with respect
to the invariant distribution, denoted L2(w). Also, let

L2
0,1(w) =

{
f ∈ L2(w) : Ewf = 0, and Ewf

2 = 1
}

.

For f, g ∈ L2(w), define the inner product as

〈f, g〉 =
∫
Z

f(z)g(z)w(dz)

and ‖f‖2 = 〈f, f〉. The norm of the operator P is

‖P‖ = sup
f∈L2

0,1(w)

‖Pf‖ .

If P is symmetric with respect to w, that is, if

(6) P (z, dz′)w(dz) = P (z′, dz)w(dz′),

then P is self-adjoint so that 〈Ph1, h2〉 = 〈h1, Ph2〉. If P is w-symmetric, then
Φ is geometrically ergodic if and only if ‖P‖ < 1 (Roberts and Rosenthal, 1997).
Moreover, if Z ∼ w and Z ′|Z = z ∼ P (z, ·), then

(7) ‖P‖ = sup
f∈L2

0,1(w)

|〈Pf, f〉| = sup
f∈L2

0,1(w)

|E [f(Z ′)f(Z)] | .

The first equality is a property of self-adjoint operators while the second equality
follows directly from the definition of inner product.

4.1. Two-variable Gibbs samplers

It is easy to see that PX is �X -symmetric and PRGS is �-symmetric, but PDGS

is not �-symmetric. Because PX and PRGS are symmetric, the operator theory
described above applies. In particular, if X ∼ �X and X ′|X = x ∼ PX(x, ·), then

‖PX‖ = sup
f∈L2

0,1(�X)

|E[f(X ′)f(X)]|
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while if (X,Y ) ∼ � and (X ′, Y ′)|(X,Y ) = (x, y) ∼ PRGS((x, y), ·), then
‖PRGS‖ = sup

f∈L2
0,1(�)

|E[f(X ′, Y ′)f(X,Y )]| .

Note that despite our use of ‖ · ‖ for both operator norms, these are different since
they are based on different L2 spaces.

If we can show that ‖PX‖ = ‖PRGS‖ = 1, then we will be able to conclude
that ΦX , ΦDGS , and ΦRGS are subgeometrically ergodic. First, we need convenient
characterizations of the operator norms.

Lemma 2. If (X,Y ) ∼ �, then

‖PX‖ = 1− inf
f∈L2

0,1(�X)
E(Var(f(X)|Y ))

and

‖PRGS‖ = 1− inf
f∈L2

0,1(�)
{pE(Var(f(X,Y )|Y )) + (1− p)E(Var(f(X,Y )|X))} .

Proof. Suppose X ∼ �X , X ′|X = x ∼ PX(x, ·) and (X,Y ) ∼ �. Then

‖PX‖ = sup
f∈L2

0,1(�X)

|E[f(X ′)f(X)]|

= sup
f∈L2

0,1(�X)

Var(E(f(X)|Y ))

= 1− inf
f∈L2

0,1(�X)
E(Var(f(X)|Y )) .

In the above, the second equality follows from Liu, Wong and Kong (1994, Lemma
3.2) and the last equality holds since for f ∈ L2

0,1(�X)

1 = E(Var(f(X)|Y )) + Var(E(f(X)|Y )) .

Now consider ‖PRGS‖. Suppose (X,Y ) ∼ � and (X ′, Y ′)|(X,Y ) = (x, y) ∼
PRGS((x, y), ·). Then

E [h(X ′, Y ′)h(X,Y )]

=

∫
h(x′, y′)h(x, y)kRGS(x

′, y′|x, y)π(x, y)μX(dx′)μY (dy
′)μX(dx)μY (dy)

=

∫
h(x′, y′)h(x, y)π(x, y)[pπX|Y (x′|y)δ(y′ − y)

+ (1− p)πY |X(y′|x)δ(x′ − x)]μX(dx′)μY (dy
′)μX(dx)μY (dy)

=

∫
ph(x′, y)h(x, y)πX|Y (x′|y)π(x, y)μX(dx′)μX(dx)μY (dy)

+

∫
(1− p)h(x, y′)h(x, y)πY |X(y′|x)π(x, y)μY (dy

′)μX(dx)μY (dy)

=

∫
ph(x, y)E[h(X ′, Y )|Y = y]π(x, y)μX(dx)μY (dy)

+

∫
(1− p)h(x, y)E[h(X,Y ′)|X = x]π(x, y)μX(dx)μY (dy)
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=

∫
ph(x, y)E[h(X ′, Y )|Y = y]πX|Y (x|y)πY (y)μX(dx)μY (dy)

+

∫
(1− p)h(x, y)E[h(X,Y ′)|X = x]πY |X(y|x)πX(x)μX(dx)μY (dy)

=

∫
pE[h(X,Y )|Y = y]E[h(X ′, Y )|Y = y]πY (y)μY (dy)

+

∫
(1− p)E[h(X,Y )|X = x]E[h(X,Y ′)|X = x]πX(x)μX(dx)

=

∫
p(E[h(X,Y )|Y = y])2πY (y)μY (dy)

+

∫
(1− p)(E[h(X,Y )|X = x])2πX(x)μX(dx)

= pE
[
(E [h(X,Y )|Y ])

2
]
+ (1− p)E

[
(E [h(X,Y )|X])

2
]
.

Now since h ∈ L2
0,1(�) ,

Var(E[h(X,Y )|Y ]) = E[(E [h(X,Y )|Y ])
2
]

and
Var(E[h(X,Y )|X]) = E[(E [h(X,Y )|X])

2
] .

Moreover,

1 = Var�[h(X,Y )] = Var(E[h(X,Y )|Y ]) + E(Var[h(X,Y )|Y ])

and
1 = Var�[h(X,Y )] = Var(E[h(X,Y )|X]) + E(Var[h(X,Y )|X]) .

The result follows easily.

Proposition 2. Suppose there exists a sequence {hi ∈ L2
0,1(�X)} such that if

(X,Y ) ∼ �, then

(8) lim inf
i→∞

E[V ar(hi(X)|Y )] = 0 .

Then ‖PX‖ = ‖PRGS‖ = 1. Hence ΦX , ΦRGS and ΦDGS are subgeometrically
ergodic.

Proof. The claim that ‖PX‖ = 1 follows easily from the first part of Lemma 2. Now
consider ‖PRGS‖. Note that if f ′(x, y) := f(x) ∈ L2

0,1(�X), then f ′ ∈ L2
0,1(�).

From the second part of Lemma 2 we have

‖PRGS‖ = 1− inf
f∈L2

0,1(�)
{pE(Var[f(X,Y )|Y ]) + (1− p)E(Var[f(X,Y )|X])} .

The claim now follows easily since if f(x, y) = hi(x), then

E(Var[f(X,Y )|X]) = E(Var[hi(X)|X]) = 0

and
E(Var[f(X,Y )|Y ]) = E(Var[hi(X)|Y ]) .

Thus we conclude that ΦX and ΦRGS are subgeometrically ergodic. Since ΦX and
ΦDGS are either both geometrically ergodic or both subgeometric, it follows that
ΦDGS also converges subgeometrically.
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5. A Discrete Example

We introduce a family of simple discrete distributions which admit usage of the
TGS algorithms. We then apply our general results which will allow us to very
nearly characterize the members of the family which admit geometrically ergodic
TGS Markov chains.

Let {ai}∞i=1 and {bi}∞i=1 be strictly positive sequences satisfying

∞∑
i=1

ai +

∞∑
i=1

bi = 1 .

Also, let b0 = 0. Let the family consist of the discrete bivariate distributions having
density π with respect to counting measure on N× N given by

π(x, y) =

⎧⎪⎨
⎪⎩
ax x = y, y = 1, 2, 3, . . . ;

by x = y + 1, y = 1, 2, 3, . . . ;

0 otherwise .

Hence the marginals are given by

πX(x) =
∞∑
y=1

π(x, y) =
∞∑
y=1

axI(x = y) + byI(y = x− 1) = ax + bx−1

and

πY (y) =

∞∑
x=1

π(x, y) =

∞∑
x=1

axI(x = y) + byI(y = x+ 1) = ay + by .

The full conditionals are easily seen to be

πX|Y (x|y) = ay
ay + by

I(x = y) +
by

ay + by
I(x = y + 1) y = 1, 2, 3, . . .

and

πY |X(y|x) = ax
ax + bx−1

I(x = y) +
bx−1

ax + bx−1
I(y = x− 1) x = 1, 2, 3, . . . .

Define

px =
axbx

(ax + bx−1)(ax + bx)
and qx =

ax−1bx−1

(ax + bx−1)(ax−1 + bx−1)
.

Then for the DGS we have kDGS(x
′, y′|x, y) = πX|Y (x′|y)πY |X(y′|x′) and hence for

the marginal chain ΦX

kX(x′|x) =
∞∑
y=1

πX|Y (x′|y)πY |X(y|x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1− p1 x′ = x = 1;

px x′ = x+ 1, x ≥ 1;

qx x′ = x− 1, x ≥ 2;

1− px − qx x′ = x, x ≥ 2; and

0 otherwise .
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It is easy to see that the kernel PX is Feller. If p ∈ (0, 1), then for the random scan
Gibbs sampler (RGS) we have

kRGS(x
′, y′|x, y) = pπX|Y (x′|y)δ(y′ − y) + (1− p)πY |X(y′|x)δ(x′ − x) .

Since for any open set O

PRGS((x, y), O)=p

∞∑
x′=1

πX|Y (x′|y)I((x′, y) ∈ O)+(1−p)

∞∑
y′=1

πY |X(y′|x)I((x, y′) ∈ O)

it is easy to see that PRGS(·, O) is lower semicontinuous and hence ΦRGS is Feller.
We are now in position to establish sufficient conditions for the geometric ergod-

icity of ΦX , ΦDGS and ΦRGS .

Lemma 3. If

(9) lim sup
x→∞

px
qx

< 1 and lim inf
x→∞ qx > 0,

then ΦX , ΦDGS and ΦRGS are geometrically ergodic.

Proof. We need only verify the conditions of Proposition 1 and we’ve already seen
that both PX and PRGS are Feller. Set V (x) = zx for some z > 1 which will be
determined later and note that

G(y) =

∞∑
x=1

V (x)πX|Y (x|y) =
(
ay + zby
ay + by

)
zy .

For any d > 0, the sublevel set Ad := {x : V (x) ≤ d} = {x : zx ≤ d} is bounded.
Since V is a continuous function, Ad is also closed, hence compact. Therefore V is
unbounded off compact sets on X. On the other hand, for any d > 0, the sublevel
set Bd := {y : G(y) ≤ d} ⊂ {y : zy ≤ d} is bounded. Then for any b > 0,
W (x, y) = V (x) + bG(y) is unbounded off compact sets on X × Y because for any
d > 0, {(x, y) : W (x, y) ≤ d} ⊂ Ad × Bd is bounded and closed, hence compact.
Now, all that remains is to construct a drift condition for V . Note that for x ≥ 2,

PXV (x) =

∞∑
x′=1

zx
′
kX(x′|x)

= pxz
x+1 + qxz

x−1 + (1− px − qx)z
x

=
[
zpx +

qx
z

+ 1− px − qx

]
zx

=

[
px(z − 1) + qx

(
1

z
− 1

)
+ 1

]
V (x) .(10)

We next try to bound the coefficient of V (x) in the right hand side of (10) for all
large values of x. Set

r := lim sup
x→∞

px
qx

and q := lim inf
x→∞ qx

and note that r < 1 and q > 0 by assumption. Then there exists x0 ≥ 2 such that

px
qx

<
r + 1

2
and qx >

q

2
for all x > x0 .
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For any z ∈ (1, 2/(r + 1)) and x > x0 ,

px(z − 1) + qx

(
1

z
− 1

)
+ 1 <

r + 1

2
qx(z − 1) +

qx(1− z)

z
+ 1

= qx(z − 1)

(
r + 1

2
− 1

z

)
+ 1

<
q

2
(z − 1)

(
r + 1

2
− 1

z

)
+ 1

since z ∈ (1, 2/(r + 1)) implies

r + 1

2
− 1

z
< 0 .

Next note that

0 < q < 1 , 0 < z − 1 <
1− r

1 + r
< 1 and − 1

2
<

r + 1

2
− 1

z
< 0,

which guarantees

0 <
q

2
(z − 1)

(
r + 1

2
− 1

z

)
+ 1 < 1 .

Thus there exists 0 < ρ < 1 such that

(11)
q

2
(z − 1)

(
r + 1

2
− 1

z

)
+ 1 ≤ ρ < 1 .

Finally, to bound PXV (x) for x ≤ x0, set

(12) L := max
x≤x0

PXV (x) .

Putting together equations (10) to (12), we have

PXV (x) ≤ ρV (x) + L

with 0 < ρ < 1 and L < ∞. The conclusion now follows from Proposition 1.

The above sufficient condition for geometric ergodicity involves transition proba-
bilities of the chain ΦX . Alternatively, we could state a sufficient condition in terms
of the probabilities {ai, bi} which define the density π.

Define

A := lim sup
i→∞

ai
ai−1

; m := lim inf
i→∞

ai
bi

; and M := lim sup
i→∞

ai
bi

.

Corollary 1. If

lim sup
i→∞

ai
bi−1

< ∞, lim sup
i→∞

bi
ai

< ∞

and A(1 +M)/(1 +m) < 1, then ΦX , ΦDGS, and ΦRGS are geometrically ergodic.
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Proof. We verify the conditions of Lemma 3. Note that

qi =
bi−1

ai + bi−1

ai−1

ai−1 + bi−1
=

1

1 + ai

bi−1

1

1 + bi−1

ai−1

.

Hence

lim inf
i→∞

qi ≥ 1

1 + lim supi→∞
ai

bi−1

1

1 + lim supi→∞
bi−1

ai−1

> 0 .

Next observe that

pi
qi

=
ai

ai−1

bi
bi−1

ai−1 + bi−1

ai + bi
=

ai
ai−1

1 + ai−1

bi−1

1 + ai

bi

.

Hence

lim sup
i→∞

pi
qi

≤
[
lim sup
i→∞

ai
ai−1

] [
1 + lim supi→∞

ai−1

bi−1

1 + lim infi→∞ ai

bi

]
= A

1 +M

1 +m
< 1 .

So far in this section, we have used Proposition 1 to get sufficient conditions for
the geometric ergodicity of the Markov chains. Next, we use Proposition 2 to study
the conditions under which the Markov chains are subgeometrically ergodic.

Lemma 4. The Markov chains ΦX , ΦDGS and ΦRGS are subgeometrically ergodic
if any one of the following conditions hold:

1.

lim sup
i→∞

∑∞
x=i(ax + bx)

ai−1
= ∞ ;

2.

lim sup
i→∞

∑∞
x=i(ax + bx)

bi−1
= ∞ ; or

3.

lim sup
i→∞

bi
ai

= ∞ .

Proof. Let (X,Y ) ∼ �. For i = 1, 2, 3, . . . let Hi(x) = I(x ≥ i). Then

μi := E[Hi(X)] = E[H2
i (X)] =

∞∑
x=i

(ax + bx−1) < ∞

and
vi := Var[Hi(X)] = μi(1− μi) < ∞ .

Define hi(x) = [Hi(x)− μi]/
√
vi and note that hi ∈ L2

0,1(�X). We will show that

lim inf
i→∞

E[V ar(hi(X)|Y )] = 0 ,

and appeal to Proposition 2 for the conclusion. Let

βy =
by

ay + by
= πX|Y (y + 1|y) .



38 A. Tan, G. L. Jones and J. P. Hobert

Then

E[Hi(X)|Y = y] = E[H2
i (X)|Y = y]

= πX|Y (y|y)Hi(y) + πX|Y (y + 1|y)Hi(y + 1)

=

⎧⎪⎨
⎪⎩
0 y ≤ i− 2,

βi−1 y = i− 1,

1 y ≥ i .

Hence

V ar[Hi(X)|Y = y] =

{
βi−1(1− βi−1) y = i− 1,

0 otherwise .

Therefore,

E(V ar[Hi(X)|Y = y]) =

∞∑
y=1

πY (y)V ar[Hi(X)|Y = y]

= πY (i− 1)V ar[Hi(X)|Y = i− 1]

= (ai−1 + bi−1)βi−1(1− βi−1)

=
ai−1bi−1

ai−1 + bi−1
.

Finally,

E[V ar(hi(X)|Y )] = v−1
i E[V ar(Hi(X)|Y )] = [μi(1− μi)]

−1 ai−1bi−1

ai−1 + bi−1
.

Note that

(E[V ar(hi(X)|Y )])−1 = μi(1− μi)
ai−1 + bi−1

ai−1bi−1

= (1− μi)

[ ∞∑
x=i

(ax + bx) + bi−1

](
1

ai−1
+

1

bi−1

)

= (1− μi)

[∑∞
x=i(ax + bx)

ai−1
+

∑∞
x=i(ax + bx)

bi−1
+

bi−1

ai−1
+ 1

]

and that

lim
i→∞

(1− μi) = lim
i→∞

i−1∑
x=1

(ax + bx−1) = 1 .

Hence equation (8) holds if and only if

lim sup
i→∞

∑∞
x=i(ax + bx)

ai−1
= ∞,

or lim sup
i→∞

∑∞
x=i(ax + bx)

bi−1
= ∞,

or lim sup
i→∞

bi
ai

= ∞ .
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Finally, we can use the previous results to characterize the conditions for ge-
ometric ergodicity of TGS Markov chains for a large subfamily of our discrete
distributions.

Corollary 2. Assume that both

A := lim
i→∞

ai
ai−1

and lim
i→∞

ai
bi

exist. Then all the limits below are well defined and the following statements are
equivalent:

(a)

lim
i→∞

ai
bi−1

< ∞, lim
i→∞

bi
ai

< ∞, and A < 1 .

(b)

r = lim
i→∞

pi
qi

< 1 and q = lim
i→∞

qi > 0 .

(c) ΦX is geometrically ergodic.
(d) ΦDGS is geometrically ergodic.
(e) ΦRGS is geometrically ergodic.

Proof. As we noted in Section 2.1, the equivalence of (c) and (d) is well known.
(a) ⇒ (b): Note that

q = lim
i→∞

qi =
1

1 + limi→∞ ai

bi−1

1

1 + limi→∞
bi−1

ai−1

> 0

and

r = lim
i→∞

pi
qi

=

[
lim
i→∞

ai
ai−1

] [
1 + limi→∞

ai−1

bi−1

1 + limi→∞ ai

bi

]
= A < 1 .

(b) ⇒ (c) and (b) ⇒ (e): The same argument holds for ΦX and ΦRGS . Immediate
by Lemma 3.

(c) ⇒ (a) and (e) ⇒ (a): The same argument holds for ΦX and ΦRGS . If the chain
is geometrically ergodic, then

lim
i→∞

ai
bi−1

< ∞ and lim
i→∞

bi
ai

< ∞

by conditions 2 and 3 of Lemma 4. Next, if A = 1, then for any fixed positive
integer K, we have

lim
i→∞

ai+1

ai
= 1, lim

i→∞
ai+2

ai
= 1, . . . , lim

i→∞
ai+K

ai
= 1 .

Then there exists i0 such that for any i ≥ i0,

ai+1

ai
>

1

2
,
ai+2

ai
>

1

2
, . . . ,

ai+K

ai
>

1

2
.

Hence, given any K, there exists i0 such that for any i > i0,∑∞
x=i(ax + bx)

ai−1
≥

∑i+K−1
x=i ax
ai−1

>
K

2
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which implies

lim sup
i→∞

∑∞
x=i(ax + bx)

ai−1
= ∞ .

Thus by condition 1 of Lemma 4, the chains are subgeometrically ergodic–a con-
tradiction of (c). So A �= 1. But A cannot be greater than 1 either since otherwise∑∞

x=1 ax = ∞ which contradicts the fact that
∑∞

x=1 ax +
∑∞

x=1 bx = 1. Therefore,
A < 1.

To better understand the conditions for geometric ergodicity provided in Corol-
lary 2, we hereby explain its condition (a) explicitly. First, the requirement that

A = lim
i→∞

ai
ai−1

< 1

implies that for any 0 < A1 < A < A2 < 1, there exists i0 such that for any i > i0,
ai/ai−1 ∈ (A1, A2), hence ai ∈ (ai0A

i−i0
1 , ai0A

i−i0
2 ). In other words, the sequence

{ai} decays at a geometric rate as i increases. Secondly, the requirements

lim
i→∞

ai
bi−1

< ∞ and lim
i→∞

bi
ai

< ∞

imply that there exist 0 < B1, B2 < ∞ such that, for any i > i0, ai+1/bi < B1 and
bi/ai < B2, hence bi ∈ (ai+1B1, aiB2) ⊂ (aiA1B1, aiB2). That is, bi = O(ai) as
i → ∞. In summary, Condition (a) requires that the sequences {ai} and {bi} both
decay geometrically at the same rate as i increases.

We close this section by considering four concrete examples.

Example 1. Let ax = c1x
−d and bx = c2x

−d where d > 1 and (c1+ c2)
∑∞

x=1 x
−d =

1. Then both
lim
i→∞

ai
ai−1

and lim
i→∞

ai
bi

exist, with A = 1. Therefore, ΦX , ΦDGS and ΦRGS are subgeometrically ergodic
by Corollary 2.

Example 2. Let c satisfy (1 + c)e−1/(1 − e−1) = 1. Set ax = ce−x and bx = e−x.
Then both

lim
i→∞

ai
ai−1

and lim
i→∞

ai
bi

exist, with A = e−1 < 1. Furthermore,

lim sup
i→∞

ai
bi−1

= lim
i→∞

ce−1 < ∞ and lim sup
i→∞

bi
ai

= c−1 < ∞ .

Therefore, ΦX , ΦDGS and ΦRGS are all geometrically ergodic by Corollary 2.

Example 3. Let c satisfy ce−1/(1 − e−1) + e−2/(1 − e−2) = 1. Set ax = ce−x and
bx = e−2x. Then both

lim
i→∞

ai
ai−1

and lim
i→∞

ai
bi

exist. Also,

lim sup
i→∞

ai
bi−1

= lim
i→∞

cei−2 = ∞ .

Therefore, ΦX , ΦDGS and ΦRGS are subgeometrically ergodic by Corollary 2.
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Example 4. Let c satisfy ce−1/(1− e−1) + e−2(1− e−2) = 1. Set

ax =

{
ce−x x even

e−2x x odd
and bx =

{
e−2x x even

ce−x x odd
.

Then limi→∞ ai/bi does not exist. Hence Corollary 2 is not applicable. Instead we
have to use Lemma 4. Notice that

lim sup
i→∞

bi
ai

≥ lim
i→∞

b2i+1

a2i+1
= lim

i→∞
ce−(2i+1)

e−2(2i+1)
= lim

i→∞
ce2i+1 = ∞

and hence ΦX , ΦDGS and ΦRGS are subgeometrically ergodic.
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