THE NORMS OF POWERS OF FUNCTIONS IN THE VOLTERRA ALGEBRA, II

G. A. Willis

In this note we provide an example of a weight sequence $\left\{\omega_n\right\}_{n\geq 1}$ which satisfies (i) $\omega_n\geq 0$, (ii) $\omega_{n+m}\leq \omega_n\omega_m$, (iii) $\omega_n^{1/n}\to 0$, and (iv) $\omega_n^{1/n}$ is monotone decreasing, but for which there is no positive $\mu\in (L^1[0,1],*)$ with $\omega_n=\|\mu^n\|$ for every n. This answers the problem of [1], whereas, as detailed there, the example of [2] is for a different, albeit related, problem.

LEMMA. If $\mu \in (L^1[0,1],*)$ is positive and non-nilpotent, then $\frac{\|\mu^{2n}\|}{\|\mu^n\|^2} \to 0$ as $n \to \infty$.

Proof. It is shown in [1] that $\|\mu^{n}\|^{\frac{1}{n}}$ is monotone decreasing. Hence, $\frac{\|\mu^{n+1}\|}{\|\mu^{n}\|} = \frac{(\|\mu^{n+1}\|^{\frac{1}{n+1}})^{n+1}}{(\|\mu^{n}\|^{1/n})^{n}}$

$$\begin{split} &= \left[\frac{\|\mu^{n+1}\|^{\frac{1}{n+1}}}{\|\mu^{n}\|^{1/n}}\right]^{n} \cdot \|\mu^{n+1}\|^{\frac{1}{n+1}} \\ &\leq \|\mu^{n+1}\|^{\frac{1}{n+1}} \to 0 \ \text{as} \ n \to \infty, \end{split}$$

that is, the sequence $\left(\|\mu^{n}\|\right)_{n=1}^{\infty}$ is regulated.

Now let $J = \{f \in L^1[0,1]: \lim_{n \to \infty} \frac{\|f*\mu^n\|}{\|\mu^n\|} = 0\}$. Then J is a closed ideal in $(L^1[0,1],*), [2]$. Since μ is not nilpotent, $\inf(\operatorname{supp}(\mu)) = 0$, and since $\mu \in J$ it follows that $J = L^1[0,1]$. Therefore, $\lim_{n \to \infty} \frac{\|f*\mu^n\|}{\|\mu^n\|} = 0$ for every $f \in L^1[0,1]$. If p is a probability measure with support contained in $(0,\frac{1}{2})$, then $\|p*\mu^n\| \ge \|\delta_{1/2}*\mu^n\|$ and so

$$\lim_{\mathbf{n}\to\infty}\frac{\|\boldsymbol{\delta}_{1/2}*\boldsymbol{\mu}^{\mathbf{n}}\|}{\|\boldsymbol{\mu}^{\mathbf{n}}\|}=0.$$

For each n, write $\mu^n = \mu_1^{(n)} + \mu_2^{(n)}$, where $\mu_1^{(n)} = \mu^n \big|_{[0,1/2]}$ and $\mu_2^{(n)} = \mu^n \big|_{[1/2,1]}$. Then $\|\mu_1^{(n)}\| = \|\delta_{1/2} * \mu^n\|$ and $\mu^{2n} = (\mu_1^{(n)})^2 + 2\mu_1^{(n)} * \mu_2^{(n)}$. Therefore,

$$\begin{split} &\frac{\|\mu^{2n}\|}{\|\mu^{n}\|^{2}} = \frac{\|(\mu_{1}^{(n)})^{2}\| + 2\|\mu_{1}^{(n)}*\mu_{2}^{(n)}\|}{\|\mu^{n}\|^{2}} \\ &\leq \frac{\|\delta_{1/2}*\mu_{n}\|^{2} + 2\|\delta_{1/2}*\mu^{n}\|\|\mu_{2}^{(n)}\|}{\|\mu^{n}\|^{2}} \\ &\leq \left[\frac{\|\delta_{1/2}*\mu^{n}\|}{\|\mu^{n}\|}\right]^{2} + 2\frac{\|\delta_{1/2}*\mu^{n}\|}{\|\mu^{n}\|} \longrightarrow 0 \ \ \text{as} \ \ n \to \infty. \end{split}$$

Now let $\{M_n\}_{n=1}^{\infty}$ be any positive sequence which increases to ∞ . Set $\omega_n = e^{-nM_k}$ if $4^{k-1} \le n < 4^k$. Then $\{\omega_n\}_{n=1}^{\infty}$ satisfies (i)-(iv) but for each $k=1,2,3,\ldots$

$$\omega_{2.4}^{k} = e^{-2.4^{k} M_{k+1}} = \left[e^{-4^{k} M_{k+1}}\right]^{2} = (\omega_{4k}^{k})^{2},$$

and so
$$\frac{\omega_{2n}}{\omega_n^2} \not\longrightarrow 0$$
.

REFERENCES

- [1] G. R. Allan, An inequality involving product measures, in *Radical Banach algebras and automatic continuity*, 277–279, Lecture Notes in Mathematics 975, Springer-Verlag, Berlin and New York, 1983.
- [2] G. A. Willis, The norms of powers of functions in the Volterra algebra, in Radical Banach algebras and automatic continuity, 280-281, Lecture Notes in Mathematics, 975, Springer-Verlag, Berlin and New York, 1983.

Department of Mathematics Research School of Physical Sciences Australian National University Canberra ACT 2601 Australia