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Abstract: Proportional hazards regression model assumes that the covariates
affect the hazard function through a link function and an index which is a linear
function of the covariates. Traditional approaches, such as the Cox proportional
hazards model, focus on estimating the unknown index by assuming a known
link function between the log-hazard function and covariates. A linear link
function is often employed for convenience without any validation. This paper
provides an approach to estimate the link function, which can then be used
to guide the choice of a proper parametric link function. This is accomplished
through a two-step algorithm to estimate the link function and the effects of
the covariates iteratively without involving the baseline hazard estimate. The
link function is estimated by a smoothing method based on a local version
of partial likelihood, and the index function is then estimated using a full
version of partial likelihood. Asymptotic properties of the non-parametric link
function estimate are derived, which facilitates model checking of the adequacy
of the Cox Proportional hazards model. The approach is illustrated through a
survival data and simulations.
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1. Introduction

Proportional hazards regression model has played a pivotal role in survival analysis
since Cox proposed it in 1972. Let T represent survival time and Z its associate
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covariate vector. Under the proportional hazards model, the hazard function for T ,
given a particular value z for the covariate Z, is defined as

(1) λ{t | z} = λ0(t) exp
{
ψ(β0

T z)
}
,

where λ0(t) is an unknown baseline hazard function corresponding to z = (0, . . . , 0),
and ψ(·) is called the link function with ψ(0) = 0. With fully specified link function
ψ, the partial likelihood method was introduced in [4, 5] to estimate the regression
parameters, β0, with the option to accommodate censored data. The most common
choice for ψ is the identity function, which corresponds to the time-honored Cox
model. In reality the link function is unknown and needs to be estimated. This is
especially useful to validate a preferred choice, as an erroneous link function could
dramatically distort risk assessment or interpretation of odds ratios. When the link
function is known, such as in the Cox model, model (1) is a special case of the
transformation model first proposed in [7] and subsequently studied in [6], [3] etc.
Our goal in this paper is to consider model (1) with an unknown link function.
This problem was first studied in an unpublished Ph.D. thesis [19]. However, the
procedure there was less efficient and we propose an improved estimate, studying
its asymptotic properties.

Previous work focuses on the special case when the covariate is one-dimensional,
or equivalently when β is known in (1). Under this special one-dimensional case, a
local partial likelihood technique in [18] and a variation of the local scoring algo-
rithm of [12] can be used to estimate the unknown link function in (1). Gentleman
and Crowley [10] proposed a local version of the full likelihood instead of partial
likelihood by alternating between estimating the baseline hazard function and es-
timating the covariate effects. The local likelihood methods in these papers were
based on data whose covariate values fall in a neighborhood of the targeted location.
Fan, Gijbels and King [8] used instead a local polynomial method to approximate
the local partial likelihood, and derived rigorous asymptotic results for their ap-
proach. Simulation studies there showed that the local partial likelihood method is
comparable to the local full likelihood method in [10]. Two spline approaches have
also been considered, with smoothing splines resulting from a penalized partial
likelihood in [16] and regression splines from [17].

While the aforementioned approaches can be easily extended to q-dimensional
covariates by estimating a multivariate unknown link function ψ(z1, . . . , zq), such
nonparametric approaches are subject to the curse of dimensionality and may not be
suitable for q ≥ 3. Moreover, the resulting model would be different from model (1),
which has the attractive dimension reduction feature that the covariate information
is succinctly summarized in a single index and is a nonparametric extension of the
Cox proportional hazards model. Model (1) could also be used as an exploratory
tool to guide the choice of a suitable parametric link function.

A two-step iterative algorithm to estimate the link function and the covariate
effects is proposed in Section 2. In the first step, an initial estimate of the regression
parameter β is plugged in model (1) so that the link function can be estimated by a
smoothing method based on a local version of partial likelihood ([4, 5]). The second
step involves updating the regression parameters using the full partial likelihood
with the estimated link function in step 1 inserted. These two steps will be iterated
until the algorithm converges. Asymptotic results for the link estimators are stated
in Section 2. In particular, Theorem 2 provides the building blocks to check the
link function and inference for the individual risk, ψ(βT z). It also reveals that the
nonparametric estimate of the link function is as efficient as the one for model
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(1) but with a known regression parameter β. Thus, there is no efficiency loss to
estimate the link function even if β is unknown in our setting. This is also reflected in
the simulation studies in Section 3. The approach in Section 2 is further illustrated
in Section 4 through a data set from the Worcester Heart Attach Study. All the
proofs of the main results are relegated to an appendix.

We remark here that [15] also studied model (1) with a different approach. They
assumed that the link function is in a finite dimensional subspace spanned by poly-
nomial spline bases functions and the dimension of this subspace is known. This
leads to a flexible parametric model where the spline coefficients corresponding to
the link functions and β can then be estimated directly through traditional par-
tial likelihood approaches. While this has the benefit of simplicity as everything
is in the parametric framework, it tends to underestimate the standard errors of
the estimates. Two sources of bias arise, one derives from the fact that in reality
the number of spline bases depends on the data and is a function of the sample
size, so the standard errors are underestimated by the simple parametric inference.
In addition, the link estimation might be biased, as in theory an infinite number
of spine bases might be required to span the unknown link function. These biases
could significantly affect the asymptotic results. In contrast, our approach provides
correct asymptotic theory and efficient estimation of the link function.

2. Estimation Procedure and Main Results

Since there are three different unknown parameters, λ0(·), ψ(·) and β in model
(1), we need to impose some conditions to ensure identifiability. To identify λ0, it
suffices to set ψ(v) = 0 at some point v, a common choice is v = 0. Since only
the direction of β is identifiable if ψ is unknown, we assume that ‖β‖=1 (here ‖ · ‖
represents the Euclidean norm) and that the sign of the first component of β is
positive. As for the sampling plan, we assume an independent censoring scheme,
in which the survival time T and censoring time C are conditionally independent,
given the covariate vector Z. Let X = min(T, C) be the observed event-time and
Δ = I{T ≤ C} be the censoring indicator. The data {Xi, Zi, δi} is an i.i.d. sample
of {X, Z, Δ}. We use the notation ti < · · · < tN to denote the N distinctive ordered
failure times, and (j) to denote the label of the item failing at time tj . The risk set
at time tj is denoted by Rj = {i : Xi ≥ tj }.

For a fixed parametric value β, one can estimate the link function ψ(·) by any
smoothing method, such as those cited in Section 1 when β is assumed known. We
adopt the local partial likelihood approach in [8] and assume, for a given point v,
that the p-th order derivative of ψ(v) at point v exists. A Taylor expansion for βT Z
in a neighborhood of v then yields,

(2)
ψ(βT Z) ≈ ψ(v) + ψ

′
(v)(βT Z − v) + · · · +

ψ(p)(v)
p!

(βT Z − v)p

= ψ(v) + (βT Z)T γ(v),

where γ(v) = {ψ′(v), . . . , ψ(p)(v)/p!}T is the p−dimensional vector associated with
the derivatives of ψ and βT Z = {βT Z − v, . . . , (βT Z − v)p}T .

Let K be a kernel function, h be a bandwidth, and define Kh(u) = h−1K(u/h).
Applying kernel weights to the logarithm of the global partial likelihood

N∑
j=1

ψ(βT Z(j)) − log

{ ∑
i∈Rj

exp
{

ψ(βT Z(j))
}}
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and replacing ψ(βT z) by the local approximation in (2), we arrive at (similarly to
[8]) the local version of the log partial likelihood:

(3)

N∑
j=1

Kh

(
βT Z(j) − v

)[(
βT Z(j)

)T
γ(v)

− log
{ ∑

i∈Rj

exp
{(

βT Zi

)T
γ(v)

}
Kh{βT Zi − v}

}]
,

where βT Zi and βT Z(j) are defined as βT Z with Z replaced by Zi and Z(j) respec-
tively. It can be shown that the local log partial likelihood in (3) is strictly concave
with respect to γ(·), so for a fixed β, it has a unique maximizer with respect to
γ. Let γ̂(v) be the local partial likelihood estimate with γ̂k(v) denoting its k-th
component, then ψ(k)(v) can be estimated by ψ̂(k)(v) = k! γ̂k(v), for k = 1, . . . , p.
In principle, one could maximize (3) with respect to both β and γ, and this corre-
sponds to maximizing the real local log likelihood. But we choose to maximize (3)
only with respect to γ for a fixed estimated value of β, and this corresponds to max-
imizing a pseudo local log likelihood as the true β in (3) is replaced by an estimate.
There are two reasons for our choice. First (3) is concave in γ, but not necessarily
in β. Second, maximizing with respect to both parameters is probably not worth
the additional computational cost, as the local likelihood procedures mainly serve
as a smoother and the choice of the smoother is usually not crucial.

To estimate the link function, we use

ψ̂(v) =
∫ v

0

ψ̂′(w)dw,

where ψ̂′(v) is the first component of γ̂(v) at the last iteration step. There are
several ways to approximate this integral, such as the trapezoidal rule or Gaussian
quadrature. For computational simplicity, we apply the trapezoidal rule in the sim-
ulation studies, as suggested in [18], and this appears to be satisfactory.

2.1. Algorithm and Computational Issues

The procedure described in the previous subsection requires a certain choice of β
in equation (2). This can be done either independently or iteratively as once an
estimate of ψ is obtained, one can then estimate β through the global partial likeli-
hood. An iterative algorithm, as shown below, can be established by alternatingly
updating the estimates for β and ψ. Such an iteration procedure may improve the
link estimate as a better estimate of β will lead to a better estimate of ψ.

Step 1. (a) Assign a nonzero initial value to β, and call it β̂.
(b) For a given v, plug β̂ into the pseudo log local partial likelihood and maximize

N∑
j=1

Kh

{
β̂T Z(j) − v

}
·
[
[β̂T Z(j)]T γ(v)

− log
{ ∑

i∈Rj

exp{[β̂T Zi]T γ(v)}Kh

{
β̂T Zi − v

}}]

with respect to γ(v) to get the estimate γ̂(v).
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(c) Obtain the values of γ̂(v), for v = β̂T Zi, i = 1, . . . , n.
(d) Apply the trapezoidal rule to obtain {ψ̂(β̂T Zi) : i = 1, . . . , n}.

Step 2. Plug ψ̂(·) into the log (global) partial likelihood

lG(β, ψ̂) =
N∑

j=1

[
ψ̂(βT Z(j)) − log

{ ∑
i∈Rj

exp
{
ψ̂(βT Zi)

}}]
,

and maximize it with respect to β to update the estimate β̂. We use the angle
between two estimated β̂ at two consecutive iterations as the convergence criterion.

Remark 1. The Newton-Raphson method is used to find the estimators in Step
1 and 2. The initial value of β can be set in different ways but cannot be zero
as a nonzero value is needed in step 1 to estimate the link function. However,
this restriction does not exclude the final β-estimate to be zero or close to zero.
A simple choice is to fit the usual Cox model and use this estimator in the first step.
To accelerate the computation, one can also use alternative estimates as described
below.

Remark 2. It is possible to accelerate the computation by using a
√

n-consistent
initial estimator, as Theorems 1 and 2 below imply that no iteration is required for
the link estimate and that it will converge efficiently at the usual nonparametric
rate. Namely, the link function can be estimated with the same efficiency as when
β is known. In practice, we find that one iteration helps to improve the numerical
performance but further iteration is usually not necessary. There are two choices
for a

√
n-consistent initial estimator, one is the estimator in [2] that extends the

sliced inverse regression (SIR) approach to censored data. Specifically, this approach
requires a certain design condition as listed in (2.3) there but has the advantage
that it leads to a

√
n-consistent estimator for β without the need to estimate the

link function. Another initial estimate which does not rely on the design conditions
(2.3) in [2] is provided in a Ph. D. thesis [19]. Specifically, this involves replacing the
ψ function in step 2 above by its local version (2), which leads to the cancelation of
the term ψ and results in a version of log (global) partial likelihood that involves
only the derivative γ(v) of ψ but not ψ itself. Thus, Step 2 above is replaced by

Step 2∗. Maximize the following approximate log (global) partial likelihood with
respect to β:

N∑
j=1

[
[βT Z(j)]T γ̂{β̂T Z(j)} − log

{ ∑
i∈Rj

exp
(
[βT Zi]T γ̂{β̂T Zi}

)}]
.

This approximation may result in some efficiency loss, but has computational
advantages over the estimate in Step 2, since we do not need to estimate ψ(v)
and thus can skip Step 1(d). The resulting estimate for β was shown in [19] to be√

n-consistent, consequently an ideal choice as the initial estimate for β.

Remark 3. In step 1, the local log partial likelihood in (3) is replaced by a pseudo
log partial likelihood with β replaced by β̂. As this β̂ approaches β, the link estimate
resulting from maximizing the pseudo log partial likelihood can be expected to
approach the true link function at the usual nonparametric rate. This is because
the parametric estimate β̂ converge to its target at the

√
n–rate, which is faster

than the nonparametric link estimate. A rigorous proof is provided in Theorem 1
and Theorem 2.
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Remark 4. For large sample sizes, it is unnecessary to estimate the link function
at each data point. An alternative way is to estimate the link function at equal-
distance grid points, then use interpolation or smoothing methods to obtain the
estimated value at each data point. Our simulation results show that this short-cut
is computationally economical while retaining similar accuracy.

2.2. Main Results

Let f(·) be the probability density of βT Z, for a given v, let P (t | v) = P (X ≥ t |
βT Z = v), Y (t) = I{X ≥ t}, H = diag{h, . . . , hp}T and u = {u, . . . , up}T .

Theorem 1. Under conditions (C1)-(C5) in the Appendix, for any
√

n consistent
estimator β̂ of the true parameter β0, let γ̂(·) be the corresponding estimator for
the derivatives γ0(·) of the true link ψ and ψ̂(v) =

∫ v

0
ψ̂′(w)dw, where ψ̂′(·) is the

first component of γ̂(·). If h → 0, nh/ log n → ∞, nh4 → ∞ then

sup
v

|γ̂(v) − γ0(v)| →p 0,

and
sup

z
|ψ̂(β̂T z) − ψ(β0

T z)| →p 0

Theorem 2. Under the conditions in Theorem 1 and for bounded nh2p+3,

(a)
√

nh

{
H(γ̂(v) − γ0(v)) − ψ(p+1)(v)

(p + 1)!
A−1bhp+1

}

→D N

{
0,

σ2(v)
f(v)

A−1DA−1

}
.

Furthermore, we have

(b)
√

nh

{
H(γ̂(β̂T z) − γ0(β0

T z)) − ψ(p+1)(β0
T z)

(p + 1)!
A−1bhp+1

}

→D N

{
0,

σ2(β0
T z)

f(β0
T z)

A−1DA−1

}
,

where A =
∫

uuT K(u)du − ν1ν
T
1 , b =

∫
up+1(u − ν1)K(u)du, D =

∫
K2(u)(u −

ν1)⊗2du, ν1 =
∫

uK(u)du, and σ2(v) = E{δ|βT Z = v}−1.

Theorem 1 establishes the uniform consistency of the local partial likelihood
estimator of γ0 and Theorem 2 provides the joint asymptotic normality of the
derivative estimators. The limiting distribution of γ̂ is identical to the one in [8],
where β is assumed to be known. Thus, there is no efficiency loss as long as β can
be estimated at the usual

√
n-rate.

2.3. Model Checking and Selection

While an estimated link function is of interest to correctly reflect the risk associated
with a covariate, a parametric link function is often preferable to a nonparametric
one to lend a parsimonious model with more interpretable results. Thus, a main
incentive to estimate the link function could be for exploratory model selection to
facilitate the choice of a proper parametric link function in the proportional hazards
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model (1). If so, the β estimate in Step 2 only aids in the link estimation and need
not be the end product. Once a suitable link function has been selected, Theorem 2
can be used for model checking. For instance, to check the identity link function
under the Cox model, one can test H0: ψ′(v) = 1. Since the first component of γ(v)
is ψ′(v), a local polynomial of order p = 2 is usually employed to estimate such a
derivative, and the resulting asymptotic distribution of the corresponding estimate
is given below.

Corollary 1. Under the condition of Theorem 2, and with p = 2 there, we have

√
nh3

(
ψ̂′(v) − ψ′(v) − 1

6
ψ(3)(v)h2

∫
u4K(u)du∫
u2K(u)du

)
→D N

(
0,

σ2(v)
∫

u2K2(u)du

f(v)
∫

u2K(u)du

)
.

Corollary 1 facilitates the construction of testing procedures and asymptotic
simultaneous confidence bands for the link function, but rigorous asymptotic theory
requires much further work and is not available yet. In principle, one could check
the appropriateness of the link function at all data points v that falls in the range
of βT Z. Since the true value of β is unknown, it is natural to replace it with an
estimate. However, one must bear in mind the precision of this estimate as well
as the low precision of ψ′(v) for v in the boundary region of β̂T Z. Here boundary
region is defined as within one bandwidth of the data range, where a smoothing
procedure is employed. Since the bandwidth h is usually of a higher order than
n− 1

2 , the anticipated rate of convergence for β̂, we recommend to restrict inference
on ψ′(v) for v that is in the interior and at least one bandwidth h away from either
boundary of the range of β̂T Z.

Short of such a rigorous inference procedure for model checking, pointwise con-
fidence intervals have often been used as a substitute for exploratory purposes. In
the example in Section 4, we illustrate how to check the appropriateness of the Cox
model, i.e. identity link function, using pointwise confidence intervals developed
from Corollary 1. Readers should bear in mind that this is only an exploratory
data analysis tool rather than a formal inference procedure.

3. Simulation Studies

To see how the algorithm in Section 2 works for the proposed model, we conducted
simulation studies where a quadratic link function ψ(βT Z) = (βT Z)2 with β =
(1, 3)T and a constant baseline, λ0 = 0.005, were employed. The design for the
two-dimensional covariate, Z = (Z1, Z2)T is: Z1 ∼ U(−1, 1) and Z2 is a truncated
N(0, 1) with values in [−1, 1]. Parameters of β were chosen in such a way that the
simulation generates a reasonable signal to noise ratio (cf. Figure 1). If we take ε to
have the standard exponential distribution, exp(1), the resulting hazard function
will be λ0 exp{ψ(βT Z)}, and survival times from this model can be generated as
T = exp{ψ(−βT Z)}ε/λ0. Different uniform distributions were utilized to generate
three independent censoring times so that the censoring rates were 0%, and roughly
25% and 50%. The Epanechnikov kernel was adopted in the link estimation. Two
sample sizes, 200 and 50, were selected to see whether the methods are flexible for
moderate to small samples. For n = 200 we used 25 equal-distance grid points to
estimate the link function to save computational time as elucidated in Remark 4
of Section 2. Piece-wise spline interpolation was then used to get the link estimate
during each iteration of the algorithm.

Due to the complication from the identifiability problem, the link function can
only be identified up to a constant. Thus, ψ̂(v) and ψ̂(v) + c, for any constant
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Table 1

Comparison of different methods for estimating ψ(βT Z) = (βT Z)2, where β = (1, 3)T and
Z = (Z1, Z2)T with Z1 ∼ U(−1, 1) and Z2 ∼ N(0, 1) (truncated at [-1,1]), n=200. The numbers

before and after “/” are the means and standard deviations of d based on 100 simulations

h∗ Optimal
MSE

Censoring † 0.1 0.2 0.3 0.4

No 1 3.152/0.181 3.152/0.181 3.152/0.181 3.152/0.181 9.970
4 0.191/0.114 0.191/0.114 0.191/0.114 0.191/0.114 0.049

2 1.234/2.554 0.439/0.142 0.843/0.150 1.417/0.151 0.213

3 1.210/3.522 0.490/0.144 0.907/0.168 1.476/0.168 0.261

25% 1 3.151/0.181 3.151/0.181 3.151/0.181 3.151/0.181 9.961
4 0.201/0.112 0.201/0.112 0.201/0.112 0.201/0.112 0.053

2 1.256/2.548 0.425/0.157 0.684/0.172 1.197/0.178 0.206

3 0.981/1.991 0.468/0.156 0.746/0.185 1.256/0.194 0.244

50% 1 3.149/0.181 3.149/0.181 3.149/0.181 3.149/0.181 9.947
4 0.210/0.117 0.210/0.117 0.210/0.117 0.210/0.117 0.056

2 1.361/2.529 0.525/0.215 0.535/0.161 0.729/0.210 0.322

3 1.236/2.138 0.536/0.201 0.571/0.169 0.808/0.226 0.327

† Method 1 is under identity link and unknown β. Method 2 is under unknown link and true β.
Method 3 is under unknown link and unknown β. Method 4 is under quadratic link and unknown β.

c, are considered to be equivalent procedures, and any measures of performance
would declare these two procedures identical. This points to selecting a measure
which measures the variation instead of the real difference. We adopt a measure
proposed in [10] which is the standard deviation of the differences between the fitted
values ψ̂(β̂T Z) and the true values ψ(βT Z) at all data points. More specifically,
this measure, denoted by d, is the standard deviation of the difference {ψ̂(β̂T Z) −
ψ(βT Z) : i = 1, . . . , n}. We report in Table 1 the average values for this measure
and its standard deviation based on 100 simulation runs.

Since at each estimating step, β̂ was updated and the range of β̂T Z might be
different, we used a bandwidth h∗, which took a certain portion of the range of
β̂T Z. For instance, an h∗ = 0.3 means that the actual bandwidth is 0.3 times the
range of the values of β̂T Z. Various bandwidths were explored, but we report only
the results for bandwidth h∗ varying from 0.1 to 0.4 (with 0.1 increment) times
the data range of βT Z at each iteration stage. Results for other bandwidths were
inferior and are not reported here.

Four procedures were compared and the results for n = 200 are shown in Ta-
ble 1. Method 1 assumes that the link is identity (which is incorrect here) and the
regression coefficient estimate β̂ is therefore the Cox estimate based on the par-
tial likelihood estimate. The aim is to see the effect of erroneously assuming the
conventional Cox proportional hazards model. Method 2 assumes that β is known
and estimates the unknown link function as in [8]. Method 3 is the new procedure
where both the link function and regression coefficient β are estimated. Method 4
assumes that the true quadratic link function is known and the regression coefficient
estimate, β̂, is the partial likelihood estimate. The comparisons for the distance d
are reported in Table 1. The results of the best procedures together with the corre-
sponding optimal bandwidths are highlighted with boxes. It is not surprising that
the best results came from the procedures with true quadratic link function and
unknown β. Our estimators are close to those from method 2 ([8]) with known β,
while the estimators based on the identity link model have much larger d.
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Table 2

Differences between the estimated β̂2 and the true β2 where β̂1 is set equal to the true β1,
ψ(βT Z) = (βT Z)2, where β = (1, 3)T and Z = (Z1, Z2)T with Z1 ∼ U(−1, 1) and Z2 ∼ N(0, 1)

(truncated at [-1,1]), n=200. The numbers before and after “/” are the biases and standard

deviations of the β̂2 based on 100 simulations

h∗ Optimal

MSE‡
Optimal

MSE§
Censoring † 0.1 0.2 0.3 0.4

No 1 5.344/50.847 5.344/50.847 5.344/50.847 5.344/50.847 2613.949 11742.108
4 −0.015/0.142 −0.015/0.142 −0.015/0.142 −0.015/0.142 0.021 0.703

3 0.023/0.276 −0.051/0.154 −0.096/0.158 −0.215/0.190 0.026 0.968

25% 1 −1.229/24.742 −1.229/24.742 −1.229/24.742 −1.229/24.742 613.684 11320.063
4 −0.013/0.154 −0.013/0.154 −0.013/0.154 −0.013/0.154 0.024 0.801

3 0.038/0.307 −0.055/0.170 −0.089/0.171 −0.162/0.195 0.032 1.144

50% 1 −1.472/6.486 −1.472/6.486 −1.472/6.486 −1.472/6.486 44.237 11266.339
4 −0.006/0.170 −0.006/0.170 −0.006/0.170 −0.006/0.170 0.029 0.968

3 0.055/0.371 −0.050/0.188 −0.075/0.181 −0.110/0.190 0.038 1.362

† Method 1 is under identity link and unknown β. Method 3 is under unknown link and unknown β.
Method 4 is under true link and unknown β.

‡ is the optimal MSE for β̂2 when β̂1 is set to be 1.
§ is the optimal MSE for the angles between β̂ and the true β.

To demonstrate the effect of an erroneous link function on regression estimates,
we report in Table 2 the results of the various estimates for β. Since there is
no regression parameter estimate for method 2, only three procedures are com-
pared in Table 2. There are several ways to compare the regression estimates,
one way is to set the first component of β to the true value, then compare the
difference between β̂ and β based on the second component. Table 2 shows the
results of the difference between the true β2 and the estimate β̂2 for various pro-
cedures. The best procedures for the profile estimator in method 3 are shown in
boxes under the optimal bandwidths. Another way to compare the different esti-
mators is to calculate the angles between these estimators and the true parameter.
To save space only the MSEs based on the optimal bandwidths are listed in the
last column of Table 2 for the angle measure (degrees). Based on both optimal
MSE measures reported in the last two columns of Table 2, the differences be-
tween the new profile estimators and the true parameters are way smaller than
those from the identity link model, and reasonably close to those under the true
link.

We can see that using the wrong link will lead to huge bias and MSE under
all censoring patterns. The average angles between the β estimates assuming iden-
tity link and the true parameters are around 90◦, which suggests that the β esti-
mates with identity link are perpendicular to the true parameter space, indicating
a total inability to estimate the regression parameter. This is in addition to the
problem that the link function itself has been misspecified. Both underscore the
importance to check the shape of the link function at the beginning of data analy-
sis.

Four typical simulated curves are shown in Figure 1. The procedure (method
4) with known quadratic link function and unknown β performed the best. The
procedure (method 2) with known β and our procedure captured the shape of the
true curve well, but the procedure (method 1) based on the Cox model failed to
capture the shape of the link function. Results for n = 50 summarized in Table 3
are consistent with the findings for n = 200 in Table 1.
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Fig 1. Four typical simulated sets of data and estimated curves from the model ψ(βT Z) = (βT Z)2

with β = (1, 3)T , Z = (Z1, Z2)T where Z1 ∼ U(−1, 1) and Z2 ∼ N(0, 1) (truncated at [-1,1]),
25% censoring and h∗ = 0.2. The simulated data is indicated as black dots. The true curve ψ(·)
is indicated as a red solid line, and the estimated curves ψ̂(·) as a magenta dash line with identity
link and unknown β, as a black dash-dotted line with quadratic link and unknown β, as a green
dotted line with unknown link and true β, and as a blue dash-dotted line with both unknown link
and unknown β.

4. Data Analysis

In this section, we illustrate the proposed model and estimation algorithm in Sec-
tion 2 through the Worcester Heart Attack Study (WHAS) data. One of the goals
of this study is to identify factors associated with the survival rates following hos-
pital admission for acute myocardial infarction. The main data set has more than

Table 3

Comparison of different methods for estimating ψ(βT Z) = (βT Z)2, where β = (1, 3)T and
Z = (Z1, Z2)T with Z1 ∼ U(−1, 1) and Z2 ∼ N(0, 1) (truncated at [-1,1]), n=50. The reported

quantities are the smallest MSEs under optimal bandwidths

No Censoring 25% Censoring 50% Censoring

Method d Optimal h∗ d Optimal h∗ d Optimal h∗

Identity link and unknown β 9.199 – 9.168 – 9.102 –
Quadratic link and unknown β 0.184 – 0.203 – 0.295 –
Unknown link and true β 0.808 0.3 0.833 0.3 1.359 0.4
Unknown link and unknown β 0.945 0.4 1.286 0.4 1.423 0.4
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Fig 2. The estimated link function, under two bandwidths, for the WHAS data with BMI as a
covariate.

11000 admissions, but we used only a random sample of 500 patients as listed
in [14]. This data set is chosen because the proportionality assumption has been
carefully examined and is reasonably satisfied. Our goal here is to check the ad-
equacy of the identity link function in the Cox proportional hazards regression
model.

There were more than 10 covariates in the data set. After detailed model selec-
tion procedure, Hosmer et al. [14] included 6 variables age (AGE), initial heart rate
(HR), initial diastolic blood pressure (DIASBP), body mass index (BMI), gender
(GENDER), congestive heart complications (CHF), and the interaction between
age and gender (AGEGENDER) in their model. After examining the linearity as-
sumption using fractional polynomials, they decided to apply a two-term fractional
polynomial model to the variable BMI. We thus begin with the univariate covariate
BMI.

We tried different bandwidths and found similar patterns of the estimated link
functions. In Figure 2 we report two of the results, which exhibit reasonable level
of smoothness. The estimated link function in Figure 2 suggests clear nonlinearity.
We then constructed a 95% point-wise approximated confidence interval of γ(v)
(Figure 3) to see whether it would cover the constant function 1. The results suggest
that the estimated link functions have some curvature and further investigation is
needed.

Next we applied the proposed procedure to the multivariate model with all 7
covariates. We tried different bandwidths ranging from 1/10, 1/8, 1/7, 1/6, 1/5,
1/4, 1/3, to 1/2 of the single index range, and plotted the results of three band-
widths in Figure 4. The estimated link function for h∗ = 1/4 appears oversmoothed
but all three estimates exhibit two bumps. The 95% point-wise approximated con-
fidence intervals for γ(v) as shown in Figure 5 also reveal curvature away from
the constant (= 1) horizontal line. Although it is arguable that the Cox model
could be rejected at a low level, the suitability of an identity link function seems
questionable.
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Fig 3. The estimated confidence interval of γ at bandwidth h∗ = 1/6 for the WHAS data based
on BMI.

Fig 4. The estimated link function for the WHAS data under three different bandwidths.
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Fig 5. The estimated confidence interval of γ for the WHAS data at bandwidth h∗ = 1/6.

5. Conclusion and Future Research

The proposed estimating procedures for the extended proportional hazards regres-
sion model with unknown link function and multi-dimensional covariates seem to be
reliable for moderate to large sample sizes. Once the link function and the parame-
ters of the index have been established, one can proceed to estimate the unknown
baseline hazard function in model (1) using a smoothed version of Breslow-type
estimate ([1]).

The cost of a misspecified link function has been demonstrated through the
simulation studies in Section 3. As a consequence, the risk of an individual may
be misinterpreted. It is thus important to at least estimate the link function in the
initial model fitting stage as a model checking tool or guidance to a suitable class
of parametric link functions. A rigorous test of parametric link function will be a
worthwhile future project, as is the asymptotic theory for simultaneous inference
of the link function and regression parameters.

The choice of automatic smoothing parameters, the bandwidth h in this case,
is a challenging problem for proportional hazards model when a likelihood based
smoother, such as the local partial likelihood estimate, is employed in the link es-
timate. This is because the components of the partial likelihood are dependent,
hence the usual automatic bandwidth selection methods for linear models are not
applicable here. The usual least square cross-validation procedure in nonparametric
regressions also cannot be easily adapted to hazard based models such as the pro-
portional hazards model. An alternative criterion, less computational intensive than
cross-validation methods, was proposed in [18], based on a variation of the Akaike’s
information criterion for span selection, when the nearest neighborhood method
was used for smoothing. However, the interpretation of AIC is not clear here since
partial likelihood involves dependent components. The authors also acknowledged
that the asymptotic correctness of the AIC criterion has not been established. Thus,
automatic bandwidth choice remains an open question when the link function is be-
ing estimated. Meanwhile, we recommend to try several bandwidths and choose one
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that yields a moderately smooth link function as we did for the WHAS data. This
subjective choice based on the visual degree of smoothness is commonly adopted
as an ad hoc tool.

While this paper deals with time-independent covariates, it would be desirable to
extend model (1) to time-dependent covariates as well. One complication is that the
entire history of the covariate process would be required or some kind of imputation
needs to be performed to get even an initial estimate of β. Preliminary results were
reported in [20] by imputing the covariate process through a functional principal
components approach, and then proceeding with the estimation of the survival
components at the second stage. Such a two-stage procedure is prone to bias as is
well known in the joint modelling literature. Further investigations to correct the
bias would be desirable, and joint modelling the longitudinal and survival process
offers some hope if one can resolve the additional complication of an unknown link
function. This is yet another worthwhile project to pursue in the future.

Appendix

Let f(·) be the probability density of βT Z, for a given v, let P (t | v) = P (X ≥
t | βT Z = v), Λ(t, v) =

∫ t

0
P (u | v)λ0(u)du, Y (t) = I{X ≥ t}, Yi(t) = I{Xi ≥ t},

H = diag{h, . . . , hp}T and u = {u, . . . , up}.
We begin with some regularity conditions needed for the results.

(C1) K ≥ 0 is a bounded density with compact support, and it has bounded
first and second derivative.

(C2) ψ(·) has a continuous (p + 1)th derivative around v.
(C3) The density f(·) of βT Z is continuous at point v and infw f(w) > 0.
(C4) The conditional probability P (t | ·) is equicontinuous at v.
(C5)

∫ τ

0
λ0(u)du < ∞.

Denote
s0(β, ψ, u) = E[Y (u) exp{ψ(βT Z)}],
s1(β, ψ, u) = E[Y (u) exp{ψ(βT Z)}ψ′(βT Z)Z],
s2(β, ψ, u) = E[Y (u) exp{ψ(βT Z)} {ψ′ ′(βT Z) + [ψ′(βT Z)]2}ZZT ],
s∗
2(β, ψ, u) = E[Y (u) exp{ψ(βT Z)}[ψ′(βT Z)]2ZZT ].

(C6) The functions sr, r = 0, 1, and 2, and s∗
2 are bounded and s0 is bounded

away from 0 on B × [0, τ ]; the family of functions sr(·, ψ, u) and s∗
2(·, ψ, u) is an

equicontinuous family at β0.

The following lemma is used repeatedly in the later proofs. The proof will be
omitted and can be found in [19].

Lemma 1. Let cn(β0, t) = n−1
∑n

i=1 Yi(t)g(β0
T Zi)Kh(β0

T Zi − v) and c(t) =
f(v)g(v)P (t | v)

∫
K(u)du, under conditions (C1) and (C4), if g(·) is continuous

at the point v, then
sup

0≤t≤τ
|cn(β0, t) − c(t)| →P 0,

provided that h → 0, nh/ log n → ∞, 0 < τ ≤ +∞.
If furthermore, β̂ is a

√
n-consistent estimate of β0 and nh4 → ∞, then

sup
0≤t≤τ

|cn(β̂, t) − c(t)| →P 0.
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Proof of Theorem 1. For notation simplicity, we will use γ to represent γ(v) and γ0

for γ0(v).
The log local partial likelihood function at point v is given as

l{β, γ, v} =
1
n

N∑
j=1

Kh(βT Z(j) − v)

[[
(βT Z(j))T γ

]
− log

{ ∑
i∈Rj

exp{(βT Zi)T γ}Kh(βT Zi − v)
}]

.

Using counting process notation N(t) = I{X ≤ t, δ = 1} and Ni(t) = I{Xi ≤
t, δi = 1}, under the independent censoring,

Mi(t) = Ni(t) −
∫ t

0

Yi(u) exp{ψ(β0
T Zi)}λ0(u)du,

is a martingale with respect to the filtration Ft = σ{N(u), I{X≤u,δ=0} : 0 ≤ u ≤ t}.
The empirical counterpart of l{β, γ, v} up to time t is

ln(β, γ, t, v) =
∫ t

0

1
n

n∑
i=1

Kh(βT Zi − v)

[[
(βT Zi)T γ

]

− log

{
n∑
i

Yi(u) exp{(βT Zi)T γ}Kh(βT Zi − v)

}]
dNi(u).

Denote Sh,0(β, γ, u, v) = 1
n

∑n
i=1 Kh(βT Zi − v)Yi(u) exp{(βT Zi)T γ}.

Let β̂ be a
√

n−consistent estimate of the true parameter β0, and γ̂ be the
corresponding estimate of the true γ0, we can write

ln(β̂, γ, τ, v) − ln(β0, γ0, τ, v)

=
∫ τ

0

1
n

n∑
i=1

Kh(β0
T Zi − v)

×
[[

(βT
0 Zi)T γ − (βT

0 Zi)T γ0

]
− log

Sh,0(β0, γ, u, v)
Sh,0(β0, γ0, u, v)

]
dMi(u)

+
∫ τ

0

1
n

n∑
i=1

Kh(β̂T Zi − v)
[[

(β̂T Zi)T γ − (βT
0 Zi)T γ

]
− log

Sh,0(β̂, γ, u, v)
Sh,0(β0, γ, u, v)

]
dMi(u)

+
∫ τ

0

1
n

n∑
i=1

(
Kh(β̂T Zi − v) − Kh(β0

T Zi − v)
)

×
[
(βT

0 Zi)T γ − log Sh,0(β0, γ, u, v)
]
dMi(u)

+
∫ τ

0

1
n

n∑
i=1

Kh(β0
T Zi − v)

[[
(βT

0 Zi)T γ − (βT
0 Zi)T γ0

]
− log

Sh,0(β0, γ, u, v)
Sh,0(β0, γ0, u, v)

]

× Yi(u) exp{ψ(β0
T Zi)}λ0(u)du

+
∫ τ

0

1
n

n∑
i=1

Kh(β̂T Zi − v)
[[

(β̂T Zi)T γ − (βT
0 Zi)T γ

]
− log

Sh,0(β̂, γ, u, v)
Sh,0(β0, γ, u, v)

]

× Yi(u) exp{ψ(β0
T Zi)}λ0(u)du
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+
∫ τ

0

1
n

n∑
i=1

(
Kh(β̂T Zi − v) − Kh(β0

T Zi − v)
)[

(βT
0 Zi)T γ − log Sh,0(β0, γ, u, v)

]

≡Xn(β0, γ, τ, v) + I + II + An(β0, γ, τ, v) + III + IV.

Under the regularity conditions and from Lemma 1, it can be shown that
(1) Xn(β0, γ, τ, v) is a locally square integrable martingale with the predictable

variation process

〈Xn(β0, γ, τ, v), Xn(β0, γ, τ, v)〉

=
∫ τ

0

1
n2

n∑
i=1

K2
h(β0

T Zi − v)
[
(βT

0 Zi)T (γ − γ0) − log
Sh,0(β0, γ, u, v)
Sh,0(β0, γ0, u, v)

]2

× Yi(u) exp{ψ(β0
T Zi)}λ0(u)du

=Op

(
1

nh

)
.

(2) An(β0, γ, τ, v) →p

f(v) exp{ψ(v)}Λ(τ, v)

×
[(∫

uK(u)du

)T

H(γ − γ0) − log
{∫

exp{uT H(γ − γ0)}K(u)du

}]
+ op(1)

≡ A(β0, γ, τ, v) + op(1),

(3) I = Op( 1
nh ), II = Op( 1

nh2 ), III = Op( 1√
nh2 ), and IV = Op( 1√

nh4 ).
This means Xn(β0, γ, τ, v), I, II, III and IV converge to zero at a faster rate than

An(β0, γ, τ, v). By Lemma 8.2.1(2) in [9], ln(β̂, γ, τ, v) − ln(β0, γ0, τ, v) has the same
limiting distribution as An(β0, γ, τ, v). Thus, we have

(4) ln(β̂, γ, τ, v) − ln(β0, γ0, τ, v) →p A(β0, γ, τ, v).

It is obvious that A(β0, γ, τ, v) is strictly concave, with a maximum at γ = γ0.
Hence, the right-hand side of (4) is maximized at γ = γ0. The left-hand side of
(4) is maximized at γ = γ̂, since γ̂ maximizes ln(β̂, γ, τ, v). Therefore, supv

∣∣γ̂(v) −
γ0(v)

∣∣ →p 0.

By Dominated Convergence Theorem, we have

(5) sup
v

∣∣ψ̂(v) − ψ(v)
∣∣ →p 0.

This implies

sup
z

∣∣ψ̂(β̂T z) − ψ(β0
T z)

∣∣ ≤ sup
z

∣∣ψ̂(β̂T z) − ψ(β̂T z)
∣∣ + sup

z

∣∣ψ(β̂T z) − ψ(β0
T z)

∣∣
→p 0,

where the second term converges to zero by continuity of ψ and
√

n-consistency of
β̂. Theorem 1 is thus proved.
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Proof of Theorem 2. Let η = Hγ, we can write the log local partial likelihood
function in terms of β and η

ln(β, η, τ, v) =
∫ τ

0

1
n

n∑
i=1

Kh(βT Zi − v)

[
(βT Zi)T H−1η

− log

{
n∑
i

Yi(u) exp{(βT Zi)T H−1η}Kh(βT Zi − v)

}]
dNi(u).

Accordingly let Sh,0(β, η, u, v) = 1
n

∑n
i=1 Kh(βT Zi−v)Yi(u) exp{(βT Zi)T H−1η},

and Sh,1(β, η, u, v) = 1
n

∑n
i=1 Kh(βT Zi − v)Yi(u) exp{(βT Zi)T H−1η}(βT Zi)T H−1,

and for a
√

n-consistent estimate β̂ of β0, Lemma 1 implies

sup
0≤u<τ

∣∣∣∣Sh,1(β̂, η, u, v)

Sh,0(β̂, η, u, v)
− ν1

∣∣∣∣ →p 0,

where ν1 =
∫

uK(u)du.
The derivative of ln(β, η, τ, v) with respect to η evaluated at β̂ and η0 = Hγ0 is

l′
n(β̂, η0, τ, v)

=
∫ τ

0

1
n

n∑
i=1

Kh(β̂T Zi − v)
[
(β̂T Zi)T H−1 − Sh,1(β̂, η0, u, v)

Sh,0(β̂, η0, u, v)

]
dNi(u)

=
∫ τ

0

1
n

n∑
i=1

Kh(β̂T Zi − v)
[
(β̂T Zi)T H−1 − Sh,1(β̂, η0, u, v)

Sh,0(β̂, η0, u, v)

]
dMi(u)

+
∫ τ

0

1
n

n∑
i=1

Kh(β̂T Zi − v)
[
(β̂T Zi)T H−1 − Sh,1(β̂, η0, u, v)

Sh,0(β̂, η0, u, v)

]

× Yi(u) exp{ψ(β0
T Zi)}λ0(u)du

≡Un(β̂, η0, τ, v) + Bn(β̂, η0, τ, v).

The first term

Un(β̂, η0, τ, v)

=
∫ t

0

1
n

n∑
i=1

Kh(β̂T Zi − v)
[
(β̂T Zi)T H−1 − Sh,1(β̂, η0, u, v)

Sh,0(β̂, η0, u, v)

]
dMi(u)

=
∫ t

0

1
n

n∑
i=1

Kh(β0
T Zi − v)

[
(βT

0 Zi)T H−1 − Sh,1(β0, η0, u, v)
Sh,0(β0, η0, u, v)

]
dMi(u)

+
∫ t

0

1
n

n∑
i=1

(
Kh(β̂T Zi − v) − Kh(β0

T Zi − v)
)

×
[
(βT

0 Zi)T H−1 − Sh,1(β0, η0, u, v)
Sh,0(β0, η0, u, v)

]
dMi(u)

+
∫ t

0

1
n

n∑
i=1

Kh(β̂T Zi − v)

×
[
(β̂T Zi − βT

0 Zi)T H−1 − Sh,1(β̂, η0, u, v)
Sh,0(β̂, η0, u, v)

− Sh,1(β0, η0, u, v)
Sh,0(β0, η0, u, v)

]
dMi(u)

≡Un(β0, η0, τ, v) + V + V I.
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It is clear that
√

nhUn(β0, η0, t, v) is a martingale with predictable variation

〈
√

nhUn(β0, η0, t, v),
√

nhUn(β0, η0, t, v)〉

=
nh

n2

n∑
i=1

∫ τ

0

K2
h(β0

T Zi − v)
[
(βT

0 Zi)T H−1 − Sh,1(β0, η0, u, v)
Sh,0(β0, η0, u, v)

]⊗2

× Yi(u) exp{ψ(β0
T Zi)}λ0(u)du.

=f(v) exp{ψ(v)}Λ(t, v)
∫

K2(u)(u − ν1)⊗2du + op(1) ≡ ΣU (t, v) + op(1),

where the last step follows from Lemma 1.
The Lindberg conditions are satisfied (see [19] for details), we have thus proven

that

(6)
√

nhUn(β0, η0, τ, v) →D N
(
0, ΣU (τ, v)

)
.

As for the term V and V I, similarly to the proof of Theorem 1, we have

(7)

V =
∫ τ

0

1
n

n∑
i=1

(
Kh(β̂T Zi − v) − Kh(β0

T Zi − v)
)

×
[
(βT

0 Zi)T H−1 − Sh,1(β0, η0, u, v)
Sh,0(β0, η0, u, v)

]
dMi(u)

= Op

(
1

nh2

)
,

and
(8)

V I =
∫ τ

0

1
n

n∑
i=1

Kh(β̂T Zi − v)

×
[
(β̂T Zi − βT

0 Zi)T H−1 − Sh,1(β̂, η0, u, v)

Sh,0(β̂, η0, u, v)
− Sh,1(β0, η0, u, v)

Sh,0(β0, η0, u, v)

]
dMi(u)

=Op

(
1

nh

)
.

Applying Lemma 1 again and by Taylor expansion we get
(9)

Bn(β̂, η0, τ, v) =f(v) exp{ψ(v)} ψ(p+1)(v)
(p + 1)!

Λ(τ, v)
∫

K(u)(u − ν1)up+1duhp+1

+ op(hp+1) + Op

(
1√
n

)

=b(τ, v) + op(hp+1) + Op

(
1√
n

)
.

We have thus shown that, under (6), (7), (8) and (9),

(10)
√

nhl′
n(β̂, η0, τ, v) →D N

(
b(τ, v), ΣU (τ, v)

)
.

Next we focus on the property of the second derivative l′ ′
n(β̂, η, t, v). Let η̂ = Hγ̂,

by Taylor expansion and Lemma 1 we have

(11) 0 = l′
n(β̂, η̂, τ, v) = l′

n(β̂, η0, τ, v) + l′ ′
n(β̂, η∗ ∗, τ, v)(η̂ − η0),
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where η∗ ∗ lies in between η̂ and η0. Theorem 1 implies η̂ →p η0, hence η∗ ∗ →p η0.
Using condition (C1) and boundedness of β̂T Z, we arrive at

(12) l′ ′
n(β̂, η∗ ∗, τ, v) = l′ ′

n(β̂, η0, τ, v) + op(1) = Σl(τ, v) + op(1).

By (10), (11), (12) and Slutsky’s theorem,
√

nh(η̂ − η0) =
√

nh
[

−l′ ′
n(β̂, η∗ ∗, τ, v)−1l′

n(β̂, η0, τ, v)
]
+ op(1)

→D N
(
b(τ, v), Σl(τ, v)−1ΣU (τ, v)Σl(τ, v)−1

)
.

Simple calculations lead to the result in Theorem 2.
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