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Sequential tests and estimates after

overrunning based on p-value combination

W. J. Hall1,∗ and Keyue Ding2,†

University of Rochester and Queen’s University

Abstract: Often in sequential trials additional data become available after
a stopping boundary has been reached. A method of incorporating such in-
formation from overrunning is developed, based on the “adding weighted Zs”
method of combining p-values. This yields a combined p-value for the primary
test and a median-unbiased estimate and confidence bounds for the parame-
ter under test. When the amount of overrunning information is proportional
to the amount available upon terminating the sequential test, exact inference
methods are provided; otherwise, approximate methods are given and eval-
uated. The context is that of observing a Brownian motion with drift, with
either linear stopping boundaries in continuous time or discrete-time group-
sequential boundaries. The method is compared with other available methods
and is exemplified with data from two sequential clinical trials.
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1. Introduction

Suppose a sequential trial is carried out to test a null hypothesis about a real
parameter δ. Once the trial is concluded, a non-sequential trial is conducted, with
a test of the same hypothesis. The trials are connected in that the amount of
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information in the non-sequential trial may depend on data accumulated in the
sequential trial. How can the results of the two trials be combined, and a single
overall test constructed? The context is that the data, or incremental information,
in the non-sequential trial represent “overrunning,” from “lagged” data from the
sequential trial.

T. W. Anderson [1] considered the problem of incorporating lagged data in an
accept-reject rule following a sequential probability ratio test and proposed an (ap-
proximate) likelihood ratio test. In the context of modern-day clinical trials, the
problem of how to incorporate data from overrunning was raised and discussed by
Whitehead [16, 17], and he gives an admittedly ad hoc solution, later named the
deletion method [14]. This latter paper includes a comparison of the deletion method
with methods described herein, under certain limited conditions. Another solution
is presented in Hall and Liu [4] – actually, an extension of Anderson’s likelihood
ratio method – along with a discussion of the possible structure of overrunning in-
formation in a sequential clinical trial. However, this solution utilizes the maximum-
likelihood ordering of the sample space, requiring specification of the details of the
stopping rule beyond the time a stopping boundary was first reached, in contrast
to stagewise ordering. In this paper, we focus on procedures that do not require
such specification. See these references for further introductory material.

In the context of monitoring a Brownian motion with drift by periodic observa-
tions – the context considered herein – Whitehead [16] proposes treating the final
analysis that incorporates the overrunning data as if it were a scheduled analysis,
but ignoring the analysis that led to stopping, and hence involving a deletion. He
uses a stepwise ordering (as defined in [6], for example) for computing p-values and
carrying out further inference.

Here we provide another solution, based on the “adding weighted Zs” method of
combining p-values (Stouffer et al. [15], Mosteller and Bush [10], Liptak [7]); one p-
value is derived from the sequential experiment (without the overrunning) and the
other is based solely on the incremental overrunning data. We recommend weighting
the two p-values using observed information. This is fully legitimate only if (i) the
amount of information in the non-sequential trial (overrunning) is proportional to
that available at termination of the sequential trial or (ii) the sequential trial was
actually nonsequential (and test statistics are normally distributed). For discussion
of (i), see [4], Section 2.

Another issue that arises in popular group-sequential trials is that if stopping
does not occur until the last scheduled analysis, such an analysis will ordinarily not
be done until lagged data are available, in which case a p-value will be computed
by standard group-sequential methods with a re-scheduled final analysis. (This is
consistent with the deletion method.) A modification of our method, which combines
p-values for such trials only when stopping early, is evaluated numerically.

Another application of the combination method could be to a double sampling
study in which the second sample size depends on the outcome – e.g., on the ob-
served variability – of the first sample. These methods are also appropriate for a
meta-analysis of two (or more) experiments, whether sequential or not.

Brannath, Posch and Bauer [2] proposed p-value combination rules in a differ-
ent context, namely that of adaptive group-sequential sampling. In their setting,
allowance is made for the possibility of not carrying out the second stage. (In our
context, this would constitute “preventing overrunning.”) If the second stage is
carried out, the two p-values are combined in a way that (i) preserves an overall
significance level and (ii) recognizes the stopping rule. As here, the second stage
p-values may be conditional on results from the first stage. They extend to multiple
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stages recursively. Numerical integration may be required.
The “adding weighted Zs” combination method is described in Section 2 and

extended to an ordered sequence of possibly dependent experiments. In Section 3,
this method is applied to sequential clinical trials with overrunning. Special atten-
tion is given to the case of a constant amount of overrunning information, the case
considered in [14], or to an amount proportional to the amount available at the end
of the sequential trial. It is shown that the latter assumption justifies the use of
weights related to the observed (and hence random) amounts of information. Oth-
erwise, the use of such random weights leads to a null distribution of the p-value
which is only approximately uniform. Still, we recommend this usage so long as the
approximation is adequate.

In Section 4 we show how to use the combination p-value method to compute
estimates and confidence intervals, and in Section 5 provide formulas for evaluating
the true confidence coefficients associated with these methods, thus enabling an
evaluation of approximations noted above. Some evaluations are summarized in
Section 6.

In Sooriyarachchi et al. [14], the issue of reversals in the conclusions after in-
corporating overrunning, from rejection to acceptance of a null hypothesis or vice
versa, was raised. They found, in the cases treated numerically there, that both the
deletion method and the combination method might lead to an uncomfortable level
of reversals, with the deletion method doing so less frequently. They also noted that
both methods (in cases treated) sometimes lead to reduced power. We consider
these issues in Section 7 and indicate a modification of the combination method
that reduces these effects.

The methods are applied to data from the MADIT trial [8] in Section 8 – for
both the actual linear-boundary design and for an imagined group-sequential ver-
sion. Results are compared with those from the deletion and ML-ordering methods.
Results from a second example [9] are briefly summarized.

Some final comments appear in Section 9, including a summary comparison of
the alternative methods for incorporating overrunning.

2. Combining p-values by adding weighted Zs and an extension

We suppose some potential data X are to be available for testing a null hypothesis
about a real parameter δ belonging to an interval Δ. For each δo ∈ Δ, we consider a
test of δ = δo versus δ > δo, with p-value p(x; δo) when X = x is observed. Suppose,
for each δo, P ≡ p(X; δo) is uniformly distributed on (0,1) when δ = δo and that,
for each x, p(x; δ) is increasing in δ. Then P ≡ {p(·; δo)|δo ∈ Δ} defines a proper
family of p-values for this testing problem.

This is an overly strict definition. We have restricted attention to test func-
tions with continuous distributions, and stochastic ordering (increasing or non-
decreasing) of p-values would allow for differing sample spaces, but the conditions
given meet our application. We usually omit the word “proper.”

The ordering is needed to avoid possible inconsistencies. Data considered to
be “more extreme” than that observed should have higher probability under an
alternative hypothesis than under the null. Moreover, it facilitates construction of
consistently defined confidence bounds. Simply equate the p-value for testing δo

to γ (1 − γ, resp.) and solve for δo to obtain a lower (upper, resp.) confidence
bound with confidence coefficient 1−γ. Choosing γ = 0.5 yields a median-unbiased
estimate.
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Suppose p1 and p2 are independent p-values for the same null hypothesis, and let
z(u) ≡ Φ̄−1(u) with Φ̄(z) = 1−Φ(z) and Φ being the standard normal distribution
function. Let w1 and w2 be positive numbers for which w2

1 + w2
2 = 1. Then

(2.1) p ≡ Φ̄ (w1 z(p1) + w2 z(p2))

is the adding weighted Zs combined p-value [7, 10, 12, 15]; also see [13]. It is readily
seen that the argument of Φ̄ in (2.1), with pi replaced by the random variable Pi, is
distributed as standard normal under the null hypothesis, and hence P in (2.1) is
distributed as U(0, 1). Moreover, p tends to be small whenever both p1 and p2 are
small. More precisely, it is seen to be proper whenever p1 and p2 are proper – the
pi’s are increasing in δo, so the z(pi)’s are decreasing, as is any positively-weighted
linear combination, and hence p is increasing in δo.

The interpretation should be clear: z(pi) is a standardized normal deviate that
corresponds to the test statistic on which pi is based (whether or not pi was based
on a normally distributed statistic), and the argument of Φ̄ in (2.1) represents a
(weighted) pooling of normal deviates for the two independent tests, with p the
resulting p-value.

This combination method may be extended to settings where p1 and p2 are
derived from overlapping data sets but p2 is a conditional p-value for each subset
of data on which p1 is based. A possible context is that a second experiment was
designed based on the outcome of the first experiment, and a conditional test was
used in the second experiment. Formally,

Proposition 2.1. Suppose p1 ≡ p1(x; δ) and p2 ≡ p2(x, y; δ), and P1 ≡ {p1(·; δo)|δo

∈ Δ} is a family of p-values and P2 ≡ {p2(x, ·; δo)|δo ∈ Δ} is, for each X = x,
a family of conditional p-values. Then P2 is a family of unconditional p-values,
p1(X, δo) ⊥ p2(X, Y ; δo) (independent) for each δo, and (2.1) defines a family of
p-values.

Proof. Since p2(X, Y ; δo) is conditionally U(0, 1) for every X, it is unconditionally
U(0, 1), and the needed monotonicity also follows. For each δo, the joint distribution
function of (P1, P2) is

Pr{P1 ≤ u1, P2 ≤ u2} = E
{
1(p1(X) ≤ u1) · E

[
1(p2(Y, X) ≤ u2

∣∣X]}
= E

{
1(p1(X) ≤ u1) · u2

}
= u1 u2 ,

from which independence follows, and this is sufficient for the claim about p.

Now what about the weights? Ordinarily, they might be related to sample size
or information. Specifically, if the pi’s are derived from tests based on means of ni

normally distributed observations (with common variance), then a combined p with
wi ∝ √

ni would yield the same p as that from a pooling of the two samples. So
far, we have only assumed the weights to be positive constants – depending neither
on δo nor on the data. Here are some partial extensions; examples of each appear
in the next section.

The weights may depend on δo without affecting the null distribution of P in
(2.1), but the monotonicity in δo may be destroyed except for special choices.

The weights may be random (depending on X) without affecting the monotoni-
city in δo, but would typically disturb the uniformity of the null distribution of P .

It should be emphasized that all p-values considered above are for one-sided
alternatives. After including overrunning, the usual convention of doubling them
for 2-sided alternatives may be appropriate.
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Finally, we note that all of this can be directly extended to an ordered set of
several p-values, each involving new data and conditional on all past data, and
combined in the “adding weighted Z’s” fashion.

Specifically, let pk be a p-value for the incremental stage-k data, conditional on
data from all prior stages. Then define a stage-k combination p-value by replacing
the argument of Φ̄ in (2.1) by

∑k
i=1 wk:iz(pi) with stage-k weights all positive,

satisfying
∑k

i=1 w2
k:i = 1, and w2

k:i = w2
k−1:i · (1−w2

k:k) for i < k. Equivalently, (2.1)
may be applied recursively, replacing p1 by a combined p from earlier stages with
weight w1 for this new p1 and w2 for the incremental data, with w2

1 + w2
2 = 1.

3. Incorporating overrunning by combining p-values

We now assume a sequential experiment takes place, resulting in an observation of
(T, X), say. We focus on the context of observing a Brownian motion X(t) with
drift δ, with a stopping time T and X ≡ X(T ) upon stopping, but other contexts
may be treated similarly. After stopping, some additional data become available,
represented by further observation of the process for to = to(T, X) units of time.
Conditional on to, a sufficient statistic for the overrunning data is the increment
Y observed during the overrunning time increment to. In other words, a sequential
experiment is followed by a non-sequential one, with sample size (observation time)
depending on the outcome of the sequential trial. There may be additional random-
ness in to; it is sufficient to let to(t, x) be the conditional expectation of overrunning
information, given (T, X) = (t, x). See ([4], Section 2) for discussion supporting to
being a constant, ∝

√
t, or ∝ t as possible approximations to reality.

Upon reaching a stopping boundary, a p-value p1 for a null hypothesis about the
drift parameter is defined: δ = δo versus δ > δo. And at the end of overrunning,
a conditional p-value p2 is simply Φ̄

(
(y − δoto)/

√
to

)
, given to = to(t, x). A com-

bination p-value is therefore given by (2.1). (Here, (T, X) plays the role of X in
Section 2.) Hence,

Corollary 3.1. Suppose w1 and w2 are positive constants for which w2
1 + w2

2 = 1.
Then
(3.1)

p(t, x, y; δo) ≡ Φ̄
(
w1 z(p1(t, x; δo)) + w2(y − δoto)/

√
to

) ∣∣∣
to=to(t,x)

, δo ∈ Δ ,

defines a family of p-values.

But how should the weights be chosen? It is tempting to choose them to be
proportional to the square-root of information in the respective parts of the exper-
iment. Then each summand in (3.1) would have variance or conditional variance
equal to the information in that part of the experiment. Using expected informa-
tion, w2

1 = Eδo(T )/[Eδo(T ) + Eδoto(T, X)] and w2
2 = 1 − w2

1. But, as noted in
Section 2, this would not typically preserve the needed monotonicity of p(δo) in
(3.1). Moreover, knowledge of the functional form of the dependence of to on (t, x)
would be needed. If to were constant, this would yield

p(t, x, y; δo) = Φ̄

(
[Eδo(T )]1/2 z

(
p1(δo)

)
+ y − δoto

[Eδo(T ) + to]1/2

)
.

This could be used as a p-value for a single null hypothesis, but it would not
be suitable for construction of confidence bounds, unless Eδo(T ) was replaced by
Eδ′

o
(T ) for a fixed δ′o. Because of these limitations, we abandon this approach.
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Suppose instead we use the square-roots of observed information, namely
√

t and√
to, yielding

p(t, x, y; δo) = Φ̄

(
t1/2 z

(
p1(t, x; δo)

)
+ y − δoto(t, x)

[t + to(t, x)]1/2

)
.(3.2)

Monotonicity in δo (for each (t, x, y)) is maintained, but the uniformity of the null
distribution would appear to be in doubt. However, to compute p, no knowledge of
the dependency structure of to is required, only its observed value.

We now consider the special case of (3.1) and (3.2) with to ∝ t, say to = c t. Since
w2

1 = t/(t + ct) = 1/(1 + c) and w2
2 = c/(1 + c), this yields constant weights; and c

is known once T = t and to are observed. Hence, the use of observed information
in this case is justified.

Corollary 3.2. If, for some constant c, to(x, t) = ct for all (x, t), then (3.2) defines
a family of p-values.

For the group-sequential case with up to K analyses and stagewise ordering, we
modify the combination p-value (3.2): For testing δo, with tok ≡ to(k), the modified
p-value is defined as
(3.3)

p∗(tk, x, y; δo) =

{
Φ̄

(
[t1/2

k z(p1(tk, x; δo)) + y − δotok]/(tk + tok)1/2
)

if k < K

p1(tK + toK , x + y; δo) if k = K

where p1(t, x; δo) is the group-sequential stagewise p-value for testing δ = δo versus
larger values when the analyses are scheduled at t1, . . . , tK−1, t

o
K ≡ tK + toK with

early-stopping sets Sk (k < K) (each the complement of an interval). This matches
the deletion method when stopping has not occurred early.

For a group-sequential ML-ordering, the ML-ordering method [4] may be more
suitable.

We show in Sections 5 and 6 that use of p in (3.2) or (3.3), for several choices of
the dependency of to on (t, x) and two popular sequential designs, for constructing
confidence bounds and intervals may yield adequately accurate confidence coeffi-
cients. This leads us to recommend the use of (3.2) or (3.3) as if it were a bona
fide combination p-value, if the design chosen and the likely form of dependency
are similar to those considered in Section 6.

One last variation permits further adjustment of the weighting: Use weights with
squares proportional to T and ρ to(T ) for a specified weighting factor ρ > 0. For
motivation, see Section 7.

4. Computing p-values and confidence bounds

Here we act as if to ∝ t, and discuss the use of (3.2) and (3.3) for obtaining p-values
and, by inversion, confidence bounds and intervals.

For any particular null value δo, the combined p-value p(δo) may be computed
from (3.2) or (3.3) with t (or tk), x, y and to the observed values, and using software
that enables computation of p1(δo). For general linear boundaries, such software
is available from the authors (based on formulas in [3]), and the PEST software
[11] provides such output for a limited selection of linear boundaries and group-
sequential modifications of them. For group-sequential boundaries with stagewsie
ordering, a program– built around software for p1(δo) from Jennison [5] – is available
from the authors.
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To obtain an upper confidence bound with confidence coefficient γ, we need to
solve p(δ) = γ for δ = δ̂U , or equivalently, solve z(p(δ)) = z(γ). A little algebra
leads to the equivalent problem – except in the group-sequential case with t = tK –
of solving δ−h(δ)−[y−

√
to z(γ)]/to = 0 where to ≡ t+to and h(δ) ≡

√
t z(p1(δ))/to.

Starting from a trial solution δo, and computing h(δo) and h(δo + ε) for some small
ε, an improved solution is

δ ≡ δo − δo − h(δo) − [y −
√

to z(γ)]/to
1 + [h(δo) − h(δo + ε)]/ε

.

We find that two or three iterations provide good accuracy. (When t = tK , we only
need solve p1(toK , x + y; δ) = γ.) Alternatively, a trial-and-error approach works
quite satisfactorily.

5. True confidence coefficients

We now evaluate the true confidence coefficient for a confidence bound or interval
determined by using (3.2), whether or not to is proportional to T . Let δ̂γ be an upper
confidence bound determined by the method of the previous section for a nominal
confidence coefficient γ. The question is: what is the true confidence coefficient?
We need to evaluate, for given γ and δ, qγ(δ) ≡ Pδ( δ < δ̂γ ) and determine
qo
γ ≡ infδ qγ(δ).

As noted in Section 4, δ̂γ is the solution to δ − h(δ) = [y −
√

toz(γ)]/to ≡
g(y, to, to, γ). Since h is decreasing in δ, the left side is increasing in δ, and hence
δ < δ̂γ iff δ − h(δ) < g(y, to, to, γ). This latter event is equal to the event (y −
δto)/

√
to > [−

√
t z(p1(t, x; δ)) +

√
to z(γ)]/

√
to. Therefore, conditioning on (T, X)

and hence on To, we have

(5.1) qγ(δ) = EδPδ(δ < δ̂|T, X) = EδΦ

(
T 1/2 z(p1(T, X; δ)) − T o1/2 z(γ))

T
1/2
o

)
.

If this combination p-value were bona fide – that is, if To ∝ T – the result would be
γ identically in δ.

The true confidence coefficient for an (equal-tail) confidence interval based on
(3.2) may be obtained similarly. For an interval with nominal confidence coefficient
γ, the true confidence coefficient is Qo

γ ≡ infδ Qγ(δ) where

Qγ(δ) ≡ q(1−γ)/2(δ) − q(1+γ)/2(δ) .(5.2)

For the group-sequential modification (3.3), (5.1) needs to be modified when T =
TK .

6. Computational support for approximations

Here we report on some numerical evaluations of the validity of using (3.2) or (3.3)
when to is not proportional to the observed stopping time t, and the validity of
using the combination method only when stopping after an interim analysis. For
various special cases and many values of δ, we computed (5.1) for γ = 0.5 and (5.2)
for γ = 0.9 and 0.95 to see how close they are to the respective nominal values of
0.5, 0.9 and 0.95. We summarize some of the findings here.
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A linear-boundary design: Consider triangular boundaries for testing δ = 0 versus
δ = 1 with intercepts ±5.99, slopes 0.75 and 0.25, and apex at t = 23.97. This
design has both error probabilities 0.025. The design may be adapted for testing
δ = 0 versus �= 0 (as prescribed by the PEST software). The resulting one-sided
rejection region is the upper boundary for which the power at δ1 ≡ 0.8233 is 0.9.
The expected stopping time is 7.776 at δ = 0 (or 1) and 9.382 at δ1, and has its
maximum of 11.217 at δ = 0.5.

We considered to ∝ T , to constant and to ∝
√

T . For the first case, we simply
verified the accuracy of our computer program, finding that the distribution of the
p-value was exactly uniform, and that the true confidence coefficients matched the
nominal ones exactly.

For the constant case, we considered to = c Eδ1(T ) with c ranging from 0.1 to
0.5. Here are selected results:

c = 0.1 c = 0.5
0.487 < q.5 < 0.513 0.471 < q.5 < 0.529
0.900 < Q.9 < 0.908 0.899 < Q.9 < 0.917
0.950 < Q.95 < 0.955 0.949 < Q.95 < 0.960

For c = 0.1, the true confidence coefficients Qo
γ for nominal 90% and 95% confidence

intervals are therefore correct (to 3 decimal places), and only slightly below the
nominal values for c = 0.5. However, the median-unbiased estimate may have a
few percentage points of median-bias, depending on the true δ. We also found that
q.5 < 0.5 for δ > 0.5 and vice versa. Computations for c-values between 0.1 and
0.5 yielded bounds between the respective ones in the display above. Results for
to ∝

√
T were uniformly better than those for to constant.

An O’Brien–Fleming group-sequential design: Consider an O’Brien–Fleming two-
sided design for testing δ = 0 with significance level 0.05 and power 0.9 at δ = ±1,
with a maximum of 5 analyses. We assume equally spaced interim analyses, at 0.2,
0.4, 0.6, 0.8 times t5 ≡ 10.781, with boundary values of ±6.6988 (obtained from [6]).
Again, we considered to ∝ T for the unmodified combination p-value to confirm the
accuracy of our programs. For the modified p, we considered to constant, namely
= c t5, and to = c tk; in each case, c ranged from 0.02 to 0.1.

Here are some of the results:
to = c t5 to = c tk

c = 0.02 c = 0.1 c = 0.02 c = 0.1

qo
.5 0.475 0.445 0.478 0.451

Qo
.9 0.894 0.887 0.894 0.888

Qo
.95 0.947 0.943 0.947 0.943

Again, although qo
.5 may be as small as 0.44 (and by symmetry 0.44 < q.5(δ) < 0.56),

we found that q.5 was usually within ±0.01 of 0.5. Indeed, this occurred for all but
1%, 7%, 1% and 4%, respectively (reading from left to right in the display above)
of the range of δ-values within ±2.5.

7. Reversals and power

Sooriyarachchi et al. [14] raised concern about the frequency of reversals of ac-
ceptance and rejection conclusions after inclusion of overrunning information, but
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stressed their desire not to ignore such information. In simulation studies of the
deletion and combined p-value methods, with constant amounts of lagged data (in-
dependent of the results at the time of stopping), they found levels of reversals that
they considered worrisome, especially for the combination method – perhaps 3 or 4
percent. However, in popular group-sequential designs such as O’Brien–Fleming,
reversals were rare and only defined when the trial stopped early, as an analysis at
a final scheduled time would ordinarily await lagged data before execution.

Of more concern to us, is their finding that both methods may lead to reductions
in power. Intuitively, when a rejection occurs “early”, overrunning can reverse it but
the chances of compensating with reversals in the other direction may be minimal.

With constant overrunning information, our computations (not reported here)
confirm theirs, but we find reversals to be somewhat less frequent when overrunning
information increases with stopping times, and losses in power are then rarer.

A possible compromise method is as follows: down-weight the overrunning p-
value in the combination formula. By introducing a factor ρ (see end of Section
3), it is possible to maintain power and depress the frequency of reversals but
still not ignore the lagged data completely. However, computations show that some
situations will require extensive down-weighting (small ρ). Choice of a suitable ρ will
require computational trial-and-error, with assumptions about overrunning needed.
For this purpose, we provide the following formulas.

When the true drift is δ (and stopping is in continuous time), the probability
of rejection upon stopping followed by acceptance after inclusion of overrunning,
when to ∝ t, is
(7.1)

Pδ(R → A) =
∫ tmax

0

Φ
{

[(1+ρc)/(ρc)]1/2zα− [1/(ρc)]1/2z1(U, t)−δ(ct)1/2
}

dPU
δ (t)

with z1(U, t) being the standard normal deviate for which the right-hand-side tail
area beyond it is PU

0 (t) (the p-value when the upper boundary U is crossed at time
t), PU

δ (t) being the probability of crossing the upper boundary before the lower one
prior to t, and α being the one-sided significance level for testing δ = 0. For group-
sequential tests, the integrator in (7.1) is dPU

δ (x, t), indicating a need to integrate
over x-values where t = tk and the upper boundary has been reached, but t may
be restricted to {tk|k < K} since reversals at a final analysis have no role.

Similarly, Pδ(A → R) is given by (7.1) with U replaced by L (for lower boundary)
and Φ replaced by Φ̄. Finally, the power after inclusion of overrunning, when the
power of the original design is pow(δ), is

ovpow(δ) = pow(δ) − Pδ(R → A) + Pδ(A → R) .

(Software is available from the authors.)

8. An example: the MADIT study

MADIT (Multicenter Automatic Defibrillator Implantation Trial [8]) was a ran-
domized clinical trial conducted to evaluate the effectiveness of an implanted de-
fibrillator compared with conventional drug therapy to reduce mortality associated
with ventricular arrhythmias. Monitoring was based on the logrank statistic plot-
ted against its estimated variance [17]. This behaves like a Brownian motion with
drift δ = − log(HR) where HR is the hazard ratio of the treatment-to-control arms
(assuming proportional hazards). The essential features were reviewed in [4] and
are summarized here.
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A triangular design was used that assures a two-sided significance level of 5%
and a power of 90% at a hazard ratio of 0.537 (drift = 0.6218). Monitoring was
carried out weekly over the five years of the trial, thereby yielding nearly-continuous
observation of the logrank process. The stopping boundaries were ut = 7.935+0.189t
and lt = −7.935 + 0.566t, with the early part of the lower boundary (lt) a rejection
region for superiority of the control arm.

Interpolating, the upper boundary was reached at t = 12.145 with x = 10.230,
later corrected to t = 12.037 and x = 10.210. The incremental coordinates for
overrunning were to = 1.240 and y = 2.957, showing an upturn in the sample path
after reaching the boundary.

Respective p-values and estimates of the drift and of the HR are presented below,
contrasting results of analyses without and with the use of the overrunning data.
Values in square brackets are those reported in [4] for the ML-ordering method,
assuming to ∝

√
t ; with linear boundaries and no overrunning, stepwise ordering

and ML-ordering are identical.

overrunning 2-sided p med-unb-est 95% confidence interval

Inference about the drift δ
without 0.0084 0.786 (0.204, 1.361)
with 0.0009 [0.0029] 0.938 [0.939] (0.388, 1.484) [(0.329, 1.543)]

Inference about the hazard ratio HR = exp(−δ)
without 0.0084 0.456 (0.256, 0.815+)
with 0.0009 [0.0029] 0.391 [0.391] (0.227, 0.678) [(0.214, 0.720)]

Both methods reflect the upturn in the sample path during overrunning as the
“with’ p-values are smaller and the estimates farther from the null values. But the
combination method gives the smaller p-value and narrower confidence intervals;
this may reflect the different orderings being used by the two methods.

Values reported in [8] were based on Whitehead’s deletion method ; they are
identical to the “without overrunning” values in the display above, as the deletion
method essentially ignores overrunning when the path continues in a similar direc-
tion and there is near-continuous monitoring. (It was this observation that inspired
the development of alternative methods for incorporating overrunning.) In such set-
tings, the deletion-method p-value cannot be smaller than when computed upon first
hitting an upper boundary, irrespective of the nature of the overrunning data. (For,
when reaching the upper boundary at time t, with the prior analysis a short time
earlier, at time t− say, and then overrunning to xo at a later time to, the deletion one-
sided p is the null probability of {T ≤ t− andX(T ) ≥ uT }∪{T ≥ tandX(to) ≥ xo}.
These two events are disjoint, and the former is virtually the extremal set without
overrunning.)

We now consider a group-sequential variation on MADIT as described in [4]. We
pretended that an O’Brien–Fleming 5-analysis design was used for testing δ = 0
versus �= 0 with power 80% at a HR of 0.537. It would have stopped at the third
interim analysis with the results obtained upon hitting the boundary in MADIT.
Results of analyses are reported below; for comparison, values in square brackets
are those reported in Table 2 of [4] using the ML-ordering method and assuming
to ∝

√
t. Values for the deletion method – which treats the analysis after overrunning

as a replacement for the third scheduled analysis – are also given.
In each case – i.e., without or with overrunning – results from the group-sequential

combination method indicate a more significant departure from the null value of
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HR = 1 than do those by the group-sequential ML-ordering method. At least for
the “without’ results, this is attributable to the different orderings used. This time
the deletion method gives results similar to those from ML-ordering. (These results
are not directly comparable to those in the previous table since the pretended
group-sequential design has reduced power.)

overrunning 2-sided p med-unb-est of HR 95% confidence interval

Group-sequential inference about the hazard ratio
without 0.0039 [0.0041] 0.431 [0.468] (0.244, 0.762) [(0.295̄, 0.775̄)]
with 0.0004 [0.0011] 0.373 [0.384] (0.217, 0.641) [(0.221, 0.672)]

Deletion method 0.0014 0.384 (0.221, 0.680)

Here is a brief summary of results from a second defibrillator trial, MADIT-II [9],
in which the combination method was pre-specified. The design was again triangular,
with a 5% 2-sided significance level and power 95% at a HR of 0.627: ut = 11.77+
0.1273 t and lt = −11.77 + 0.3819 t. This time (t, x, to, y) = (45.415, 17.551, 0.483,
1.441). The results were:

overrunning 2-sided p med-unb-est of HR 95% confidence interval

Inference about the hazard ratio in MADIT-II
without 0.028 0.708 (0.525, 0.962)
with 0.016 [0.023] 0.688 [0.689] (0.511, 0.932) [(0.504, 0.948)]

Again, the deletion method of incorporating overrunning would have agreed with the
“without” analysis, and results from the ML-ordering method (in square brackets)
are mainly intermediate.

9. Final remarks

Proposition 1 applies to other methods of combining p-values, such as Fisher’s
summing of − log(1 − pi). (For a description of such methods, see [12] or [13].)
We chose the “adding Zs” method for two reasons: (i) It lends itself naturally to
weights – it would be unreasonable to give equal weights to a long trial and a small
amount of overrunning – and (ii) it reduces to standard normal-theory methods
when the sequential component is replaced by a non-sequential one – equivalently,
if a naive analysis is done after stopping rather than one recognizing the stopping
rule.

Here are some of the pros and cons of various methods for incorporating over-
running:

(a) Deletion method: Not suitable for near-continuous monitoring. Ignores the
fact that, at the boundary-hitting stage, the monitoring statistic was in a stopping
region but is the natural approach in a group-sequential trial when early stopping
has not occurred. Simple to use. Results in approximate p-values and final inference.
Limited computations show that a loss in power may occur.

(b) Combination p-value method: Makes direct use of the analysis that led to
stopping. Approximate except when to ∝ T , and even then for common group-
sequential designs. Uses stage-wise ordering, and hence free of any direct dependence
on future stopping boundaries. Needs no formal assumption about the form of to.
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Computations show a loss in power may occur. May be modified to reduce the
chance of reversal after overrunning and loss in power.

(c) ML-ordering method: Based on a minimal sufficient statistic, and hence
ignores which boundary was first reached and when. Exact, up to needed assump-
tions about overrunning information (and Brownian motion approximation). Re-
quires an assumption about the form of to(t), but not very sensitive to it in the
practical cases examined. Uses ML-ordering and hence depends on stopping bound-
aries beyond those when boundaries were first reached.

Sooriyarachchi et al. [14] conclude that (a) is preferable although they only
considered constant amounts of overrunning whereas our focus has been on settings
where the amount of overrunning information is likely to increase with increased
stopping times. They highly stress the possibilities of reversals, but such possibilities
cannot be avoided once one agrees to utilize lagged data. The chances can be
reduced within the combination method by reducing the weight given to lagged
data, but this would need to be considered in advance of the trial.

We recommend (c) in settings where the design is likely to be followed closely.
A numerical study of reversals and power with the ML-ordering method will be
presented elsewhere. Otherwise, we think the combination p-value method, possibly
with a down-weighting of overrunning information, is a competitor worthy of con-
sideration, especially when overrunning increases with increasing stopping times.

We encourage investigation of the combination method in other settings, includ-
ing meta-analyses and double sampling.
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