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From Particles with Random Potential

to a Nonlinear

Vlasov–Fokker–Planck Equation

Jin Feng1,∗

University of Kansas

Abstract: We consider large time and infinite particle limit for a system
of particles living in random potentials. The randomness enters the potential
through an external ergodic Markov process, modeling oscillating environment
with good statistical averaging properties.

From each individual particle’s point of view, both law of large number and
central limit theorem type of averaging are possible. Problems of this type have
been well studied and are known as random evolutions. Instead of one particle,
we focus on the collective behavior of infinite particles. We separately rescale
potential functions (type one) which annihilates the equilibrium measure of
the ergodic environment process, and the potential functions which may not
annihilate such measure (type two). Appropriately rescaled to the macroscopic
limit, type two potentials give a transport term while type one potentials give
a nonlinear diffusion term. The resulting equation is a version of nonlinear
Vlasov–Fokker–Planck equation. We will also prove the uniqueness of solution
for such equation.

1. Introduction

We rigorously derive a version of nonlinear Vlasov–Fokker–Planck equation

∂tρ(t, x, v) + v · ∇xρ(t, x, v) −
(
ρX ∗ ∇Φ̄1 +∇Ψ̄1

)
(t, x) · ∇vρ(t, x, v)(1.1)

= a(ρX ;x) ·D2
vvρ(t, x, v)

as multi-scaled limit of infinite interacting systems with random potential and prove
its uniqueness (Theorem 6.9).

In the above equation, x, v ∈ Rd, D2
vv is the Hessian matrix where the derivatives

are only taken with respect to v; a is some square matrix specified in (1.15) using
potential functions defining a dynamic at the microscopic level; and by M ·N for
two d× d matrices M = (mij)d×d and N = (nij)d×d, we mean

M ·N ≡
d∑

i,j=1

mijnji.(1.2)
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The whole equation (1.1) is understood in the weak (Schwartz distributional) sense,
where in particular ρ(t, x, v) is understood as a probability measure in x, v-variables,
and ρX is the x-marginal probability measure of ρ (i.e. ρX(dx) = ρ(dx,Rd)). Macro-
scopic functions Φ̄1, Ψ̄1 and a(ρX , x) are obtained from microscopically defined
functions Φi,Ψi, i = 1, 2 by (1.7) and (1.15).

At least formally, the following conservation of mass can be directly verified

d

dt

∫
ρ(t, x, v)dxdv = 0.

Indeed, a constructive existence theory in this article will show that ρ is a proba-
bility measure. In the special case of Ψ̄1 = 0, and imposing a natural assumption
(1.3) on Φ1 (hence on Φ̄1), we also have conservation of momentum

d

dt

∫
vρ(t, x, v)dxdv = 0.

There is even an entropy-entropy production formula

d

dt

∫
x,v

(ρ log ρ)dxdv = −
∫

x,v

a(ρX ;x) · I(ρ;x, v)dxdv

with Fisher information matrix

I(ρ;x, v) =
(∂vi

ρ(x, v)∂vj
ρ(x, v)

ρ(x, v)

)
d×d

.

However, in general, there is no macroscopic version of energy function we can
define so that (1.1) conserves it.

(1.1) belongs to a type of equation known as kinetic equations. They play im-
portant roles in the kinetic theory of gas, and in scaling limit issues which lead to
derivation of (system of) nonlinear PDEs describing evolution of spatial density(ies)
of momentum or(and) energy. See for instance Cercignani [2] on discussions of Boltz-
mann equation and its variants (such as kinetic Fokker–Planck equation (9.19) in
Chapter II). For such equations in general, uniqueness and the derivation from mi-
croscopic particle models are extremely hard to show, with many issues still open.
(1.1) is a toy model. In the hierarchy of scaling limits, it is much farther way from
the Boltzmann equation or its variants, but closer to plain transport equations. In
this article, we identify a microscopic situation where lots of simplification can be
made, yet basic mechanical features (such as conservation of momentum and mass)
are retained. We will introduce a random environment with some independence
property. The model and scaling we choose are so that we will have very strong
uniform ergodic property, avoiding the need to justify a what so called local equi-
librium hypothesis in statistical mechanics. These simplifications allow us to justify
the passage of limit from microscopic to macroscopic level relatively painlessly, us-
ing generalization of classical averaging/homogenization techniques (in the spirit of
Kurtz [5], Bensoussan, Lions and Papanicolaou [1]). Because the resulting measure-
valued PDE (1.1) has smooth coefficients, we can also prove its uniqueness using
more than one approaches - we will adapt a recent method developed by Kurtz in
[6]. Of course, losing conservation of energy is a big downside of the model (1.1).
But in situations where only conservation of mass and momentum are crucial, such
model can still be useful.
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1.1. The microscopic model

Let x = (x1, . . . , xN ) denote the position ofN -particles,N = 1, 2, . . .. Each xi ∈ Rd.
Similarly, we also use vi to denote the velocity of the i-th particle. We assume that
each particle has unit mass.

We use function Φn(z; yi, yj) : (z, yi, yj) ∈ Rd × S × S 7→ R to model pair-wise
interaction potential between two particles at locations xi, xj (z = xi − xj) when
”environmental” states of the particles are respectively yi, yj ∈ S. S is a compact
metric space modeling environment. We assume that

Φ(z; y1, y2) = Φ(z; y2, y1), Φ(z; y1, y2) = Φ(−z; y1, y2).(1.3)

The random environment is determined by a large external Markov process Y (t) =
(Y1(t), . . . , YN (t)) ∈ SN with generator B. To free us from possible complications
caused by boundary conditions in the x-variable, we consider the whole space Rd

and introduce an external potential Ψn(x; y), acting on each individual particle at
location x when the environment is in state y. We will look at a particular scaling
which corresponds to large time (controlled by parameter n) behavior of the system:

ẋi(t) = vi(t)(1.4)

v̇i(t) = n
{
− 1
N

N∑
j=1

(
∇Φn

)(
xi(t)− xj(t);Yi(n2t), Yj(n2t)

)
−∇Ψn

(
xi(t);Yi(n2t)

)}
.

For simplicity, we write

∇Φn(x; y1, y1) = ∇xΦn(x; y1, y2), ∇Ψn(x, y) = ∇xΨn(x, y).(1.5)

Under appropriate smoothness and growth conditions on Ψn,Φn and regularities
on Y , the above equation has a unique solution.

1.2. Structural assumptions

Let Yis be independent Markov process with weak infinitesimal generator B in
Cb(S) in the following sense. For bounded measurable function f , let

S(t)f(y) = E[f(Yi(t))|Yi(0) = y].

We assume that S(t) : Cb(S) 7→ Cb(S), and define domainD(B) ofB to be functions
in Cb(S) such that lim supt→0 supy∈S t

−1|S(t)f(y)−f(y)| < +∞ and that the limit
Bf(y) = limt→0+ t

−1(S(t)f(y)− f(y)) exists as a function in Cb(S).
Similarly, we define generator B for Y = (Y1, . . . , YN ). Then

Bϕ(y1, . . . , yN ) =
m∑

k=1

Bϕ(y1, . . . , yi−1, ·, yi+1, . . . , yN )(yi).

whenever ϕ(y1, . . . , yi−1, ·, yi+1, . . . , yN ) ∈ D(B), and

Bϕ(y1, . . . , yi−1, ·, yi+1, . . . , yN )(yi) ∈ Cb(SN ).

We assume that Yi has the following ergodic properties.
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Condition 1.1. Let Y be the Markov process on a compact metric space S with
weak infinitesimal generator B.

1. Y has a unique stationary probability measure π0(dy) in the sense that

lim
t→+∞

S(t)f(x) = lim
t→+∞

E[f(Y (t))|Y (0) = x] =
∫
f(y)π0(dy), ∀x ∈ S.

2. for each bounded measurable function h, there exists constant Ch > 0 such
that

|S(t)h(x)− π0h(x)| ≤ Ch(1 + t2)−1.

Typical examples satisfying the above requirements are random walks (contin-
uous time) with a communication condition (in the sense that there is positive
probability to reach each point from any other point), Brownian motions on com-
pact manifold, etc, etc. By the second part of Condition 1.1, the measure

ν(y, dz) =
∫ ∞

0

(P (Y (t) ∈ dz|Y (0) = y)− π0(dz))dt

is well defined. Let ϕ = ϕ(y1, . . . , ym) ∈ Cb(Sm), define

(Pν⊗...⊗νϕ)(y1, . . . , ym) =
∫

S

. . .

∫
S

ϕ(z1, . . . , zm)ν(y1, dz1) . . . ν(ym, dzm),

and constant function

Pπ0⊗...⊗π0ϕ(y1, . . . , ym) =
∫

S

. . .

∫
S

ϕ(z1, . . . , zm)π0(dz1) . . . π0(dzm).

Since BPπ0⊗...⊗π0ϕ = 0,

BPν⊗...⊗νϕ(y1, . . . , ym) + ϕ(y1, . . . , ym) = Pπ0⊗...⊗π0ϕ.(1.6)

For a smooth function f on Rd, we denote

|Dkf(x)| =
∑

i1+...+id=k

∣∣∣ ∂k

∂xi1
1 . . . ∂xid

d

f(x)
∣∣∣, x ∈ Rd,

and write

Φ̄1(x) =
∫

S

∫
S

Φ1(x; y1, y2)π0(dy1)π0(dy2), Ψ̄1(x) =
∫

y∈S

Ψ1(x, y)π0(dy).(1.7)

Condition 1.2.

1. Φn and Ψn satisfy

Φn(x; y1, y2) = n−1Φ1(x; y1, y2) + Φ2(x; y1, y2),(1.8)
Ψn(x; y) = n−1Ψ1(x; y) + Ψ2(x; y);

2. ∇Φ1(z; y1, y2),∇Φ2(z; y1, y2) ∈ Cb(Rd × S × S) and

sup
z∈Rd,y1,y2∈S

(|D1Φ2(z, y1, y2)|+ |D2Φ2(z, y1, y2)|) < +∞,

where the Dk, k = 1, 2 applies to the z-variable (recall (1.5) for the notation
∇Φ2,∇Ψ2);
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3. ∫
S×S

∇Φ2(x; y1, y2)π0(dy1)π0(dy2) = 0,
∫

S

∇Ψ2(x, y)π0(dy) = 0;(1.9)

4. Φ1,Ψ1 ≥ 0, ∇Ψ2(z; y) ∈ Cb(Rd×S); and for each x ∈ Rd, ∇Ψ1(x; ·) ∈ Cb(S),
Ψ̄1 ∈ C(Rd), and

lim
M→+∞

inf
|z|>M

Ψ̄1(z) = +∞.

5. The number of particles N and the multiple time scale parameter n satisfy

lim
n→+∞

nN−1 = 0.(1.10)

1.3. Main result

The symmetry among particle labels suggests that we can identify the stochastic
system (xi(·), vi(·), Yi(n2·)) with its empirical measure without any lose of general-
ity:

γn(t, dx, dv, dy) ≡ 1
N

N∑
i=1

δ{xi(t),vi(t),Yi(n2t)}(dx, dv, dy).(1.11)

Let

ρn(t, dx, dv) = γn,X,V (t, dx, dv) = γn(t, dx, dv, S),(1.12)

and

ρn,X(t, dx) ≡ ρn(t, dx,Rd).(1.13)

In Theorem 4.1, we show that {ρn(·) : n = 1, 2, . . .} is a tight sequence as stochas-
tic processes with trajectories in the space CP(Rd×Rd)[0,+∞). In Theorem 5.1, we
conclude that any limit point of the above sequence is a solution to the stochastic
Vlasov–Fokker–Planck equation (1.1). Finally, with additional smoothness hypoth-
esis on Φi,Ψi, i = 1, 2, in Theorem 6.9, we show that solution to (1.1) is unique,
hence ρn converges to the solution of (1.1).

We specify the coefficients in (1.1) next: let

¯̄Φ2(x; y) =
∫

ȳ∈S

∫
z∈S

Φ2(x; y, z)ν(ȳ, dz)π0(dȳ);(1.14)

and define the d× d square matrix a(ρ, x) =
(
aij(ρ, x)

)
i,j=1,...,d

by

aij(ρ, x) = aij(ρX , x)(1.15)

= E(Pν(ρX ∗ ∇(i) ¯̄Φ2(x; ·) +∇(i)Ψ2(x; ·))),
Pν(ρX ∗ ∇(j) ¯̄Φ2(x; ·) +∇(j)Ψ2(x; ·))))

where E is the Dirichlet form associated with B:

E(f, g) = −1
2

∫
(fBg + gBf)dπ0, f, g ∈ D(B).

By symmetry property of E , a(ρ;x) is a non-negative definite matrix.
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1.4. Notations

If E0 is a metric space, we use M±(E0) to denote space of signed Borel measures on
E0. For a function g : γ ∈ M±(E0) 7→ R, we define its first and second variational
derivatives as functions

δg

δγ
: E0 7→ R,

δ2g

δγ2
: E0 × E0 7→ R

satisfying the Taylor’s expansion

g(γ + tγ′)− g(γ) = t

〈
δg

δγ
, γ′

〉
+

1
2
t2

〈
δ2g

δγ2
, γ′ ⊗ γ′

〉
+ o(t2)(1.16)

for each γ′ ∈ M±(E0) with compact support. γ′ ⊗ γ′ means the product measure
on E0 × E0. As an example, let E0 = Rd × Rd × S, for ϕk ∈ B(Rd × Rd × S),
ψ ∈ C2(Rm), γ ∈M±(E0) and

(1.17) f(γ) = ψ(〈ϕ1, γ〉, . . . , 〈ϕm, γ〉),

δf

δγ
(x, v; y) =

m∑
k=1

∂kψ(〈ϕ1, γ〉, . . . , 〈ϕm, γ〉)ϕk(x, v, y),

and

δ2f

δγ2
(x, v, y; x̄, v̄, ȳ) =

m∑
k,l=1

∂2
klψ(〈ϕ1, γ〉, . . . , 〈ϕm, γ〉)ϕk(x, v, y)ϕl(x̄, v̄, ȳ).

Throughout, we denote

E′n =
{
γ(dx, dv, dy) = N−1

N∑
i=1

δ{xi,vi,yi}(dx, dv, dy) : xi, vi ∈ Rd, yi ∈ S
}
,(1.18)

and

En = {ρ(dx, dv) = γ(dx, dv;S) : γ ∈ E′n}.(1.19)

We also denote E = P(Rd × Rd) and E′ = P(Rd × Rd × S). Typical element in
E is denoted ρ and typical element in E′ is γ. Topologies on these spaces we use
are always the weak convergence of probability measure topology. Convergence of
sequences is denoted ρn ⇒ ρ or γn ⇒ γ. Each ρ ∈ En is compactly supported (on
a finite number of points), it has moments up to all orders.

For an operator B,D(B) denote the domain of B. If f = f(x, v, y): Rd×Rd×S 7→
R and f(x, v, ·) ∈ D(B), we write Byf(x, v, y) = (Bf(x, v, ·))(y).

2. Martingale problem

Let An be generator (through martingale problem) for the Markov process γn(t) in
(1.11). First, we identify An for a relatively simpler class of test functions (1.17).
Later, we will find that another type of test functions is also needed, but the cal-
culations follow similarly.
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We denote Fn
t = σ{Yi(r) : n = 1, 2, . . . , N ; 0 ≤ r ≤ n2t}. Let ϕ = ϕ(x, v; y),

∇xϕ, ∇vϕ ∈ C(Rd × Rd × S), and ϕ(x, v, ·) ∈ D(B) and Byϕ(x, v, y) is bounded
continuous. By Lemma 4.3.4 of Ethier and Kurtz [4],

ϕ(xi(t), vi(t), Yi(n2t))−
∫ t

0

{
vi(r)∇xϕ(xi(r), vi(r), Yi(n2r))

− n
( ∫

Rd×Rd×S

∇Φn(xi(r)− x;Yi(n2r), y)γn(r; dx, dv, dy)

+∇Ψn(xi(r);Yi(n2r))
)
· ∇vϕ(xi(r), vi(r), Yi(n2r))

− n2Bϕ(xi(r), vi(r), Yi(n2r))
}
dr ≡Mϕ

i (t);

is a martingale, with co-quadratic variation

[Mϕ1
i ,Mϕ2

j ](t) = δij

∫ t

0

n2(ϕ1, ϕ2)B(xi(r), vi(r), Yi(n2r))dr,

where

(ϕ1, ϕ2)B(x, v, y) = By(ϕ1ϕ2)(x, v, y)− ϕ1(x, v, y)Byϕ2(x, v, y)
−ϕ2(x, v, y)Byϕ1(x, v, y).

First, we consider test functions f of the form (1.17) with ϕ satisfying the re-
quirements given in the last paragraph. It follows that probability measure valued
process γn(·) solves the martingale problem (i.e.

f(γn(t))− f(γn(0))−
∫ t

0

Anf(γn(s))ds(2.1)

is a martingale) given by generator

Anf(γ)(2.2)

=
〈
γ,

(
v · ∇x − n(

∫
Rd×Rd×S

∇Φn(x− x̄; y, ȳ)γ(dx̄, dv̄, dȳ)

+∇Ψn(x, y)) · ∇v + n2By

)δf
δγ

〉
+
n2

2N

〈
γ,

m∑
k,l=1

∂2
klψ(〈ϕ1, γ〉, . . . , 〈ϕm, γ〉)(ϕk, ϕl)B

〉
=

〈
γ, v · ∇x

δf

δγ
−

( ∫
∇Φ1(x− x̄; y, ȳ)γ(dx̄, dv̄, dȳ) +∇Ψ1(x; y)

)
· ∇v

δf

δγ

〉
− n

〈
γ,

( ∫
Rd×Rd×S

∇Φ2(x− x̄; y, ȳ)γ(dx̄, dv̄, dȳ) +∇Ψ2(x, y)
)
· ∇v

δf

δγ

〉
+ n2

〈
γ,By

δf

δγ

〉
+
n2

2N

(〈
γ,B

δ2f

δγ2
(x, v, ·;x, v, ·)(y)

〉
− 2

〈
γ(dx, dv, dy)⊗ δ{x,v,y}(dx̄, dv̄, dȳ), By

δ2f

δγ2
(x, v, y; x̄, v̄, ȳ)

〉)
.

Having only test functions f of the form (1.17) is not good enough. Later, we
need to consider test functions of the form such as g in (3.5) and h in (3.6). These
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are special cases of

f(γ) = φ1(〈ρ, ϕ1〉, . . . , 〈ρ, ϕm〉)
∫ ∫ ∫ ∫

φ2(x1, x2, x3, x4; y1, y2, y3, y4)φ3(x1, v1)

γ(dx1, dv1, dy1)γ(dx2, dv2, dy2)γ(dx3, dv3, dy3)γ(dx4, dv4, dy4),

where ϕk ∈ C∞c (Rd ×Rd), φ1 ∈ C2(Rm) and φ2, φ3 are bounded continuous func-
tions. For such case, at least when γ ∈ E′n, the first two variational derivatives
δf/δγ and δ2f/δγ2 are well defined smooth functions. Then Ito’s formula allow us
to conclude that (2.1) is still a martingale.

3. Generator convergence for a class of perturbed test functions

We recall earlier convention that ρ denote the X,V -marginal of γ ( i.e. ρ(dx, dv) =
γ(dx, dv, S)). For each
(3.1)
f ∈ D0 = {f(ρ) = ψ(〈ϕ1, ρ〉, . . . , 〈ϕm, ρ〉) : ϕk ∈ C∞c (Rd ×Rd), ψ ∈ C2(Rm)},

we define

Af(ρ) =
〈
ρ, v · ∇x

δf

δρ
(x, v)− (ρX ∗ ∇Φ̄1 +∇Ψ̄1)(x, y) · ∇v

δf

δρ
(3.2)

+ a(ρ, x) ·D2
vv

δf

δρ
(x, v)

〉
with Φ̄1, Ψ̄1 given by (1.7) and square matrix a(ρ, x) given by (1.15).

This section proves the following

Lemma 3.1. For each f ∈ D0 ⊂ Cb(E), there exists g, h ∈ Cb(E′) (given by (3.5)
and (3.6) below). Let

fn(γ) = f(ρ) + n−1g(γ) + n−2h(γ).(3.3)

Then

lim
n→+∞

Anfn(γn) = Af(ρ),

whenever ρn(dx, dv) = γn(dx, dv, S) ⇒ ρ(dx, dv) and supn

∫
|v|dγn < +∞. More-

over, there exists C0, C1 > 0,

|Anfn(γ)| ≤ C0 + n−1C1

∫
|v|dγ, γ ∈ E′n.(3.4)

We prove the above lemma. Let

g(γ) = −
∫ ∫ (

Pν⊗ν∇Φ2(x− x̄; y, ȳ) + Pν∇Ψ2(x, y)
)
· ∇v

δf

δρ
(x, v)(3.5)

γ(dx, dv, dy)γ(dx̄, dv̄, dȳ),
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where Pν⊗ν∇Φ2(x; y, ȳ) =
∫

z∈S

∫
z̄∈S

∇Φ2(x; z, z̄)ν(y, dz)ν(ȳ, dz̄); and

h(γ)(3.6)

=
∫
Pν(−∇Ψ1)(x, y) · ∇v

δf

δρ
(x, v)γ(dx, dv, dy)

+
∫ ∫

Pν⊗ν∇Φ1(x− x̄; y, ȳ) · ∇v
δf

δρ
(x, v)γ(dx, dv, dy)γ(dx̄, dv̄, dȳ)

+
∫ ∫ ∫

Pν⊗ν⊗νa1(x, y; x̄, ȳ; ¯̄x, ¯̄y) ·D2
vv

δf

δρ
(x, v)

γ(dx, dv, dy)γ(dx̄, dv̄, dȳ)γ(d¯̄x, d¯̄v, d¯̄y)

+
∫ ∫ ∫ ∫

Pν⊗ν⊗ν⊗νa2(x, y; x̄, ȳ; ¯̄x, ¯̄y; x̂, ŷ) · ∇¯̄v∇v
δ2f

δρ2
(x, v; ¯̄x, ¯̄v)

γ(dx, dv, dy)γ(dx̂, dv̂, dŷ)γ(dx̄, dv̄, dȳ)γ(d¯̄x, d¯̄v, d¯̄y).

See (3.15) and (3.16) for the definition of matrices a1, a2. In the above (and below),
we denote matrix

∇¯̄v∇v
δ2f

δρ2
(x, v; ¯̄x, ¯̄v) =

( ∂2

∂vi∂ ¯̄vj

δ2f

δρ2
(x, v; ¯̄x, ¯̄v)

)
d×d

.

Therefore,

Pν⊗ν⊗ν⊗νa2(x, y; x̄, ȳ; ¯̄x, ¯̄y; x̂, ŷ) · ∇¯̄v∇v
δ2f

δρ2
(x, v; ¯̄x, ¯̄v)

=
m∑

k,l=1

∂2
klψ(〈ρ, ϕ1〉, . . . , 〈ρ, ϕm〉)

∇¯̄vϕk(¯̄x, ¯̄v) · Pν⊗ν⊗ν⊗νa2(x, y; x̄, ȳ; ¯̄x, ¯̄y; x̂, ŷ) · ∇vϕl(x, v).

Since δf/δρ ∈ Cc(Rd×Rd), δ2f/δρ2 ∈ Cc(Rd×Rd×Rd×Rd), both g, h ∈ Cb(E′n).

Since

Anfn(γ)(3.7)
= Anf(ρ) + n−1Ang(γ) + n−2Anh(γ)

=
〈
γ, v · ∇x

δf

δρ
−

( ∫
∇Φ1(x− x̄; y, ȳ)γ(dx̄, dv̄, dȳ) +∇Ψ1

)
· ∇v

δf

δρ

〉
+

〈
γ,−

( ∫
Rd×Rd×S

∇Φ2(x− x̄; y, ȳ)γ(dx̄, dv̄, dȳ) +∇Ψ2

)
· ∇v

δg

δγ

〉
+

〈
γ,By

δh

δγ

〉
+ n

〈
γ,−

( ∫
Rd×Rd×S

∇Φ2(x− x̄; y, ȳ)γ(dx̄, dv̄, dȳ) +∇Ψ2

)
· ∇v

δf

δρ

+By
δg

δγ

〉
+ o(1),
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where

o(1)

= n−1
{〈
γ, v · ∇x

δg

δγ
−

( ∫
∇Φ1(x− x̄; y, ȳ)γ(dx̄, dv̄, dȳ) +∇Ψ1

)
· ∇v

δg

δγ

〉
+
n2

2N

(〈
γ,B

δ2g

δγ2
(x, v, ·;x, v, ·)(y)

〉
− 2

〈
γ(dx, dv, dy)⊗ δ{x,v,y}(dx̄, dv̄, dȳ), By

δ2g

δγ2
(x, v, y; x̄, v̄, ȳ)

〉)}
+

1
n2

{〈
γ, v · ∇x

δh

δγ
−

( ∫
∇Φ1(x− x̄; y, ȳ)γ(dx̄, dv̄, dȳ) +∇Ψ1)

)
· ∇v

δh

δγ

〉
− n

〈
γ,

( ∫
Rd×Rd×S

∇Φ2(x− x̄; y, ȳ)γ(dx̄, dv̄, dȳ) +∇Ψ2

)
· ∇v

δh

δγ

〉
+
n2

2N

(〈
γ,B

δ2h

δγ2
(x, v, ·;x, v, ·)(y)

〉
− 2

〈
γ(dx, dv, dy)⊗ δ{x,v,y}(dx̄, dv̄, dȳ), By

δ2h

δγ2
(x, v, y; x̄, v̄, ȳ)

〉)}
.

If g is taken to be (3.5), then following Taylor expansion (1.16), we identify

δg

δγ
(x, v, y) = −

∫
Pν⊗ν∇Φ2(x− x̄; y, ȳ) · ∇v

δf

δρ
(x, v)γ(dx̄, dv̄, dȳ)(3.8)

−
∫

(Pν⊗ν∇Φ2(¯̄x− x; ¯̄y, y)∇¯̄v
δf

δρ
(¯̄x, ¯̄v)γ(d¯̄x, d¯̄v, d¯̄y)

− Pν∇Ψ2(x, y) · ∇v
δf

δρ
(x, v)

−
∫ ∫ (

Pν⊗ν∇Φ2(¯̄x− x̄; ¯̄y, ȳ) + Pν∇Ψ2(¯̄x, ¯̄y)
)

· ∇¯̄v
δ2f

δρ2
(¯̄x, ¯̄v;x, v)γ(d¯̄x, d¯̄v, d¯̄y)γ(dx̄, dv̄, dȳ).

Similarly, we can also compute δ2g/δγ2 explicitly. From the conditions on Φ2,Ψ2

(Condition 1.2), it follows that

∇x
δg

δγ
(x, v; y),∇v

δg

δγ
(x, v; y), B

δ2g

δγ2
(x, v, ·;x, v, ·)(y), By

δ2g

δγ2
(x, v, y; x̄, v̄, ȳ)(3.9)

are all bounded over their respective domain. Analogous estimates holds when g is
replaced by the h in (3.6). Note that because δf/δρ, δ2f/δρ2 have compact support,

∇v
δg

δγ
(x, v; y) ∈ Cc(Rd ×Rd × S).(3.10)

To emphasize the dependence of o(1) on n and on γ, we write it o(1;n, γ). By
(3.9) and similar bounded estimates for h and by (3.10), there exists C1, C2, C3 > 0,

|o(1;n, γ)| ≤ n−1(C2 + C1

∫
|v|dγ) +

n

N
C3, γ ∈ E′n.(3.11)

Therefore
lim

n→+∞
sup

γ∈E′
n,

∫
|v|dγ≤C

|o(1;n, γ)| = 0, ∀C > 0.
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Hence o(1) is a higher order term.
First of all, the g is chosen so that〈

γ,−
( ∫

Rd×Rd×S

∇Φ2(x− x̄; y, ȳ)γ(dx̄, dv̄, dȳ)(3.12)

+∇Ψ2(x, y)
)
· ∇v

δf

δγ
+By

δg

δγ

〉
= 0.

This can be directly verified as δg/δγ is given by (3.8) and (1.6) and (1.9) hold,∫
By

δg

δγ
(x, v, y)γ(dx, dv; dy)(3.13)

=
∫ ∫ {(

By(−Pν⊗ν∇Φ2(x− x̄; y, ȳ))

+Bȳ(−Pν⊗ν∇Φ2(x− x̄; y, ȳ))
)
· ∇v

δf

δρ
(x, v)

+By(−Pν∇Ψ2(x, y)) ·
δf

δρ
(x, v)

}
γ(dx̄, dv̄, dȳ)γ(dx, dv, dy)

=
∫ ∫

(∇Φ2(x− x̄; y, ȳ) +∇Ψ2(x, y)) · ∇v
δf

δρ
(x, v)γ(dx̄, dv̄, dȳ)γ(dx, dv, dy).

Anfn now simplifies into

Anfn(γ)(3.14)

=
〈
γ, v · ∇x

δf

δρ
−

( ∫
∇Φ1(x− x̄; y, ȳ)γ(dx̄, dv̄, dȳ) +∇Ψ1(x; y)

)
· ∇v

δf

δρ

〉
+

〈
γ,

∫ ∫
a1(x, y; x̄, ȳ; ¯̄x, ¯̄y) ·D2

vv

δf

δρ
(x, v)γ(dx̄, dv̄, dȳ)γ(d¯̄x, d¯̄v, d¯̄y)

〉
+ 〈γ,

∫ ∫ ∫
a2(x, y; x̄, ȳ; ¯̄x, ¯̄y; x̂, ŷ) · ∇¯̄v∇v

δ2f

δρ2
(x, v; ¯̄x, ¯̄v)

γ(dx̂, dv̂, dŷ)γ(dx̄, dv̄, dȳ)γ(d¯̄x, d¯̄v, d¯̄y)
〉

+
〈
γ,By

δh

δγ

〉
+ o(1).

where

D2
vvϕ(x, v) =

( ∂2

∂v(i)∂v(j)
ϕ(x, v)

)
d×d

, v = (v(1), . . . , v(d)).

and matrices

a1(x, y; x̄, ȳ; ¯̄x, ¯̄y) =
(
∇Φ2(x− x̄; y, ȳ) +∇Ψ2(x, y)

)
(3.15)

×
(
Pν⊗ν∇Φ2(x− ¯̄x; y, ¯̄y) + Pν∇Ψ2(x, y)

)
(matrix ξ × η = (ξiηj)ij for vectors ξ = (ξ1, . . . , ξd), η = (η1, . . . , ηd) ∈ Rd), and

a2(x, y; x̄, ȳ; ¯̄x, ¯̄y; x̂, ŷ) =
(
∇Φ2(x− x̄; y, ȳ) +∇Ψ2(x, y)

)
(3.16)

×
(
Pν⊗ν∇Φ2(¯̄x− x̂; ¯̄y, ŷ) + Pν∇Ψ2(¯̄x, ¯̄y)

)
.
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In the above simplification, we used

∇v
δg

δγ
(x, v, y)(3.17)

=
(
−

∫
Pν⊗ν∇Φ2(x− x̄; y, ȳ)γ(dx̄, dv̄, dȳ)− Pν∇Ψ2(x, y)

)
·Dvv

δf

δρ
(x, v)

−∇v

∫ ∫ (
Pν⊗ν∇Φ2(¯̄x− x̄; ¯̄y, ȳ) + Pν∇Ψ2(¯̄x, ¯̄y)

)
· ∇¯̄v

δ2f

δρ2
(¯̄x, ¯̄v;x, v)γ(d¯̄x, d¯̄v, d¯̄y)γ(dx̄, dv̄, dȳ).

The idea of choosing h is such that limit of Anfn only depends on ρ (the X,V -
marginal of γ). To achieve this, we need to ”average out” all the y, ȳ, ¯̄y, ŷ dependence
in (3.14). We verify this next.

First, we make three interesting observations (3.18), (3.19) and (3.20) in order
to simplify the expression of 〈γ,Byδh/δγ〉. Let ϕ1 = ϕ1(y, ŷ, ȳ, ¯̄y) ∈ Cb(S4)∩D(B),
and ϕ2 = ϕ2(ρ;x, v; ¯̄x, ¯̄v) ∈ Cb(E × (Rd × Rd)2) where δϕ2/δρ is still a bounded
function. By (1.6),

〈γ,B δ

δγ

∫ ∫ ∫ ∫
Pν⊗ν⊗ν⊗νϕ1(y, ŷ, ȳ, ¯̄y)ϕ2(ρ;x, v; ¯̄x, ¯̄v)(3.18)

γ(dx, dv, dy)γ(dx̂, dv̂, dŷ)γ(dx̄, dv̄, dȳ)γ(d¯̄x, d¯̄v, d¯̄y)〉

=
∫ ∫ ∫ ∫ (

BPν⊗ν⊗ν⊗νϕ1(y, ŷ, ȳ, ¯̄y)
)
ϕ2(ρ;x, v; ¯̄x, ¯̄v)

γ(dx, dv, dy)γ(dx̂, dv̂, dŷ)γ(dx̄, dv̄, dȳ)γ(d¯̄x, d¯̄v, d¯̄y)

=
∫ ∫ ∫ ∫ (

− ϕ1(y, ŷ, ȳ, ¯̄y) + Pπ0⊗π0⊗π0⊗π0ϕ1

)
ϕ2(ρ;x, v; ¯̄x, ¯̄v)

γ(dx, dv, dy)γ(dx̂, dv̂, dŷ)γ(dx̄, dv̄, dȳ)γ(d¯̄x, d¯̄v, d¯̄y).

We note that

Pπ0⊗π0⊗π0⊗π0a2(x, y; x̄, ȳ; ¯̄x, ¯̄y; x̂, ŷ)(3.19)

=
{(
Pπ0⊗π0B(−Pν⊗ν∇Φ2(x− x̄; y, ȳ)− Pν∇Ψ2(x, y))

)
×

(
Pπ0⊗π0(Pν⊗ν∇Φ2(¯̄x− x̂; ¯̄y, ŷ) + Pν∇Ψ2(¯̄x, ¯̄y))

)}
= 0,

and similarly∫ ∫
Pπ0⊗π0⊗π0a1(x, y; x̄, ȳ; ¯̄x, ¯̄y)γ(dx̄, dv̄, dȳ)γ(d¯̄x, d¯̄v, d¯̄y)(3.20)

=
∫

y∈S

{(
−BPν(ρX ∗ ∇ ¯̄Φ2(x; y) +∇Ψ2(x, y))

)
×

(
Pν(ρX ∗ ∇ ¯̄Φ2(x; y) +∇Ψ2(x, y))

)}
π0(dy),

where ¯̄Φ2(x; y) is defined in (1.14).
In view of the form of h in (3.6), the above three identities enable us to simplify

(3.14) into

Anfn(γ) = Af(ρ) + o(1).(3.21)
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4. Energy estimates and tightness

In this section, we prove

Theorem 4.1. Suppose that (4.4) hold. Then the processes {ρn(·) : n = 1, 2, . . .}
is tight with trajectories in space CP(Rd×Rd)[0,+∞).

Following the general method given by Theorem 9.1 in Chapter 3 of [4], there
are two key steps in proving tightness for processes. First, we prove a compact
containment property (Lemma 4.2) by studying the time evolution of an energy
function which is effectively averaged at the macroscopic scale.

Let

(4.1) E(ρ) =
∫

x,v

∫
x̄,v̄

(1
2
|v|2 +

1
2
Φ̄1(x− x̄) + Ψ̄1(x)

)
ρ(dx̄, dv̄)ρ(dx, dv),

and

V (ρ) = log(1 + E(ρ)).(4.2)

Since Φ̄1, Ψ̄1 ≥ 0 and Ψ̄1 has compact level set in Rd (Condition 1.2.4 is crucial
here), E and V have compact level sets in P(Rd×Rd) under the weak convergence
of probability measure topology.

We now define stopping time

τn,M = inf{t ≥ 0 : V (ρn(t)) > M}.(4.3)

Lemma 4.2. Suppose that

sup
n
E[V (ρn(0))] < +∞.(4.4)

Then

lim
M→+∞

sup
n
P (τn,M ≤ T ) = 0, ∀T > 0.(4.5)

Consequently, we have a compact containment property: for each T > 0, ε > 0,
there exists compact set K = K(T, ε) ⊂ P(Rd ×Rd) such that

P (∃t, 0 ≤ t ≤ T, ρn(t) 6∈ K) < ε.

Furthermore, we have energy estimate

E[V (ρn(t))] ≤ E[V (ρn(0))] + t(n−1C0 + ‖tr(a1)‖∞)(4.6)

where C0 > 0 is some deterministic constant depending on Ψi,Φi and B.

We prove this result using a stochastic Lyapunov function technique. Let ρ ∈ En.
First, we note that for ϕ(x, v) : Rd ×Rd 7→ R,

∫
ϕdρ = N−1

∑N
i=1 ϕ(xi, vi) < +∞.

In particular,
∫

(Ψ̄1(x) + |v|2)dρ < +∞.

Proof. From the definition of the first two variational derivatives in (1.16), for
ρ ∈ En and γ ∈ E′n (see (1.19) and (1.18)),

δV

δρ
(x, v) = (1 + E(ρ))−1

(
1
2
|v|2 +

∫
x̄

Φ̄1(x− x̄)ρX(dx̄) + Ψ̄1(x)
)
,
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and

δ2V

δρ2
(x, v; x̄, v̄) = (1 + E(ρ))−1Φ̄1(x− x̄)− δV

δρ
(x, v)

δV

δρ
(x̄, v̄).

We let gV = gV (γ) and hV = hV (γ) be respectively defined as in (3.5) and (3.6)
with δf/δρ and δ2f/δρ2 replaced by δV/δρ and δ2V/δρ2. In view of the special
form for ρ ∈ En, γ ∈ E′n,

gV (γ) = −(1 + E(ρ))−1

∫ ∫ (
Pν⊗ν∇Φ2(x− x̄; y, ȳ) + Pν∇Ψ2(x; y)

)
· v

γ(dx, dv, dy)γ(dx̄, dv̄, dȳ)

= −(1 + E(ρ))−1N−2
N∑

i=1

N∑
j=1

(
Pν⊗ν∇Φ2(xi − xj ; yi, yj)

+ Pν∇Ψ2(xi; yi)
)
· vi;

and
sup

n
sup

γ∈E′
n

|gV (γ)| < +∞.

Similarly, for γ ∈ E′n,

hV (γ) = (1 + E(ρ))−1
{∫ ∫

v · (Pν(−∇Ψ1)(x, y) + Pν⊗ν∇Φ1(x− x̄; y, ȳ))

γ(dx, dv, dy)γ(dx̄, dv̄, dȳ)

+
∫ ∫ ∫

Tr(Pν⊗ν⊗νa1(x, y; x̄, ȳ; ¯̄x, ¯̄y))

γ(dx, dv, dy)γ(dx̄, dv̄, dȳ)γ(d¯̄x, d¯̄v, d¯̄y)
}

+ (1 + E(ρ))−2

∫ ∫ ∫ ∫
Pν⊗ν⊗ν⊗νa2(x, y; x̄, ȳ; ¯̄x, ¯̄y; x̂, ŷ) · (v × ¯̄v)

γ(dx, dv, dy)γ(dx̂, dv̂, dŷ)γ(dx̄, dv̄, dȳ)γ(d¯̄x, d¯̄v, d¯̄y);

and it follows
sup

n
sup

γ∈E′
n

|hV (γ)| < +∞.

Furthermore, following similar computations as in (3.8) and (3.17), we can verify

sup
n

sup
γ∈E′

n

(∣∣∣〈γ, v · ∇x
δgV

δγ

〉∣∣∣ +
∣∣∣〈γ,∇Ψ1(x, y) · ∇v

δgV

δγ

〉∣∣∣
+

∣∣∣〈γ,By
δ2gV

δγ2
(x, v, y;x, v, y)

〉∣∣∣
+

∣∣∣〈γ(dx, dv, dy)⊗ δ{x,v,y}(dx̄, dȳ, dȳ), By
δ2gV

δγ2
(x, v, y; x̄, v̄, ȳ)

〉∣∣∣) < +∞.

Analogous estimates hold when gV is replaced by hV as well.
Let

Vn(γ) = V (ρ) + n−1gV (γ) + n−2hV (γ).

We extend the definition of An to Vn according to the second expression in (2.2)
where everything is expressed in terms of δVn/δγ and δ2Vn/δγ

2. Recall that for
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each fixed n, γn(t) is a probability measure concentrated only on a finite number
of points. By the usual finite dimensional Ito’s formula,

Vn(γn(t ∧ τn,M ))− Vn(γn(0))−
∫ t∧τn,M

0

AnVn(γn(s))ds

is a martingale. We estimate AnVn next.
Following similar computations as in the previous section, we have for γ ∈ E′n,

AnVn(γ)(4.7)

=
〈
ρ, v · ∇x

δV

δρ
(x, v)−

(
ρ ∗ ∇Φ̄1(x) +∇Ψ̄1(x)

)
· ∇v

δV

δρ
(x, v)

+ a(ρ, x) ·D2
vv

δV

δρ
(x, v)

〉
+

1
n

{〈
γ, v · ∇x

δgV

δγ
−

( ∫
∇Φ1(x− x̄; y, ȳ)γ(dx̄, dv̄, dȳ)

+∇Ψ1(x; y)
)
· ∇v

δgV

δγ

〉
+
n2

2N

(〈
γ,B

δ2gV

δγ2
(x, v, ·;x, v, ·)(y)

〉
− 2

〈
γ(dx, dv, dy)⊗ δ{x,v,y}(dx̄, dv̄, dȳ), By

δ2gV

δγ2
(x, v, y; x̄, v̄, ȳ)

〉)}
,

+
1
n2

{(〈
γ, v · ∇x

δhV

δγ
−

( ∫
∇Φ1(x− x̄; y, ȳ)γ(dx̄, dv̄, dȳ)

+∇Ψ1(x; y)
)
· ∇v

δhV

δγ

〉)
+
n2

2N

(〈
γ,B

δ2hV

δγ2
(x, v, ·;x, v, ·)(y)

〉
− 2

〈
γ(dx, dv, dy)⊗ δ{x,v,y}(dx̄, dv̄, dȳ), By

δ2hV

δγ2
(x, v, y; x̄, v̄, ȳ)

〉)}
+

1
n

{〈
γ,

( ∫
Rd×Rd×S

∇Φ2(x− x̄; y, ȳ)γ(dx̄, dv̄, dȳ)

+∇Ψ2(x, y)
)
· ∇v

δhV

δγ

〉}
≤ ‖Tr(a1)‖∞ + n−1C0

where C0 > 0 is some deterministic constant depending on Ψi,Φi and B.
Consequently,

E[Vn(γn(t ∧ τn,M )] ≤ E[Vn(γn(0))] + t(n−1C0 + ‖tr(a1)‖∞).(4.8)

For each n fixed, V (ρn(t)) is a process which is continuous in time. Let T,M > 0,

MP (τn,M ≤ T ) ≤ E[V (ρn(τn,M ))χτn,M≤T ] ≤ E[V (ρn(T ∧ τn,M ))χτn,M≤T ]

≤ E[Vn(γn(T ∧ τn,M ))] + sup
m

sup
γ∈E′

m

(n−1|gV (γ)|+ n−2|hV (γ)|)

≤ E[Vn(γn(0))] + T (n−1C0 + ‖tr(a1)‖∞) + sup
m

sup
γ∈E′

m

(n−1|gV (γ)|+ n−2|hV (γ)|).

Therefore (4.5) follows. Let ε > 0, by selecting M large enough, then the compact
containment property also follows. Finally, (4.6) follows from (4.8) by taking M →
+∞ and by noting lower semicontinuity of V .
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We choose a special M = Mn = 2 log(n), and denote

τn = τn,Mn .

Then from this definition and the definition of V ,

χr≤τn
n−1eV (ρn(r))/2 ≤ n−1eMn/2 = 1, r > 0.(4.9)

Lemma 4.3. For each f ∈ D0 (see (3.1)), {f(ρn(· ∧ τn)) : n = 1, 2, . . .} is a
sequence of relatively compact real valued processes.

Proof. We apply Theorem 9.4 in Chapter 3 of Ethier and Kurtz [4].
Let T > 0. Let fn be given as in (3.3) with g, h defined by (3.5), (3.6). First, we

note

sup
n
E[ sup

0≤t≤T
|fn(γn(t∧ τn))− f(ρn(t∧ τn))|] ≤ n−1‖g‖+n−2‖h‖ → 0, as n→ +∞.

This verifies (9.17) in the above mentioned Theorem 9.4 of [4].
Since

fn(γn(t ∧ τn))− fn(γn(0))−
∫ t∧τn

0

Anfn(γn(r))dr

is a martingale. By estimate (3.4) (Lemma 3.1) and noting (4.9), for T > 0,

sup
n=1,2,...

E
[

sup
0≤t≤T

∣∣∣ ∫ t

0

χ(r ≤ τn)Anfn(γn(r))dr
∣∣∣]

≤ sup
n
E

[
sup

0≤t≤T

∣∣∣ ∫ t

0

χ(r ≤ τn)
(
C0 + n−1C1

√∫
|v|2dγn(r)

)
dr

∣∣∣]
≤ sup

n
E

[
sup

0≤t≤T

∣∣∣ ∫ t

0

χ(r ≤ τn)(C0 +
√

2n−1C1 exp{V (ρn(r))/2})dr
∣∣∣]

≤ (C0 + 2C1)T < +∞.

This verifies (9.18) in Theorem 9.4 in Chapter 3 of [4].
The conclusion of this lemma follows from the above two estimates.

We conclude the tightness property in Theorem 4.1.
First, we claim that {ρn(· ∧ τn) : n = 1, 2, . . .} is tight in CP(Rd×Rd)[0,+∞).

Given Lemmas 4.2 and 4.3, this follows from Theorem 9.1 in Chapter 3 of Ethier
and Kurtz [4].

Next, the conclusion of Theorem 4.1 follows from tightness of stopped processes
{ρn(· ∧ τn) : n = 1, 2, . . .} and observation

P ( sup
0≤t≤T

r(ρn(t ∧ τn), ρn(t)) > ε) ≤ P (τn ≤ T ) → 0, as n→ +∞, ∀ε > 0,

where r can be any metric given topology of weak convergence of probability mea-
sures on P(Rd ×Rd).

5. Identifying the limit equation

Let fn be given by (3.3) and τn,M be given by (4.3). By Ito’s formula,

E
[(
fn(γn(t ∧ τn,M ))− fn(γn(s ∧ τn,M ))−

∫ t∧τn,M

s∧τn,M

Anfn(γn(r))dr
)

Πk
i=1hi(ρn(ti))

]
= 0,
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and for every h1, . . . , hk ∈ Cb(E), 0 ≤ t1 ≤ . . . , tk ≤ s ≤ t, and k = 1, 2, . . .. Let
ρ0(·) be a limit processes of {ρn(·) : n = 1, 2, . . .} (Theorem 4.1). Then by the
convergence of Anfn to Af in Lemma 3.1,

E
[(
f(ρ0(t))− f(ρ0(s))−

∫ t

s

Af(ρ0(r))dr
)
Πk

i=1hi(ρ0(ti))
]

= 0,

implying ρ0 is a solution to the martingale problem

f(ρ0(t))− f(ρ0(0))−
∫ t

0

Af(ρ0(s))ds = Mf (t)(5.1)

where Mf is a martingale with respect to the natural filtration induced by ρ0.
We notice that A is really a first-order differential operator in infinite dimensions

in the sense that A(fg) = fAg + gAf , if f, g ∈ D(A). In particular,

A(f2)− 2fAf ≡ 0, f ∈ D(A).

Therefore, by Exercise 29 on page 93 of Ethier and Kurtz [4], the quadratic variation

[Mf ,Mf ](t) =
∫ t

0

(Af2(ρ0(s))− 2f(ρ0(s))Af(ρ0(s)))ds ≡ 0,

implying Mf ≡ 0. In particular, taking f(ρ) = 〈ϕ, ρ〉 for ϕ ∈ C∞c (Rd × Rd),
this means that ρ is just a weak solution (Schwartz distributional sense) to (1.1).
Therefore we arrive at

Theorem 5.1. Suppose (4.4) holds. Then under Condition 1.2, stochastic process
{ρn : n = 1, 2, . . .} is tight, and every convergent subsequence converges in proba-
bility to a weak (i.e. Schwartz distributional) solution of (1.1) in the path space.

If we can show that weak solution to (1.1) is unique, then the above conclusion
can be strengthened from convergence of subsequence to convergence. We pursue
this with additional mild conditions on Φi,Ψi, i = 1, 2 next.

6. Uniqueness

Uniqueness of McKean-Vlasov type PDE with mean-field type interactions (such
as (1.1)) can be proved using probabilistic approach. See for instance, a review by
Méléard [8]. Here we follow an approach recently proposed by Kurtz [6].

We consider a countably infinite system of stochastic differential equations

ẋi(t) = vi(t)(6.1)

dvi(t) = ρX(t) ∗ ∇Φ̄1(xi(t))dt+∇Ψ̄1(xi(t))dt+
√

2a1/2(ρ(t);xi(t))dWi(t);

where a is given by (1.15). Note that a is non-negative definite square matrix,
therefore its square root is well defined. In the above equation,

ρ(t, dx, dv) = lim
n→+∞

1
n

n∑
j=1

δxi(t),vi(t)(dx, dv),(6.2)

and (W1,W2, . . . ,Wk, . . .) is a countably infinite sequence of i.i.d. standard Brown-
ian motions. The following additional smoothness condition on Φ2,Ψ2 will be useful
in this section.
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Condition 6.1. Ψ2(x; y),Φ2(x; y1, y2) have continuous derivatives in the x-variable
upto the third order. Moreover,

sup
x∈Rd;y1,y2∈S

|D1Φ2(x; y1, y2)|+ |D2Φ2(x; y1, y2)|+ |D3Φ2(x; y1, y2)| < +∞

and
sup

x∈Rd,y∈S

|D1Ψ2(x; y)|+ |D2Ψ2(x; y)|+ |D3Ψ2(x; y)| < +∞

where all derivatives are taken with respect to x.

With the above condition, by Theorem 5.2.3 of Stroock and Varadhan [9], and
by the defining structure of a in (1.15) (also noting (1.6)), a1/2 is Lipschitz in the
sense

|a1/2(ρ;x)− a1/2(γ, y)| ≤ C(|x− y|+ dW (ρ, γ)),

where dW is the order-0 Wasserstein metric on P(Rd ×Rd):

dW (ρ, γ) = sup
f∈Cb(Rd×Rd),|f |≤1,|f(x,v)−f(y,u)|≤|x−y|+|v−u|

∣∣∣∣ ∫
fdρ−

∫
fdγ

∣∣∣∣.(6.3)

Condition 6.2. ∇Φ̄1,∇Ψ̄1 : Rd 7→ R are Lipschitz continuous.

By Section 10 of Kurtz and Protter [7], we have the following

Lemma 6.3. Let Conditions 6.1 and 6.2 hold. Assume that the initial values are
random variables and {(xi(0), vi(0)) : i = 1, 2, . . .} is a stationary sequence. Then
existence and strong uniqueness holds for the system (6.1)–(6.2).

We denote E0 = Rd ×Rd. The state space of (6.1)-(6.2) is

(E0)∞ = {(~x,~v) = (x1, . . . , xn, . . . ; v1, . . . , vn, . . .) : (xk, vk) ∈ E0},

with the usual product topology. From the symmetry of labels in (6.1)-(6.2), if the
initial value (~x(0), ~v(0)) is exchangeable, then the solution (uniqueness follows from
Lemma 6.3) (~x(t), ~v(t)) for (6.1)-(6.2) is exchangeable for all t > 0. Let ρ be any
weak (Schwartz distributional) solution of partial differential equation (1.1). The
goal of this section is to apply the Markov mapping theorem of Kurtz [6] to show
that (Theorem 6.8)

ρ(t) = lim
n→+∞

n∑
k=1

δ(xi(t),vi(t)).

The above limit exists because that {(xi(t), vi(t)), i = 1, 2, . . .} is an exchangeable
sequence for all t > 0. Therefore, the uniqueness of ρ follows from the uniqueness
of (6.1)-(6.2) which is verified in Lemma 6.3. The method is known as particle
representation method. We provide the details next.

First, we express solution to (6.1)-(6.2) in terms of a martingale problem. We
consider

D(A0) = {g(~x,~v) = Πm
k=1ϕk(xk, vk) : ϕk ∈ C∞c (Rd ×Rd),m = 1, 2, . . .}.(6.4)

For each such g ∈ D(A0), we define

A0g(~x,~v) =
m∑

k=1

(Πj 6=kϕj(xj , vj))
(
vk · ∇xϕk(xk, vk)(6.5)

+ (η(~x,~v) ∗ ∇Φ̄1(xk) +∇Ψ̄1(xk)) · ∇vϕk(xk, vk)

+ a(η(~x,~v), xk) ·D2
vvϕk(xk, vk)

)
,
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where the convolution with∇Φ̄1 is made with respect to spatial marginal of measure
η(~x,~v) only. In the above, the map η : (E0)∞ 7→ P(E0) is defined as follow (in the
notation of [6], such map is denoted by γ): let γ0 ∈ P(E0) be arbitrary but fixed,

η(~x,~v) = lim
n→+∞

n−1
n∑

k=1

δ(xk,vk) ∈ P(E0), (~x,~v) ∈ (E0)∞

if the limit on the right hand side exists in the weak convergence of probability
measure sense; and η(~x,~v) = γ0 otherwise. By Ito’s formula, any solution to the
infinite system (6.1)-(6.2) is also a solution to the martingale problem

g(~x(t), ~v(t))− g(~x(0), ~v(0))−
∫ t

0

A0g(~x(s), ~v(s))ds = martingale.(6.6)

Let

H = {h(~x,~v) = f(x1, v1, . . . , xm, vm)− f(xσ1 , vσ1 , . . . , xσm
, vσm

) :
all permutation σ, f ∈ B((E0)m),m = 1, . . .}.

Assume additionally that the distribution ν0 ∈ P((E0)∞) for ((xk(0), vk(0)) : k =
1, 2, . . .) is exchangeable. Because of the symmetry in (6.1)-(6.2), exchangeability
of ((xk(t), vk(t)) : k = 1, 2, . . .) follows for all t > 0, therefore

E[h(~x(t), ~v(t))] = 0, t ≥ 0, h ∈ H.(6.7)

We call (~x,~v) a solution to the restricted martingale problem for (A0,H, ν0) in the
sense that both (6.6) and (6.7) are satisfied.

As in the setting of finite multi-dimensional diffusion processes, we also have the
following.

Lemma 6.4. Let (~x,~v) be a solution to the restricted martingale problem for
(A0,H, ν0) with trajectory in C(E0)∞ [0,+∞) and filtration {Ft : t ≥ 0}, on a prob-
ability space (Ω,F , P ). Then there exists countably infinite i.i.d Brownian motions
Wis and probability space (Ω̃, F̃ , P̃ ) with filtration F̃t ⊃ Ft and (~̃x, ~̃v) on probability
space (Ω̃, F̃ , P̃ ) with filtration F̃t. (~̃x, ~̃v) has the same distribution as (~x,~v), and
(~̃x, ~̃v) satisfies Ito’s equation (6.1)-(6.2).

Proof. The same proof of Proposition 3.1 and Theorem 3.3 in Chapter 5 of Ethier
and Kurtz [4] apply to this countably infinite system setting.

Therefore, by Lemma 6.3, we have

Lemma 6.5. Let the initial distribution ν0 be exchangeable. Any solution of the
restricted martingale problem for (A0,H, ν0), with trajectory in C(E0)∞ [0,+∞), is
unique.

We now define a transition probability measure α : P(E0) 7→ (E0)∞:

α(ρ; d~x, d~v) = Π∞k=1ρ(dxk, dvk).

We verify another condition required by Theorem 3.2, Corollaries 3.5, 3.7 of
Kurtz [6].

Lemma 6.6. The set η−1(ρ) = {(~x,~v) ∈ (E0)∞ : η(~x,~v) = ρ} satisfies

α(ρ; η−1(ρ)) = 1.(6.8)
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Proof. We note that if we take (E0)∞ to be a probability space endowed with the
product measure Π∞i=1ρ(dxi, dvi), then (6.8) holds because of the strong law of large
numbers.

We verify some regularity properties for A0, which is needed to apply a version
of the Markov mapping theorem (Corollary 3.7) of Kurtz [6].

From (6.4), D(A0) is closed under multiplication and separates points. It is
also a pre-generator in the sense of that paper because system (6.1)-(6.2) can be
approximated by similar systems when the Brownian motion terms are replaced by
centered i.i.d. Poisson processes. Furthermore, we have

Lemma 6.7. There exists a countable subset {gk} ⊂ D(A0) such that the graph of
A0 is contained in the bounded pointwise closure of the linear span of {(gk, A0gk)}.

Proof. Noting the form (6.5), we can always approximate the ϕjs by countable se-
quence of polynomials with rational coefficients. The collection of such polynomials
(and hence any finite products of them) is countable.

Theorem 6.8. [Uniqueness and particle representation of solution] Let Condi-
tion 1.2 hold. Define

C =
{(∫

g(~x,~v)α(·; d~x, d~v),
∫
A0g(~x,~v)α(·, d~x, d~v)

)
: g ∈ D(A0)

}
.

Then

1. D(A0) consists of functions of the form

f(ρ) =
∫
g(~x,~v)α(ρ; d~x, d~v) = Πm

k=1〈ϕk, ρ〉,

and

Cf(ρ) ≡
∫
A0g(~x,~v)α(ρ; d~x, d~v)

=
m∑

k=1

(Πj 6=k〈ϕj , ρ〉)
(
〈v · ∇xϕk + (ρ ∗ ∇Φ̄1 +∇Ψ̄1) · ∇vϕk

+ a(ρ, x) ·D2
vvϕk), ρ〉

)
.

2. D(C) is closed under multiplication, Cf2 = 2fCf and for each f ∈ D(C).
Any solution to the martingale problem for C satisfies

f(ρ(t))− f(ρ(0))−
∫ t

0

Cf(ρ(s))ds = 0,(6.9)

which is equivalent to (Schwartz distributional) solution of (1.1).
3. Let ρ ∈ CP(Rd×Rd)[0,+∞) be a solution to (6.9) with deterministic initial con-

dition ρ(0) = ρ0 ∈ P(E0). Let (~x,~v) be the unique solution (see Lemma 6.3)
to (6.1)-(6.2) with initial distribution (~x,~v) ∼ ν0(d~x, d~v) = Π∞i=1ρ0(dxi, dvi).
Assume that Conditions 6.1, 6.2 hold. Then the particle representation

ρ(t) = η(~x(t), ~v(t)).

holds. Consequently, solution to (6.9), in the path space CP(Rd×Rd)[0,+∞),
is unique. That is, weak (Schwartz distributional) solution to (1.1) is unique
in CP(Rd×Rd)[0,+∞).
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Proof. The first two parts of the theorem follows by direct verification. Since Cf2 =
2fCf , as in Section 5, the martingale appearing in the martingale problem for C
has to be zero and (6.9) follows.

Part three follows by applying Corollary 3.7 of Kurtz [6] and by noting exis-
tence and uniqueness for solution of restricted martingale problem for (A0,H, ν0)
is equivalent to existence and uniqueness for infinite system (6.1)-(6.2) with initial
condition (~x(0), ~v(0)) ∼ ν0.

Using the above conclusion, we can strengthen the existence result in Theo-
rem 5.1 to the following.

Theorem 6.9. Suppose (4.4) hold. Then under Conditions 1.2, and 6.1 and 6.2,
partial differential equation (1.1) has a unique solution in CP(Rd×Rd)[0,+∞). In
addition, the stochastic processes {ρn : n = 1, 2, . . .} in (1.12) converges in proba-
bility to such unique solution.
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