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The Arf-Kervaire problem in algebraic topology:
Sketch of the proof

Michael A. Hill, Michael J. Hopkins, and Douglas C. Ravenel

Abstract. We provide a sketch of the proof of the non-existence of Ker-
vaire Invariant one manifolds using equivariant homotopy theory [15].
A treatment of the statement and history of the problem can be found in
“The Arf-Kervaire problem in algebraic topology: Introduction”. Our
goal here is to introduce the reader to the techniques used to prove the
result and to familiarize them with the kinds of computations needed.
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1. Introduction

The goal of this exposition is to provide a somewhat detailed sketch of
the major points of our proof of the following theorem.

Theorem 1.1. Let θj ∈ π2j+1−2S
0 be represented by a framed manifold

of Kervaire invariant one. If θj is non-zero, then j ≤ 6.

For a detailed explanation of the statement of the theorem and the his-
tory of the problem, the reader is directed to look at our historical paper [31]:
“The Arf-Kervaire problem in algebraic topology: Introduction”. This paper
will focus on explaining the technical and equivariant aspects of the proof.
In particular, we shall review some of the salient equivariant homotopy,
explore the norm functor, look at particular chain complexes, and compute
differentials in the slice spectral sequence. The reader is also alerted that
the determination of differentials via cohomology operations (§ 7.2) does
not appear in the main paper; the proof here is novel. Several of the the-
orems (such as the Periodicity Theorem) are presented in slightly different
generality as well.

A brief overview is as follows. We produce a C8-equivariant spectrum Ω̃
and prove a series of results from which the Kerviare proof follows
immediately.

Detection Theorem. If θj exists, then the image in π∗Ω̃hC8 is
non-zero.

Gap Theorem. The group π−2Ω̃C8 is zero.

Periodicity Theorem. The homotopy groups of Ω̃hC8 are 256-
periodic.

Homotopy Fixed Point Theorem. The spectra Ω̃C8 and Ω̃hC8 are
weakly equivalent.

Thus we begin with an equivariant spectrum Ω̃, and we produce an
ordinary spectrum by taking fixed points.

Definition 1.2. Let Ω be the C8 fixed points of Ω̃:

Ω = Ω̃C8
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The Homotopy Fixed Point Theorem shows that we could have equally
well chosen to let Ω be the homotopy fixed points. We will sketch proofs of
the Gap, Periodicity, and Homotopy Fixed Point theorems in this note. We
shall not, however, prove the Detection Theorem, since this is an application
of classical techniques of a somewhat different flavor than the rest. This has
a slight expository difficulty related to which classes one must invert to
produce our spectrum Ω̃. We focus here on the close connection with the
Lubin-Tate spectrum E4, but even still, the flavor of § 8.2 is different. The
interested reader is referred to the main paper for a proof of the Detection
Theorem, the specifics of the inverted classes, and a more detailed treatment
of the theorems sketched herein [15].

2. Basic introduction to equivariant homotopy

Though we will never make it explicit, we shall assume we are working
in a rigid point-set model category whose homotopy theory is the usual
homotopy theory of equivariant spectra [20, 22, 23]. In particular, we
shall suppress any assumptions about fibrancy or cofibrancy of spectra in
various constructions, and we shall focus on the most important aspects of
the theory. The reader is suggested to consult the survey articles referenced
here for more details about the general theory [5, 24].

There are many different (and inequivalent) notions of G-spectra. For
our purposes, we consider “honest” G-spectra. These are G-spectra indexed
by finite subspaces of an infinite dimensional inner product space that con-
tains every irreducible representation of G infinitely often. The model cat-
egorical notions will not be explicitly spelled out, and instead we will focus
on the computational aspects.

We begin with some standard notation. We will let SG denote any of the
nice categories of equivariant spectra. If X is a G-spectrum, then we shall
also denote by X the image of the restriction functor to any subgroup H
of G. The category of G-spectra is tensored and cotensored over G-spaces,
and the function spectra objects are again G-spectra.

If X and Y are G-spectra, then we shall let [X, Y ] denote the homotopy
classes of G-equivariant maps from X to Y . This is the same as π0 of the
G-fixed points of F (X, Y ). If we there is potential for confusion, we will
adorn [X, Y ] with a subscript G to make clear the group. For a general
G-space or spectrum X, we will let XG denote the fixed point object.

We now recall that the forgetful functor SG → SH has a left and a right
adjoint. The left adjoint, normally written G+ ∧H − is the “induction”
functor, and we have a natural isomorphism

G+ ∧H X ∼= G/H+ ∧X

whenever X is a G-spectrum. The right adjoint, written FH(G,−) is the
“coinduction” functor. One of the most delightful aspects of the theory is
that for G a finite group, these are actually the same.
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Theorem 2.1 (Wirthmüller [30]). We have a natural equivalence

G+ ∧H X ∼= FH(G, X).

We should think of this as the equivariant analogue of the statement
that in spectra, finite coproducts (G+∧H X) are the same as finite products
(FH(G, X)). For this reason, coinduction will not be talked about again.

This Wirthmüller isomorphism gives rise to natural isomorphisms

[G+ ∧H X, Y ]G ∼= [X, Y ]H ∼= [X, FH(G, Y )]G ∼= [X, G+ ∧H Y ]G.

2.1. Spheres and cells. Given an orthogonal representation of V , we
can form two spheres: S(V ), the unit sphere in V , and SV , the one point
compactification of V . These are related by a cofiber sequence in spaces

S(V )+ → S0 → SV ,

making SV the unreduced suspension of S(V ). We remark that for every
representation V , SV has at least 2 fixed points: the origin and the point at
infinity. The inclusion of these points will play a very important role in our
proof.

For now, we fix some notation for the representations which will appear.

Definition 2.2. Let σ denote the 1-dimensional sign representation
of C2n .

Let λ : Cpn → S1 denote the inclusion of the pnth roots of unity.
Let λ(k) denote the composite of λ with the kth power map on S1.
Let ρ2n denote the regular representation of C2n , and let ρ̄2n denote the

quotient by the trivial representation.

If we work localized at p, then Sλ(k) is indistinguishable from Sλ(k′)

whenever the p-adic valuation of k and k′ agree. For this reason, we will
restrict attention to the collection λ(pr). Since there is a σ for every cyclic
2-group, when we need to distinguish the sign representation for C2k , we
will denote it by σk.

Although this gives us two very good notions of spheres, our notion of
cells will be somewhat more elementary: we induce up from the standard
notions of cells. Our n-cells are those G-spectra of the form G+ ∧H Dn,
where Dn is given the trivial H-action. Since Dn with the trivial H-action
is visibly the restriction of Dn with the trivial G-action, we consider only
cells of the form

G/H+ ∧Dn.

The boundary is of course G/H+ ∧ Sn−1, and we build our notion of CW-
complex with these as our cells. Additionally, understanding how to attach
to X cells of the form G/H+ ∧Dn amounts to understanding

[G/H+ ∧ Sn−1, X]G ∼= [Sn−1, X]H ∼= πn−1(XH).

These kinds of homotopy groups form a rich structure and will be spelled
out in more detail in § 4.
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2.2. Geometric fixed points and isotropy separation. Perhaps
the most difficult and in many ways counter-intuitive aspect of equivariant
homotopy theory is the notion of “fixed points”. In general, the fixed point
functor from G-Spectra to ordinary spectral is very badly behaved. It is not
symmetric monoidal, and it doesn’t commute with infinite suspension. Even
if the most elementary cases, understanding the fixed points is a non-trivial
undertaking. For example, the fixed points for the sphere with a trivial
G-action are shockingly complicated [8, 7].

Theorem 2.3 (tom Dieck). As rings, π0(S0G) is the Burnside ring of
finite G-sets A(G).

Already this is much more complicated that what we would expect the
fixed points to be, namely S0. This is also reflected in a splitting of the
fixed points into a wedge of more complicated spectra.

Equivariant homotopy theory has machinery to correct this: geometric
fixed points.

Theorem 2.4. There is a lax symmetric monoidal functor

ΦG : SG → S

such that
ΦG(Σ∞X+) = Σ∞XG

+ .

In other words, the geometric fixed point functor behaves exactly the
way our intuition for fixed points suggests.

Corollary 2.5. As rings, π0(ΦG(S0)) = Z, and for a general virtual
representation V , ΦG(SV ) = SV G

.

The definition of ΦG will actually prove surprisingly useful. We begin
with the notion of a classifying space and universal space for a family of
subgroups of a group. Let F denote a family of subgroups of G such that if
H ∈ F , then all subgroups and conjugates of H are also in F .

Definition 2.6. A universal space associated to F is a G-space EF
such that

(EF)H �
{
∗ H ∈ F
∅ H /∈ F .

Thus the restriction of EF to any subgroup H ∈ F is H-equivariantly
contractible. That such a space exists for a general group follows by mir-
roring Milnor’s join construction of EG. For cyclic p-groups, we can find a
distinguished representative EF for any family F .

Proposition 2.7. Let Fm be the collection of proper subgroups of Cpm ⊂
Cpn, and let EFm denote the usual universal space. Then

EFm � lim→ S(kλ(pm−1)),

the “unit sphere” in the infinite direct sum of copies of λ(pm−1).
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Proof. If we restrict λ(pm−1) to any proper subgroup of Cpm , then we
get the trivial representation. Similarly, the only fixed points for the Cpm

action is the origin. We therefore conclude that

S(kλ(pm−1))C
p� =

{
S2k−1 � < m

∅ � ≥ m.

The maps in the colimit are the standard inclusions S2k−1 → S2k+1, and so
the colimit is contractible. �

Having built EF , we can now build a much more important space: ẼF .
This is by definition the cofiber of the canonical map EF+ → S0, in spaces.
As a consequence of the previous proposition, we can also identify a repre-
sentative of the homotopy type ẼFm for cyclic p-groups.

Proposition 2.8. A model for ẼFm is given by

lim→ Skλ(pm−1).

Remark 2.9. In both of these propositions, the actual representations
used don’t matter. What mattered was that the fixed points of the proper
subgroups become increasingly highly connected (which means we had an
increasing number of copies of λ(p�) where � ≥ m− 1) and that there were
no fixed points for Cpm (which means that we have no copies of λ(p�) for
� ≥ m). We could, however, have added arbitrarily many copies of λ(pk) for
k < m and still produced the same homotopy type.

Though we will use several variants of ẼF , by far the most important is
when F is the family of all proper subgroups of G. In this case, EF+ → S0

is an equivalence when restricted to any proper subgroup, and S0 → ẼF is
an equivalence on G-fixed points.

Definition 2.10. Let F denote the family of proper subgroups of G.
If X is a G-spectrum, then smashing X with the cofiber sequence defining
ẼF yields the isotropy separation sequence:

EF+ ∧X → X → ẼF ∧X.

The geometric fixed points of X are the G-fixed points of ẼF ∧X:

ΦG(X) =
(
ẼF ∧X

)G
.

Both parts of this definition will be vitally useful. The isotropy separa-
tion sequence does exactly as the name implies: it separates X into parts
that are built from cells of the form G/G+ ∧ Dn (the ẼF ∧ X part) and
those that are built from induced cells (the EF+ ∧X part). Thus when we
compute with this, the left most term is often handled by induction on the
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order of G (since all of these cells are induced). We can make this more
precise. By the defining cofiber sequence for ẼF , any map

G/H+ ∧ Y → ẼF ∧X

is automatically null-homotopic (the target is contractible when restricted
to H).

Additionally, the map

EF+ ∧X → X

is a kind of generalized restriction, while X → ẼF ∧X is a localization. We
can use this intuition to provide some heuristic justification for tom Diek’s
theorem. If we apply fixed points and take π∗ then we have a long exact
sequence (where we use ΦG(S0) = S0):

· · · → π1(S0)→ π0

(
(Σ∞EF+)G

)
→ π0(S0G)→ π0(S0)→ 0.

If we can understand the homotopy of (Σ∞EF+)G, then we can compute
π0(S0). However, since we are working stably, we have stable transfer maps
in π0 arising from the obvious map

G/H+ ∧X → X.

In this context, this gives us a map

π0(S0H) = π0(G/H+ ∧ Σ∞EF+)→ π0

(
(Σ∞EF+)G

)
.

Induction on G then gives the result. We remark that though it is not
shown here, all of the groups in question (with the exception of π1S

0) are
actually finite rank free abelian groups. This can also essentially be shown
by downward induction on the order of the group.

3. The norm and the construction of MU(C2n)

One of the most useful constructions in our main paper is that of the
norm. This is a multiplicative induction that takes SH to SG whenever
H ⊂ G, and it generalizes the Evens’ transfer in group cohomology [11]. In
the homotopical context, it was studied by Greenlees-May [14]. This section
serves as a very general overview, giving intuition and some algebraic con-
structions that will help the reader understand the basic properties needed
for the proof. In the main paper, a detailed construction with the proofs of
the necessary equivariant properties is provided.
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3.1. General properties of the norm. The basic idea of the norm
is simple: induction in a category is essentially the coproduct of an object
indexed by cosets. For representations, this is simply saying that we take
the direct sum of |G/H|-copies of the representation and permute them
in the obvious way, and for spectra, we instead use the wedge. In both of
these examples, the underlying object is just the iterated coproduct, and the
equivariance can be read out of the permutation action on G/H and the
H-action on the underlying object.

Commutative algebras and E∞-ring spectra have a different coproduct:
the tensor or smash product. In these cases, again have a kind of induction,
the norm. The two constructions are quite similar. We will sketch the one
for commutative rings, and then state the salient properties of the one for
spectra.

Proposition 3.1. There is a multiplicative functor NG
H : AlgH → AlgG

which is left adjoint to the forgetful functor iH . The composite iH ◦ NG
H is

the |G/H|-fold tensor power functor when H is a normal subgroup.

In fact, the construction is obvious. The underlying algebra for
NG

H (A) is ⊗
G/H

A.

To describe the equivariance, we chose a set of coset representative gi (and
we chose one of them to be the identity element). For any g ∈ G and for all
i, ggi = gjh for some j and h. This allows us to specify the action: g acts
on the factor indexed by gi by sending it to the factor indexed by gj and
acting by h.

We can best understand the norm on the free commutative algebra on
an H-set X, namely the polynomial algebra on X, Z[X].

Proposition 3.2. If X is an H-set, then

NG
H (Z[X]) = Z[G×H X].

This shows immediately the desired adjunctions. It also shows the failure
of the restriction to simply be the tensor product of the underlying algebras.
If H is not normal, then the restricting of G ×H X to H is not necessarily
the disjoint union of copies of X.

It should be noted now that the norm functor actually lives as one on
H-modules, not just H-algebras. On the H-algebras, it has a particularly
nice description as a left adjoint. On the others, it’s just the tensor power
with the permutation G-action.

All of these statements are also true for commutative ring objects in
H-spectra, namely the E∞-ring spectra. Let CommG denote the category
of G-equivariant E∞ ring spectra.
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Proposition 3.3. The forgetful functor iH : CommG → CommH has
a left adjoint NG

H , the underlying H-spectrum for which is the |G/H|-fold
smash power when H is normal.

The composite of the norm with the restriction as an endofunctor of
CommG is also understandable:

NG
H (X) = G/H+ ⊗X,

where we have used that E∞ G-spectra are tensored over pointed G-sets.
Just as for commutative rings, there is a prolongation of this functor to

all H-spectra. It will be essential to our proof of the Periodicity Theorem
to have some computational results about it. These all rely on the following
immediate fact.

Proposition 3.4. If W is a virtual representation of H, then NG
HSW =

SIndG
HW .

This has the following very useful consequence. If f : SW → X is an
H-equivariant map, then we have a G-equivariant map

NG
H (f) : SIndG

HW → NG
H (X).

In particular, if X is the restriction of a G-equivariant E∞-ring spec-
trum, then we can compose with the counit of the adjunction to get a new
G-equivariant map

NG
H (f) : SIndG

HW → X.

This gives us an additional, multiplicative way to promote H-equivariant
homotopy classes to G-equivariant ones. Similarly, it is often quite simple
to check that these are non-zero by restriction. If H is normal in G, then
the restriction of NG

H (f) is essentially the |G/H|-fold power of f .
One of the most important properties of the norm is that it is well-

behaved with respect to geometric fixed points. Since S0 = NG
e S0, we

expect terrible behavior for actual fixed points, and much of our work is
spent boot-strapping up from the geometric fixed points.

Theorem 3.5. If X is an H-equivariant spectrum, then

ΦG(NG
H (X)) � ΦH(X).

A very coarse sketch of the argument is as follows. We know from the
earlier propositions that if X = SV and if V0 = V H , then

ΦGNG
H (SV ) � ΦGSIndG

HV � SV0 � ΦHSV .

Now if we build X out of cells, then we have a diagram for building NG
H (X)

out of cells. What is essential here is that the group G is acting on the
diagram. The only non-induced cells in the diagram are those of the form
NG

H (e), where e is a cell of X. Since geometric fixed points destroys induced
cells, we are reduced to the case of spheres.
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3.2. The spectrum MU(C2n). A central role in our proof is played by
the honest C2-equivariant spectrum of Real bordism MUR [2, 19]. This
is the bordism spectrum of C2-equivariant manifolds together with a Real
structure on their stable normal bundle. This is a C2-equivariant vector
bundle where the fibers are complex vector spaces and where on fibers, the
C2-action is conjugate linear. With this in mind, the underling spectrum is
just MU together with its complex conjugation action. If we take geometric
fixed points (which corresponds heuristically to passage to fixed points for
the Real manifolds), then we recover the unoriented bordism spectrum MO.
These facts are central to our understanding of the spectrum.

Numerous authors have studied MUR, computing its homotopy groups,
showing that its fixed and homotopy fixed points agree, and determining
its slices [1, 17, 18]. Additionally, we know that this is a C2-equivariant
E∞-ring spectrum, so the norm will let us build spectra for any finite group
G containing C2 that have similar universal properties.

Definition 3.6. Let MU(G) denote NG
C2

MUR.

By Theorem 3.5, we know also that

ΦGMU(G) = MO.

The spectrum MU(C2n) is also an equivariant Thom spectrum. It carries
geometric information of manifolds together with “2n−1st roots of a Real
structure”. We will not exploit this geometry here, though a better under-
standing would give another proof of our Reduction theorem.

Just as in the ordinary case, MUR carries orientations. Classically
these are maps from MU , and in the C2-equivariant case, these are maps
from MUR. Many familiar spectra with natural C2-actions have equivari-
ant refinements, and their underlying complex orientation also refines to a
Real one. In particular, K-theory becomes Atiyah’s Real K-theory KR,
and the standard orientation of K-theory becomes a real orientation of KR

[3]. Generalizing this, ongoing work of Avarett essentially shows that the
push-forwards of the Lubin-Tate spectra En (endowed with their Hopkins-
Miller C2-action [26]) admit Real orientations [4]. This generalizes in the
following way.

Proposition 3.7. If E is a G-equivariant E∞ ring spectrum for G a
finite group containing C2, and if the restriction of E to C2 admits a Real
orientation

u : MU(G) → E,

then there is a canonical equivariant E∞ map

N(u) : MU(G) → E.

Proof. This follows immediately from the adjunction

MapCommG
(MU(G), E) = MapCommC2

(MUR, E).

Our desired map is the image of the orientation. �
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Thus E2n−1 admits a canonical map from MU(C2n) that lifts the Real
orientation.

3.3. Aside: Why not E4? We pause here to explain part of the proof,
namely why we do not use E4. In fact, the Detection Theorem shows that the
C8-homotopy fixed points of E4 is sufficient to detect the Kervaire classes.
We know from the Nilpotence Theorem that there is a horizontal vanishing
line in the homotopy fixed points spectral sequence [6], and that tells us
immediately that the homotopy groups are periodic with period some power
of 2. We can approach this by running the spectral sequence and seeing what
classes on the zero line survive or by determining what sorts of bundles
are orientable for EhC8

4 (which tells us immediately which classes must be
permanent cycles).

However, even in the toy case of C4 acting on E2, it is very difficult
to determine the differentials and extensions in the homotopy fixed point
spectral sequence. Figure 1 shows the E5 term of the spectral sequence
(with an infinite number of copies of π∗bo suppressed).

The spectral sequence terminates at E14, and at that point, we can
see that it is 32-periodic. What is not obvious from the E2-term is that
π−2E

hC4
2 = 0. Determining the differentials on the class denoted by a star

is one of the trickier parts of this computation. In fact, understanding the
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Figure 1. The E5 term of the Homotopy Fixed Point Spec-
tral Sequence for EhC4
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analogue of the Kervaire differential required knowledge of some multiplica-
tive relations in π28S

0 at 2.
The C8 case was visibly harder. While the C4 case could be nicely

presented at E5 (in that each symbol represents either Z or a finite group),
after much analysis with the slice spectral sequence, we believe that the C8

case will not have a nice picture until E16. Additionally, we know there will
be a great many differentials before then, since there are fairly complicated
patterns of differentials for C2 and C4 acting on E4. It became clear early
on that running the homotopy fixed point spectral sequence for EC8

4 would
suffer from two major drawbacks:

(1) It would be very difficult to determine and to justify all differentials
and extensions in the spectral sequence, and

(2) No one would ever believe it.

This led us to consider honest fixed points, rather than homotopy ones.
While this might appear to be a Faustian bargain, trading rigidity for un-
computability, we had a major break-through with the creation of the slice
spectral sequence. This provides a filtration of equivariant homotopy the-
ory for a finite group G, and while the full form will not appear in this
paper, this is the filtration of MU(C2n) that makes computations doable.
We should think of this as a much more tractible Atiyah-Hirzebruch spec-
tral sequence. This filtration has a couple of antecedents: Dugger built the
C2-equivariant form and showed that KR has the expected filtrations quo-
tients and Hopkins-Morel, Voevodsky built an analogous filtration in the
motivic context [16, 27, 28, 29].

The slice spectral sequence computes the honest fixed points of an equi-
variant spectrum (in fact, it does much more: since it is a purely equivariant
filtration, it computes the equivariant homotopy groups as a Mackey func-
tor). For spectra like E2, E4, and MU(C2n), the E2-term is actually easy to
compute. In Figure 2, we show the E5-page of the slice spectral sequence
for C4 acting on E2.

Comparing with Figure 1 shows some obvious advantages. It is imme-
diate that π−2 of the fixed points is zero, since it is zero on E5. In fact, it
is zero on E2, and the Gap Theorem below shows that it is zero for a large
family of equivariant spectra. The rigidity of equivariant homotopy theory
helps us produce a large collection of permanent cycles in the fixed points,
and these give us our desired periodicity.

The obvious advantage of the slice spectral sequence necessitates proving
that the slices of E4 have the required form. This in turn required first
understanding the slices of MU(C2n) and for various localizations thereof. It
became clear that a judicious choice of localization of MU(C2n) would sit as
an intermediary between MU(C2n) and E4, being sufficiently strong to detect
the Kervaire classes but also simple to work with. The reader is suggested
to keep the spectrum E4 with its natural C8-action in mind, especially in
§ 8, where the intuition provided by E4 is exactly correct.
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Figure 2. The slice E5-term for C4 acting on E2

4. Mackey functors and RO(G)-Graded homotopy

4.1. Introduction to Mackey functors. One of the biggest hurdles
facing homotopy theorists interested in equivariant algebraic topology is the
more complicated notion of homotopy groups. Classically, the homotopy
groups of a spectrum are simply abelian groups. In the equivariant context,
the homotopy groups are objects in a more complicated abelian category,
the category of Mackey functors [9]. The complexity, and the definition of
Mackey functors, arises from the larger collection of “points” in the equi-
variant context. In addition to ∗ = G/G, we have any coset space G/H.
These G-sets are linked by a large collection of stable G-maps, and these
provide a collection of maps between the homotopy groups.

Definition 4.1. Let OG denote the category of finite G-sets.

Definition 4.2. A Mackey functor M is a pair of functors M∗ : Oop
G →

Ab and M∗ : OG → Ab which send disjoint unions to direct sums, such that

M∗(X) = M∗(X) =: M(X)

for all objects X, and such that if

X
f ��

g

��

Y

h
��

Z
k

�� W
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is a pull-back square in G-sets, then

M(X)
M∗(f) �� M(Y )

M(Z)

M∗(g)

��

M∗(k)
�� M(W )

M∗(h)

��

is commutative.

We will denote M∗(f) by f∗ and M∗(f) by f∗, and we will call f∗ a
restriction and f∗ a transfer. If f : G/H → G/G is the obvious map, then
following this we will often write TrG

H for f∗ and ResH
G for f∗. This termi-

nology will be made somewhat more clear by connecting these to standard
constructions in homotopy theory.

Definition 4.3. If X is a G-spectrum, then the kth homotopy group of
G is the Mackey functor

πk(X)(B) = [B+ ∧ Sk, X]G.

When B = G/H, we will also let

πH
k (X) = πk(X)(B).

This description makes the restriction maps immediate: they arise by
precomposition. For the transfer maps, we can work one of two ways.

(1) In the equivariant stable homotopy category, associated to a map
Σ∞B+ → Σ∞C+ there is a transfer map Σ∞C+ → Σ∞B+. Pre-
composing with these transfer maps gives the desired transfer maps.

(2) Using the isomorphisms

[G/H+ ∧X, Y ]G ∼= [X, Y ]H ∼= [X, G/H+ ∧ Y ]G,

we can conclude that there is a natural isomorphism

[B+ ∧X, Y ] ∼= [X, B+ ∧ Y ]

for all G-sets B and for all X and Y . We can therefore consider
the compositions in the target, rather than in the source, to get
our transfer maps.

Since the object function is assumed to be additive, it suffices to under-
stand what happens on the orbits G/H:

πH
k (X) = [G/H+ ∧ Sk, X]G = [G+ ∧H Sk, X]G = [Sk, X]H = πk(XH).

Thus the value of the homotopy group Mackey functor on G/H+ is
exactly πk of the H-fixed points of X. Moreover, if H ⊂ K ⊂ G, then we
have a G-map G/H → G/K which gives us a map in the other way on
the Mackey functor homotopy groups. This coincides with the restriction
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map πk(XK)→ πk(XH) induced by inclusion of fixed points. Similarly, the
transfer map is essentially “summing over the cosets”.

Since they are a diagram category of abelian groups, Mackey functors
form an abelian category. This abelian category is closely tied to the equi-
variant stable homotopy category.

Proposition 4.4. Let SG,0 denote the full subcategory of SG consisting
of those objects X such that πi(X) = 0 for i �= 0. Then π0 induces an equiv-
alence of categories between the homotopy category of SG,0 and the category
of Mackey functors.

In particular, for any Mackey functor M , we have an associated
Eilenberg-Mac Lane spectrum HM which satisfies

πk(HM) =

{
M k = 0,

0 otherwise.

We will be most concerned with HZ.
Just as with abelian groups, we can define “bilinear” pairings of two

Mackey functors M and N into a third, P . This is a natural transformation
M∗ ⊗N∗ → P ∗:

〈−,−〉X : M(X)⊗N(X)→ P (X)

together with the condition that for any f : X → Y , the following diagram
commutes

M(X)⊗N(Y )
M(X)⊗f∗

��

f∗⊗N(Y )
��

M(X)⊗N(X)
〈−,−〉X �� P (X)

f∗
��

M(Y )⊗N(Y ) 〈−,−〉Y
�� P (Y )

.

Put more sucinctly:

〈Tr(x), y〉Y = Tr(〈x, Res(y)〉X).

A Green functor is a Mackey functor M together with a bilinear pairing
M ⊗M →M . Since this definition is opaque, we will unpack it slightly. A
Green functor M is one for which M(X) is a ring for all X and for which
all restriction maps f∗ are ring homomorphisms. This means that for any
f : X → Y , M(X) is a M(Y )-module via f∗, and the condition for the
pairing can be restated as follows: f∗ is a map of M(Y )-modules. It is then
immediate how one defines modules over a Green functor.

The most important Green functor is the Burnside ring A. This asso-
ciates to a finite G-set X the Grothendieck group of finite G-sets over A, and
restriction and transfer are just pull-back and composition. The pullback
of two G-sets over X gives a product on this set, making A(X) into a ring
for all X. It is then trivial to check that transfers are module maps over
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the restrictions. It is immediate that A(G/G) = A(G), the Burnside ring of
finite G-sets. If H is a subgroup of G, then the map(

f : X → G/H
)
�→ (f−1(eH)→ eH)

identifies A(G/H) with A(H). In particular, A(G/{e}) = Z.
The Burnside Mackey functor plays the role for Mackey functors that Z

plays for abelian groups. In particular, every Mackey functor is a module
over the Burnside ring Mackey functor. The module structure is actually
very easy to spell out: transfers are module maps. If we look at a particular
orbit G/H, then this is the transfer, in the Burnside ring, of the element
1 ∈ A(H). By the defining property of a pairing of Mackey functors, we
then know how it acts on an element x ∈M(G/G):

[G/H] · x = TrG
HResH

G (x).

A more general statement is also easy to form, using exactly this. A general
element in A(X) is a G-set over X: f : Y → X. The above observation
shows us how to pair A(X) and M(X):

f ⊗ x �→ f∗f∗(x).

Understanding this action will help us make several computations related
to equivariant homotopy groups.

We have a few distinguished ideals in the Burnside ring. First, note that
if a G-set is induced, then any G-set we get by pull-back is also induced.
This says that there is a “transfer” ideal in the Burnside ring. We can push
slightly farther, though. If F is a family of subgroups of G, then we can
form an ideal in the Burnside ring associated to F , IF as follows: begin
with the ideal of A(G) generated by [G/H] for all H ∈ F , and then close up
under restrictions and transfers. Put another way, this is the smallest ideal
in A such that IF (G/H) = A(H) whenever H ∈ F .

We shall see in § 4.3 that this Mackey functor does occur as the homo-
topy groups of a relatively simple G-spectrum, namely the cofiber of various
restriction maps. If Hi runs through all proper subgroups of G, then the
quotient Mackey functor has

A/I(G/H) =

{
Z H = G,

0 otherwise.

This applies in several cases. For example, if V is a representation such that
V H �= {0} for all proper subgroups H but V G = {0}, then π0(SV ) is this
Mackey functor.

There is another key ideal which shows up, and the associated quo-
tient is also named. Let I(G/H) denote the “kernel of the augmentation”
A(G/H) → A(G/{e}) = Z. This map takes a G-set X to its cardinality.
Since the map is the restriction, these kernels restrict to each other, and the
condition that the transfer is a module map ensures that they are closed
under transfers, and therefore form a Mackey functor.
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Definition 4.5. The augmentation ideal is the Mackey functor ideal I
given by the kernel of the augmentation map.

The constant Mackey functor Z is the quotient A/I. The value at G/H
is Z and all restriction maps are isomorphisms.

The Mackey functor Z will play a central role in this paper, as com-
putations with it are especially doable (unlike, say, with a more general
Mackey functor). We will soon see how to compute the homology of any
representation sphere SV with coefficients in Z.

4.2. RO(G)-Graded homotopy groups. One of the advantages of
an honest equivariant setting is the presence of a large class of invertible
spheres. If W is a virtual representation of G, then we have a sphere SW ,
and the assignment W �→ SW is monoidal where in the target we take the
smash product. This gives us a large collection of homotopy groups.

Definition 4.6. The RO(G)-graded homotopy groups of X, denoted
π�(X), are given by

[SW , X], W ∈ RO(G).

Just as before we can prolong this to a Mackey functor:

πV (X)(G/H) = [G/H+ ∧ SV , X].

This approach was pioneered by Lewis who used it to compute the
RO(G)-graded homology of projective spaces [21]. We will use this
extensively to determine the homotopy groups of our spectrum Ω̃.

The representation ring has a distinguished sub semiring: isomorphisms
classes of genuine representations. We shall call this the “positive” part of
the representation ring. Similarly, any virtual representation of the form −V
will be called “negative”. Since the positive and the negative parts of the
representation ring are sub-semirings, if E is an equivariant ring spectrum,
π�≥0E and π�≤0E are rings graded on honest representations. It is often
easiest to give generators and relations for these, rather than π�E.

We can actually refine this approach slightly. The representation ring
itself is a Mackey functor, and we can extend the assignment W �→ SW to
a kind of Mackey functor in spaces.

Definition 4.7. If W is a virtual representation of H ⊂ G, let

πW (X)(G/K) = [G/K+ ∧ (G+ ∧HSW ), X]G.

This will show up only obliquely in our proof. When we look at the cellu-
lar decomposition of MU(C2n), we will see extra classes exactly of this form.
Having the additional homotopy groups would allow a cleaner description
of the homology of MU(C2n). Additionally, this extra structure underscores
the existence of additional restrictions and transfer maps. These transfer
maps (especially related to the sign representations of subgroups of C2n)
play a large role in determining differentials on normed classes.
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4.3. Some equivariant homotopy groups. Though the equivariant
homotopy groups of spheres are monstrously difficult to compute, there are
several cases where we can do so: we can compute π0(SV ) for any repre-
sentation V . We begin with two observations which give the full form. The
first is essentially a restatement of tom Deick’s computations.

Observation 4.8. The abelian group πG
0 S0 is the free abelian group

generated by [G/H] where H ranges over all subgroups of G. The element
[G/H] is the image of 1 under the transfer map

πH
0 S0 = A(H)→ A(G) = πG

0 S0.

for more general representations, we look at fixed points.

Observation 4.9. If H is a subgroup of G for which V H �= {0}, then

πH′
0 SV = 0

for any H ′ ⊂ H.

This is simply because to understand π0S
0(G/H ′), it suffices to restrict

attention to H ′-Spectra and compute the Mackey functor π0 there. Since
we have a trivial summand, the computation reduces to that of π0S

1.
The condition V H �= {0} is clearly closed under subgroups of H and

under conjugation. Thus for any representation V , we have a family FV :
the subgroups of G with non-trivial fixed points. The previous observations
show the following result.

Proposition 4.10. As A-modules,

π0S
V ∼= A/IFV

.

There is a distinguished generator of π0S
V .

Definition 4.11. Let aV denote the inclusion of S0 = {0,∞} into SV .

This class is a kind of Euler class [13]. Multiplication by aV gives us
a map A → π0S

V , and this realizes the above isomorphism. The following
proposition is immediate from either the definition or our results about
π0S

V , but it will help us greatly in manipulating classes.

Proposition 4.12.
(1) If 1 denotes R with the trivial action, then a1 = 0.
(2) For any V and W , aV ⊕W = aV · aW .
(3) If H ⊂ G, then ResH

G (aV ) = aResHV .
(4) If H ⊂ G, then NG

H (aV ) = aIndG
HV .

In particular, we see that it suffices to consider aV where V ranges over
irreducible representations (though it will be notationally simpler to consider
all such classes).

These classes are actually torsion-free in the homotopy groups of spheres.
Their image in π�HZ, which we will also denote by aV is in general not. We
can spell this out more explicitly.
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Proposition 4.13. If ResH
G (aV ) = 0, then |G/H|·aV = 0 in π0S

V ∧HZ.

Proof. The Hurewicz map on π0 is the reduction modulo the augmen-
tation ideal in the Burnside ring. In this ideal we have the obvious element
[G/H]− |G/H|[G/G]. �

For cyclic 2-groups (and more generally for cyclic p-groups), these classes
have a very close connection to geometric fixed points and to the various
families of subgroups one can consider.

Theorem 4.14. For any X, we have

π�(ẼFm ∧X) = a−1
λ(pm−1)

π�(X).

Proof. Since ẼFm is the cofiber of the natural map EFm+ → S0, we
can identify it with

lim→ Skλ(pm−1),

where the maps in the colimit are the suspensions of aλ(pm−1). The result
follows. �

Corollary 4.15. The homotopy groups of ΦG(X) are given by the
integer graded part of a−1

σ π�(X).

As was remarked above, the space EFm is actually just a homotopy
type. We could use any family of representations that had this property.
In particular, we could add any collection of representations with a smaller
stabilizer subgroup (named those with a smaller power of λ).

Corollary 4.16. If we invert aλ(pm−1) then we invert aλ(pk) for all
k ≤ m− 1.

Corollary 4.17. Inverting aσ inverts aV for any representation V with
trivial fixed points.

This will make computations in the slice tower much simpler. In partic-
ular, we can use this to greatly reduce the complexity of the computations
involving differentials in the slice tower.

5. The slice tower and the slices of MU(C2n)

5.1. The homology of MU(C2n). We begin with the following C2-
equivariant generalization of the classical splitting of MU ∧MU as MU -
module spectra.

Proposition 5.1. As MUR-modules, we have a splitting

MUR ∧MUR �MUR ∧
∨
p

S
|p|
2 ρ2 ,

where p ranges over all monic monomials in MU∗.
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Since it will show up a very great deal, we give names to particular
wedges of representation spheres.

Definition 5.2. Let

W =
∨
p

S
|p|
2 ρ2 ,

where p ranges over all monic monomials in MU∗.

The previous proposition gives us two immediate corollaries. First, it
allows us to conclude the RO(G)-graded homology of MUR.

Corollary 5.3. We have a splitting

HZ ∧MUR � HZ ∧W.

This can actually be shown geometrically using a Schubert cell decom-
position of the Grassman manifolds which occur as the spaces in the MUR-
spectrum. This splitting underscores also the importance of the regular
representation sphere for MUR, and in our construction of the slice tower,
we will capitalize on this.

The second corollary allows us to increase the size of the group.

Corollary 5.4. We have a splitting of MU(C2n)-module spectra

MU(C2n) ∧MU(C2n) �MU(C2n) ∧NC2n

C2
W.

Our understanding of the norm of a wedge allows us to reformulate this
last part into a more explicit form.

Theorem 5.5. We have an equivariant decomposition

NC2n

C2
W =

∨
p∈I

C2n/Hp+ ∧ S
|p|

|Hp|ρHp ,

where I is the orbits of monomials in π
{e}
∗ MU(C2n) ⊗ Z/2 and where Hp is

the stabilizer subgroup of p.

Remark 5.6. Since we are working modulo 2, it is immediate that C2 ⊂
Hp for all p. Thus we never have free summands in this wedge.

This in particular gives us a splitting of HZ∧MU(C2n), and we see that
here the important cells are those of the form

C2n+1/H+ ∧ SkρH

for various non-trivial subgroups H. This slice tower capitalizes on this.
By judiciously choosing an equivariant filtration, we can ensure that the
associated graded of MU(C2n) is exactly HZ ∧MU(C2n). As we shall see in
the next section, this is very computable.
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5.2. Slice filtration. A key step in our solution is the production of
a new equivariant filtration, the slice filtration. This is a refinement of the
non-equivariant Postnikov tower, but it groups the homotopy according the
regular representation cells. In fact, there is a choice here of “slice” cells, and
different choices produce different slice spectral sequences. The choice we
use plays nicely with the spectra MU(C2n), allowing us to identify the slice
associated graded and to use it to compute equivariant homotopy groups.

Definition 5.7. Any generalized representation sphere of the form
G+ ∧H SkρH−ε, where ε is 0 or 1, is a slice cell. The dimension of the
slice cell G+ ∧H SkρH−ε is k|H| − ε.

The inclusion of the factor ε seems initially somewhat confusing. This
is actually also dictated by the Schubert cell decomposition of MU(C2n).
We know that in homology we see cells of the desired form (without any
ε factor), but this means that they arise as cofibers of maps from a single
desuspension. Having these desuspensions allows us to also control these
maps, and not just the cells.

Associated to these collections of cells, we can build localizing subcate-
gories.

Definition 5.8. Let Tn denote the full subcategory of G-spectra built
by closing the category of all slice cells of dimension greater than n under
colimits and extensions.

In other words, we consider all spectra we can build out of the slice cells
of dimension at least n under iterated colimits and under extensions. We
do not allow require (nor do we want to allow) arbitrary limits or fibers.
This is a big difference between our slice filtration and the motivic one
due to Voevodsky: the motivic slice filtration is a filtration of triangulated
subcategories whereas ours in not.

Definition 5.9. The nth slice truncation functor Pn is the Dror-nullifi-
cation functor associated to the subcategory Tn.

This is most easy described via its universal properties. We have Pn

and a natural transformation 1→ Pn such that the space of maps Map(W,
Pn(X)) is equivariantly contractible for any slice cell W of dimension at least
n and such that Pn(X) is initial amongst spectra with this property [12].

It is easy to check that G+ ∧H SkρH−ε is (k − ε)-connected if k ≥ 0 and
(k|H|)-connected if k < 0. This give us a coarse lower bound on the connec-
tivity of any element in Tn: n/|G| − 1. A general property of nullification
then ensures the following fact (which for easy, we state only for n > 0).

Proposition 5.10. The map X → Pn(X) is (n/|G| − 1)-connected.

Dually, it is easy to show that for all H, G+ ∧H Sn ∈ Tn. These are
exactly the cells which are killed to build the equivariant Postnikov tower,
we conclude the following.
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Proposition 5.11. For all n and for all k > n,

πk(Pn(X)) = 0.

Definition 5.12. The slice tower of X is the iterated nullification tower

...

��
Pn(X)

��
X

��������������������

������������
��

����
��

��
��

��
��

Pn−1(X)

��
...

The slice spectral sequence is the spectral sequence associated to this
filtration.

Proposition 5.10 ensures that the map from X to the limit of the slice
tower is a weak equivalence. Proposition 5.11 ensures that the colimit of
the slice tower is contractible. Thus the slice spectral sequence has good
convergence properties.

The E1-term of this spectral sequence is given by the Mackey functor
homotopy groups of the fibers Pn(X) → Pn−1(X). These fibers are the
slices of X.

Definition 5.13. The n-slice of X is the homotopy fiber Pn(X) →
Pn−1(X).

In general, determining the slices of X is regrettably difficult. There are
two cases where we can do so.

Proposition 5.14. If T is a slice cell, then T ∧HZ is a dim(T )-slice.

This is an essentially immediately computation of equivariant homology
groups, and we postpone it until a later section.

Corollary 5.15. If again

W =
∨
p

S
|p|
2 ρ2 ,

then
W ∧HZ and

(
NC2n

C2
W

)
∧HZ

are wedges of slices.

Proposition 5.16. The zero slice of S0 is HZ.
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Proof. We prove this for cyclic p-groups, leaving the full case to the
larger paper. The proof is by induction on the order of the group. We know
that the slice tower is a refinement of the Postnikov tower. In particular,
for the zero-slice, this means two things. First, the zero-slice of S0 is of the
form HM for some M and second, the underlying spectrum must be HZ. In
particular, though transfers of the element 1 ∈ M(G/{e}) might be killed,
nothing that restricts to it can be.

We will show by induction on the group that any element in the aug-
mentation ideal I(G/G) can be realized by a map from some wedge of slice
cells. The case for G/H is handled identically. It suffices, by induction for
transfer reasons, to then only consider elements in the augmentation ideal
that are not in the image of the transfer from any subgroup. For a general
group, these are generated by classes [G/H]−|G/H| for H a maximal proper
subgroup of G. In the case of a cyclic group of prime power order, these
are especially simple: there is only one such H that is also a cyclic group of
prime power order.

Since the restriction of α = [Cpn/Cpn−1 ] − p to Cpn−1 is zero, we know
that the composition

Cpn+ ∧Cpn−1 S0 → S0 α−→ HA

is null-homotopic. Our understanding of how to build the a cell structure
for Sρ−1 shows that the 1-cells are attached by exactly the map

Cpn+ ∧Cpn−1 S0 → S0,

and so α extends over the 1-skeleton. Since HA is an Eilenberg-Mac Lane
spectrum, we conclude that α extends over Sρ−1. �

A similar proof actually shows that the category of zero slices is the cat-
egory of Mackey functors for which all restriction maps are monomorphisms.
This is true for an arbitrary finite group.

Proposition 5.17. Let V be a representation, and let FV be the family
of subgroups H of G such that V H �= 0. Then for any Mackey functor M
we have

[SV , HM ] = {x ∈M(G/G)|ResH
G (x) = 0, ∀H ∈ FV }.

Proof. Since HM is an Eilenberg-Mac Lane spectrum, we know

[SV , HM ] = [Hπ0S
V , HM ] = HomA(π0S

V , M).

The result now follows from our earlier analysis of π0S
V . �

For our purposes, the most important example where we can determine
the slice associated graded is MU(C2n).
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Theorem 5.18 (the Slice Theorem). There is an equivariant filtration
of MU(C2n) (the slice filtration) such that the associated graded is

HZ ∧
∨
p∈I

C2n/Hp+ ∧ S
|i|

|Hp|ρHp ,

where I is the orbits of monomials in π
{e}
∗ MU(C2n) ⊗ Z/2 and where Hp is

the stabilizer subgroup of p.

Rather than give a complete proof, we will sketch the argument. We
begin with a statement about the underlying homotopy of MU(C2n).

Proposition 5.19. We can find generators of π
{e}
∗ MU(C2n) such that

as an equivariant algebra

π
{e}
∗ MU(C2n) = Z[r1, . . . , γ

2n−1−1r1, r2, . . . ],

where γ, the generator of C2n, acts in the obvious way, and where γ2n−1
ri =

(−1)iri. The degree of ri is 2i.

For n = 1, these can be chosen to be the usual classes. For n = 2, we
can choose these to (up to decomposables) be the usual classes ti.

These underlying homotopy classes are actually the restriction of
C2-equivariant maps from non-trivial representation spheres, and from this
we get a good description of equivariant generators in general.

Proposition 5.20. There are C2-equivariant maps

r̄i : Siρ2 →MU(C2n)

such that the underlying map is ri.

When we need to remember the ambient group, we will further adorn r̄i

with a second subscript: r̄i,n is r̄i for C2n and MU(C2n). The left unit allows
us to find r̄i,k in πiρ2MU(C2n) for all k ≤ n.

Applying the C2n-action then gives us classes γj r̄i.

Definition 5.21. Let S[r̄i] denote the free A∞-ring spectrum on Siρ2 .

Thus
S[r̄i] =

∨
j≥0

Sijρ2 ,

and a map of associative algebras S[r̄i]→ X is given by an element πiρ2X.
As the name implies, there is for each i a distinguished map S[r̄i] →
MU(C2n). Since MU(C2n) is a commutative ring spectrum, we can smash
all of these algebras together and get a map of associative algebras∧

k≥1

S[r̄k]→MU(C2n).
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The underlying map for this exactly picks out the subalgebra generated by
the generators rk in homotopy.

If we apply the norm, followed by the canonical map NC2n

C2
MU(C2n) →

MU(C2n), then we get a map of associative algebras

N(
∧
k≥1

S[r̄k])→MU(C2n).

Let R denote the associative algebra N(
∧

k≥1 S[r̄k]).
Since S[r̄k] is a wedge of equivariant spheres, we can easily understand

R =
∧
k≥1

N(S[r̄k]).

Proposition 5.22. The homology of the underlying spectrum for R is

Z[r1, . . . , γ
2n−1−1r1, r2, . . . ],

where ri is the fundamental class of the associated sphere, and where |ri| =
2i, and the underlying map on homotopy

π
{e}
∗ R→ π

{e}
∗ MU(C2n)

is surjective, sending fundamental classes to the identically named elements.

In the group action, γ2n−1
acts as (−1)i on ri. In fact, this sign action

is recorded in the equivariant homotopy by the fact that the conjugation
map Sρ2 → Sρ2 had degree −1. We also know that every class in the norm
of our wedge has a stabilizer group containing C2. Putting these two facts
together leads us to consider orbits of monomials in the underlying homotopy
of MU(C2n). Associated to each orbit, we can attach the stabilizer subgroup
modulo 2, stripping out the pesky sign problem. For easy of notation, if p
is a monomial, let Hp denote this stabilizer subgroup.

This gives us exactly the equivariant homotopy type of R: it is a wedge
of induced spheres of the form

C2n+ ∧Hp S
|p|

|Hp|ρHp ,

where p ranges over a set of representatives for the orbits of monomials in
the underlying homotopy of MU(C2n).

The reader will at this point no doubt recognize that the claim of the
necessary theorem is that MU(C2n) has an equivariant filtration for which
the associated graded is HZ ∧ R. We can achieve this by first recognizing
that since R is essentially a polynomial algebra in spectra (though we stress
that the variables do not commute with themselves in the sense that there
are no power operations beyond the pth power), we have a filtration by
degree, with the “degree at least n” bimodule being denoted Mn. Using the
map of associative algebras R→MU(C2n), we get a decreasing filtration of
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MU(C2n) = MU(C2n) ∧R R by considering MU(C2n) ∧R Mn. The associated
graded for this filtration is simply(

MU(C2n) ∧R S0
)
∧R.

This gives rise to by far the most difficult theorem in our proof: the
Reduction Theorem. Since the proof is somewhat technical, we will not
reproduce it here.

Theorem 5.23 (the Reduction Theorem). We have an equivariant equiv-
alence

MU(C2n) ∧R S0 � HZ.

In fact, the map MU(C2n) ∧R S0 → HZ realizing this equivalence is
the 0th Postnikov section of MU(C2n). We should interpret the Reduction
Theorem as an equivariant analogue of the fact that MU modulo all of its
generators in non-zero degree is HZ. As a consequence of the Reduction
Theorem, we also see that MU(C2n) ∧R S0 inherits an algebra structure.
This is not immediate, since R is not commutative.

The astute reader will notice that at no point in the argument up to
this point have we used the slice filtration. It is precisely in our proof of the
reduction theorem that having the full slice story becomes most useful.

With the Reduction Theorem, the description of the associated graded
of MU(C2n) is complete. Before focusing on the specific computations, we
give a brief corollary.

Corollary 5.24. For any k, there is an equivariant filtration of
Σkρ2n MU(C2n) such that the associated graded is

HZ ∧
∨
p∈I

C2n/Hp+ ∧ S
|i|+k2n

|Hp| ρHp ,

where again I is the orbits of monomials in π
{e}
∗ MU(C2n) ⊗ Z/2 and where

Hp is the stabilizer subgroup of p.

This is immediate from smashing the filtration of MU(C2n) with Skρ2n .
Here we have used that the restriction of the regular representation of C2n to
any subgroup is a sum of copies of the regular representation. In particular,
we see that the form of the summands,

HZ ∧ (C2n+ ∧C
2k

Sjρ
2k ),

is unchanged!

6. The homology of a point, and the Gap theorem

For cyclic groups of prime-power order and for a virtual representa-
tion spheres SV , it is easy to compute the Mackey functor homotopy group
π∗(SV ∧HZ). Using the linear ordering of the subgroups, we can build a
triangularization of SV which gives us an especially simple chain complex.



THE ARF-KERVAIRE PROBLEM IN ALGEBRAIC TOPOLOGY 27

For ease of exposition, we will restrict attention to cyclic 2-groups.
Everything said here applies equally well to cyclic p-groups. Our exposi-
tion is greatly streamlined by the following obvious fact: the subgroups of
a cyclic p-group are linearly ordered.

The analysis begins with a decomposition of SV into cells for V an honest
representation. For this, we can actually understand this in spaces. This
gives us, by equivariant Spanier-Whitehead duality, a cellular decomposition
of S−V , and then by smashing, we get one for any virtual representation.
This translates into our chain complexes by simply requiring us to form
the associated cochain complex for S−V and then to tensor things together
for a more general case. We remark that for honest representations, this
chain complex is much smaller than the one you get by decomposing V into
irreducible representations and tensoring the associated complexes together.

For the rest of this section, let V be a fixed representation of C2n .

6.1. The Bredon homology of SV . We can decompose V into a
direct sum of representations with a fixed stabilizer subgroup:

V =
n⊕

k=0

Vk,

where Vk is a sum of representations of the form λ(j) with the 2-adic valua-
tion of j equal to n− k. Thus Vi is stabilized by C2n−i , and conversely, the
fixed points of C2n−i is

V C2n−i =
i⊕

k=0

Vk.

This actually immediately lets us built a cellular decomposition. Since
any representation spheres Sλ(i) and Sλ(i′) are equivalent if i and i′ have the
same 2-adic valuation, we can simple consider

V = m0 ⊕m1σ ⊕m2λ(2n−2)⊕ · · · ⊕mnλ.

This particular ordered decomposition of V into irreducible representations
with shrinking stabilizer groups gives our cells. For ease on the reader’s
eyes, let

Mk = dimV C
2n−k = m0 + m1 + 2m2 + · · ·+ 2mk.

Proposition 6.1. There is a cell decomposition of SV of the form

Sm0 ∪
m1⋃

j1=1

C2n+ ∧C2n−1 eM0+j1 ∪ · · · ∪
2mn⋃
jn=1

C2n+ ∧ eMn−1+jn .

Moreover, the subcomplexes

Sm0 ∪
k⋃

j1=1

C2n+ ∧C2n−1 em0+j1
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and

Sm0 ∪
m1⋃

j1=1

C2n+ ∧C2n−1 em0+j1 ∪ · · · ∪
2�⋃

jk=1

C2n+ ∧C
2n−k

eMk−1+jk .

are the representation spheres

Sm0+kσ and Sm0+m1σ+···+�λ(2n−k)

respectively.

The second half essentially tells us how to build these. We attach cells
with increasingly smaller stabilizer groups to the representation spheres we
have already built. We can therefore understand the cell structure by un-
derstanding how to build SV ⊕λ(2k) with SV as the co-dimension 2-skeleton
for representations V with stabilizer containing C2k .

This is easiest to visualize with a picture. In Figure 3, the z-axis
represents the representation V , while the (x, y)-plane (herein depicted as
λ(2n−2)) is λ(2k). The white dot in the center is the origin, and the shad-
ing on the semi-planes indicates the contribution of the group action on the
vertical component (in this case, flipping back and forth).

We have a natural cell structure for Sλ(2k):

S0 ∪ C2n+ ∧C
2n−k

e1 ∪ C2n+ ∧C
2n−k

e2.

We can easily visualize this cell structure on the Riemann sphere. The 0-cells
are the origin and the point at infinity, the 1-cells are the great semi-circles
through the zero cells and the 2kth-roots of unity, and the 2-cells interpolate
between these. This is depicted in Figure 4 for k = 3.

To build our cell structure on SV ⊕λ(2k), we smash this cell structure with
the spheres already built. Since the stabilizer subgroup of V contains C2n−k ,
we know that

SV ∧
(
C2n+ ∧C

2n−k
e1

)
= C2n+ ∧C

2n−k
SV ∧ e1 = C2n+ ∧C

2n−k
e1+dim V ,

Thus we can ignore the codimension 1-skeleton of SV after smashing with
C2n/C2n−k , and we produce the desired cell structure on SV ⊕λ(2k).

Figure 3. Adding New Cells
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Figure 4

This gives us very simple chain complexes to compute the Bredon
homology.

Definition 6.2. If V = m0 + m1σ + m2λ(2n−2) + · · · + mnλ, then let
C(V ) denote the chain complex

C(V )j =

{
Z[C2n/C2n−k ] Mk−1 < j ≤Mk

0 otherwise,

where the differentials are those equivariant maps such that the restriction of
the complex to those cells of dimension at most Mk−1+2j is quasi-isomorphic
to the chains on SMk−1+2j .

The complex C(V ) is the equivariant cellular chain complex. If we take
fixed points for various subgroups and take homology, then we recover the
Bredon homology groups, by definition.

Proposition 6.3. As Mackey functors,

Hn(SV )(G/H) := πn(SV ∧HZ)(G/H) = Hn(C(V )H).

We can rewrite the final step as saying that homotopy classes of equivari-
ant maps from the chain complex that is Z[G/H] in dimension n to C(V )
is the same as the homology of the fixed points of the complex.

The most important cases are regular representations spheres, and we
spell out several cases for the reader’s convenience. From these, the general
pattern easily follows.

Example 6.4. For C4, we have

C(ρ4) = Z[C4/C4] Z[C4/C2]
∇�� Z[C4]

1−γ�� Z[C4]
1+γ�� ,

where ∇ is the “fold” map ∇ : Z2 → Z. We also have

C(2ρ4) = Z Z2∇�� Z2
1−γ�� Z4

1+γ�� Z4
1−γ�� Z4Tr�� Z4

1−γ�� ,

where we have abreviated Z[C4/H] to Z(4/|H|) and where Tr = (1 + γ +
γ2 + γ3).
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There is an essential fact that underlies all of what follows. If V contains
σ, then C(V ) always begins

Z[C2n/C2n ] ∇←− Z[C2n/C2n−1 ].

This quite simple result is the basis for the gap theorem!

6.2. The Bredon homology of S−V . Since S−V is the equivariant
Spanier-Whitehead dual of SV , the Bredon chains are the dual to the chains
on SV :

C(−V ) := Hom(C(V ), Z),

where Z has the trivial action. The two most important examples are C(ρ2n)
and C(2ρ2n). We again illustrate these for C4.

Example 6.5. We have

C(−ρ4) = Z[C4/C4]→ Z[C4/C2]→ Z[C4]→ Z[C4],

where now the first map is the diagonal Z → Z2, and the remaining ones
are as in the positive case.

We also have

C(−2ρ4) =

Z[C4/C4]→ Z[C4/C2]→ Z[C4/C2]→ Z[C4]→ Z[C4]→ Z[C4]→ Z[C4],

and again the only change is that the first map is the diagonal map.

Proposition 6.6. If V contains a copy of σ, then the two non-zero
terms of largest degree in C(−V ) are

Z[C2n/C2n ] Δ−→ Z[C2n/C2n−1 ],

where Δ is the diagonal map Z→ Z2.

6.3. The Gap theorem. We begin with a few simple homotopy
groups.

Lemma 6.7. For any k > 0 and any j, we have

π−3,−2,−1

(
HZ ∧ C2n+ ∧C

2k
Sjρ

2k
)

= 0.

Proof. By the natural adjunctions between induction and restriction,
it will suffice to show that for any j

π−3,−2,−1HZ ∧ Sjρ2n = 0.

If j ≥ 0, then elementary connectivity arguments show this is so. For j <
−3, the (−j)-connectivity of S−jρ2n produces the desired co-connectivity.
For j between −3 and −1 inclusive, Proposition 6.6 shows that in dimensions
j and j − 1, C(jρ2n) looks like

Z[C2n/C2n ] Δ−→ Z[C2n/C2n−1 ].
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Upon passage to C2n fixed points, this complex becomes

Z
1−→ Z,

and we conclude that in degrees j and j − 1, the homology is 0. The only
remaining case is j = −1 and degree −3. It is easy to check that in this case,
the map from degree −3 to −4 is injective, resulting in a trivial homology
group in degree −3. �

As an immediate consequence of this and the Slice Theorem, we learn a
quite surprising fact about the homotopy of the fixed points of MU(C2n).

Theorem 6.8. For any k,

π−3,−2,−1Σkρ2n MU(C2n) = 0.

Proof. For k ≥ 0, this is immediate, since MU(C2n) is (−1)-connected,
and Skρ2n is k-connected. For k < 0, we use Corollary 5.24. Associated to
this filtration, we have a spectral sequence computing equivariant homotopy.
The E1-term is the equivariant homotopy of terms of the form

HZ ∧ C2n+ ∧C2m Sjρ2m ,

where m > 0. By Lemma 6.7, π−3,−2,−1 of this is zero. Since π−2 of every
term in the associated graded is zero, we conclude the same is true for
Σkρ2n MU(C2n). �

Theorem 6.9 (the Gap Theorem). If Δ̄ : Skρ2n →MU(C2n) is any equi-
variant homotopy class, then

π−3,−2,−1Δ̄−1MU(C2n) = 0.

Proof. Inverting Δ̄ involves forming a directed colimit

· · · →MU(C2n)
Δ̄−→ Σ−kρ2n MU(C2n)

Δ̄−→ . . . .

Spheres are still compact objects, and so we conclude

π−3,−2,−1Δ̄−1MU(C2n) = lim→ π−3,−2,−1Σmkρ2n MU(C2n) = lim→ 0 = 0. �

Thus in a huge family of equivariantly periodic spectra (these with period
kρ2n), we always have a gap in the homotopy of the fixed points. This is
actually quite shocking and strong. With very little work, we have produced
one of the key steps in our theorem: the Kervaire classes are eventually
detected in the zero group.

Remark 6.10. There are two known antecedents to this result. Atiyah
showed that the fixed points of KR are KO, and the standard computation of
the homotopy of KO has π−3,−2,−1KO = 0. Similarly, unpublished work of
Mahowald-Rezk and Goerss-Henn show that in the homotopy of EO2(C4) =
EC4

2 , we have π−3,−2,−1EO2(C4) = 0. Our result shows that these vanishing
results are actually quite generic.
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7. Some cohomology operations and slice differentials

The Periodicity and Homotopy Fixed Points Theorems rely on a simple
cohomological computation. We construct several elements in the equivari-
ant Steenrod algebra in BP (n)-modules and we show that these act non-
trivially on the powers of u2σ. Tying these to N(r̄i) for various i produces
for us, by definition, slice differentials.

7.1. Naming elements in Bredon homology. One of the most use-
ful features of this approach is that we can easily understand the full ring
structure of π�HZ (at least the positive part). In particular, we can ex-
plicitly name every element, and this allows us to better understand how
elements in the slice spectral sequence interact. We saw that the earlier com-
putations that if V is an oriented representation (that is, the generator acts
via a degree 1 map on the underlying sphere), then we have a distinguished
map Sdim(V ) → SV ∧HZ.

Definition 7.1. Let uV denote the orientation map Sdim(V ) → SV ∧HZ.

Just as with aV , these satisfy a number of very useful properties.

Proposition 7.2.
(1) If 1 is the trivial representation, then u1 = 1.
(2) If V and W are representation, then uV ⊕W = uV · uW .
(3) If H ⊂ G, then NG

H (uV ) · udim(V )IndG
H1 = uIndG

HV .

The only non-obvious result is the third. This follows immediately from
writing out the norm of the source.

This lets us name every element in our chain complexes. We give the
generic example for C8 and various copies of the regular representation
thereof.

ZZ2. . .Z2Z4. . .Z4Z8. . .Z8

akρ̄8ak(λ+λ(2)+λ(3))ukσak(λ+λ(3))ukλ(2)ukσuk(λ+λ(3))u

8k 4k 2k k

kλ(2)ukσ

This method of naming actually also follows quite quickly from our
choice of cell-structure. We restrict attention to orientable V for now and
will indicate the simple change for non-orientable V at the end. Since the
codimension 2-skeleton of our cell-structure is another representation sphere
(and one for which the stabilizer subgroup is larger), it will suffice to
understand how to name the elements of SV +λ relative to those of SV .
This follows from the following.

Observation 7.3. The inclusion SV → SV +λ is aλ.

Thus for ∗ ≤ dim(V ), multiplication by aλ gives an isomorphism

π∗HZ ∧ SV (G/H)→ π∗HZ ∧ SV +λ(G/H).
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It is also immediate from the chain complexes that the dim(V ) + 1-dimen-
sional homology vanishes. Finally, by definition, the dim(V + λ)-homology
is generated by uV +λ. Downward induction on the number of summands
then names generators for all homology groups.

So what happens in the non-orientable case? The names here change
very slightly. If V is non-orientable, then V contains an odd number of
copies of σ, and V −σ is orientable. We name the elements of the homology
of SV −σ in the usual way, and composing with aσ produces the generators
of the homology of SV . In particular, we see that if V is not orientable, then
all homology groups of SV are 2-torsion.

Though not directly needed, we also list some multiplicative relations
in the Bredon homology of a point. These will result is drastic simplifica-
tions upon inverting aσ, which in turn will make our computation of several
cohomology operations tractable.

Proposition 7.4. The elements uλ(2k) are subject to the following rela-
tions

2jaλ(2i)uλ(2i+j) = aλ(2i+j)uλ(2i),

where here we have used that λ(2n−1) = 2σ.

It is then immediate that for all k < n− 1,

a3
σuλ(2k) = 0,

since a2
σuλ(2k) is divisible by 2.

Though we have not described the other equivariant homology groups,
it is not difficult to check that aσ also acts nilpotently on almost all classes
there. More specifically, we have the following.

Proposition 7.5. As rings,

a−1
σ π�HZ = Z/2[a±1

σ , a±1
λ(2n−2)

, . . . , a±1
λ , u2σ],

and as spectra, ΦGHZ = HZ[b], where b = u2σ/a2σ is in degree 2.

7.2. Relative cohomology operations. For sake of argument, we
assume that BP (n) is an E∞ ring spectrum. If this is not the case, then we
replace it with MU(C2n). While in general there are many more classes that
will appear for MU(C2n), we will restrict attention to geometric fixed points
(for which things are better behaved). We begin by analyzing the spectrum
HZ ∧BP (n) HZ. This is an equivariant E∞ ring spectrum whose homotopy
is the ring of cooperations for homology in the category of BP (n)-modules.

In general, the homotopy of this will be very difficult to compute. How-
ever, we can identify particular elements which we can easily check to be
non-zero by mapping to the geometric fixed points. To begin, we quickly
compute the geometric fixed points of this spectrum.
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Proposition 7.6. As commutative ring spectra,

ΦG(HZ ∧BP (n) HZ) = HF2[b′] ∧HF2 HF2[b] = HF2[b, b′],

where as before b = b′ = u2σ/a2σ is an element in degree 2.

Before continuing, we make a very brief digression into names of ele-
ments. Just as classically, the classes r̄i,n do not occur in BP (n) unless i

is of the form 2j − 1. We therefore give new BP (n)-names to simplify the
writing. Similarly, since in this section n is held fixed, we suppress it from
the notation.

Definition 7.7. Let v̄i denote the element r̄2i−1,n.

Even using MU(C2n), these are the elements that play a key role (since
we always have a splitting in equivariant A∞-algebras that splits off BP (n)).

We define our homology classes inductively using the cofiber sequences

(G · v̄i)BP (n) → BP (n) → BP (n)/(G · v̄i).

A key observation that makes many of the computations here work is
that from the perspective of geometric fixed points, there is no difference
between (G · v̄i)BP (n) and N(v̄i)BP (n) = ΣiρGBP (n), and the map to BP (n)

is multiplication by N(v̄i). This is because all other elements are carried by
induced spheres and are therefore wiped out by the geometric fixed points
construction.

If we smash this over BP (n) with HZ, then we again get a cofiber
sequence:

(G · v̄i)BP (n) ∧BP (n) HZ→ BP (n) ∧BP (n) HZ→ BP (n)/(G · v̄i) ∧BP (n) HZ,

and from this we can identify various homotopy elements. Let N(v̄i) denote
the homotopy class S(2i−1)ρG → (G · v̄i)BP (n) ∧BP (n) HZ induced by the
Thom reduction map BP (n) → HZ (which is the unit map in the category
of BP (n)-algebras). A simple check on geometric fixed points shows that this
map is not null. However, when we compose with the map to BP (n) ∧BP (n)

HZ, then this map becomes null.

Definition 7.8. Let τi : S(2i−1)ρG+1 → BP (n)/(G · v̄i)∧BP (n) HZ denote
a preimage of N(v̄i) in the long exact sequence in homotopy induced by the
cofiber sequence.

Let τi : S(2i−1)ρG+1 → HZ ∧BP (n) HZ also denote the image of τi into
the colimit.

Obviously there is substantial ambiguity in this definition. However, for
our purposes we need most understand what happens modulo the elements
annihilated by aσ. For this, the following proposition shows there is not
only is there no ambiguity but also the classes are non-zero.

Proposition 7.9. The image of a(2i−1)ρ̄G
τi in π∗ΦG(HZ ∧BP (n) HZ)

is b′2i
.
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Proof. This is immediate from applying geometric fixed points to the
defining cofiber sequences. �

In fact, this proposition is essentially equivalent to the Reduction theo-
rem. The key step is that we can get HZ from BP (n) by killing classes,
and the argument relies on a computation. This computation is at its
heart equivalent to knowing that the classes τi map to non-trivial classes
in HZ ∧BP (n) HZ.

Since this is a map of rings, we note that there are non-trivial multi-
plicative extensions among the classes τi.

Corollary 7.10. Modulo elements killed by inverting aσ, we have a
relation

τ2
i = aρ̄Gτi+1.

For computational reasons, it is convenient to extend this result very
slightly and kill 2 in the homotopy. Let τ0 : S1 → HZ/2∧BP (n) HZ/2 denote
the mod 2 Bockstein.

Proposition 7.11. The image of τ0 in π∗ΦG(HZ/2 ∧BP (n) HZ/2) =
F2[
√

b,
√

b′] is
√

b′.

Corollary 7.12. for all i ≥ 0, we have

τ2
i = aρ̄Gτi+1.

Remark 7.13. This result has a number of antecedents. In motivic
homotopy theory, we can also form HF2∧BP HF2. Work of Voevodsky shows
that the homotopy groups of this are π�HF2[τ0, . . . ]/τ2

i = ρτi+1, where ρ is
a distinguished class in the motivic homotopy of a point.

The computations in this section have been in homology. We turn
now to cohomology to produce our desired differentials. Let Qi denote
the class in (BP (n)-relative) cohomology dual to τi. This is an element in
π�FBP (n)(HZ/2, HZ/2), the ring of operations on mod 2-cohomology in the
category of BP (n)-modules. Since the dual has a product, this has a coprod-
uct, and the multiplicative relations on the classes τi gives us a coproduct
relations on the classes Qi.

Proposition 7.14. The class aρ̄GQi−1 ⊗ Qi−1 occurs in the coproduct
of Qi with non-zero coefficient.

These classes are not a priori in the equivariant Steenrod algebra. These
are classes in the homotopy of the spectrum of BP (n)-module endomor-
phisms of HZ/2. However, since the slice filtration is a filtration of BP (n)-
modules, this is sufficient for our purposes. In fact, though not needed, it
is not difficult to show for naturality reasons that these map to non-trivial
elements in the equivariant Steenrod algebra.



36 M. A. HILL, M. J. HOPKINS, AND D. C. RAVENEL

Theorem 7.15. Modulo classes annihilated by inverting aσ,

Qi(u2i

σ ) = a2i−1
ρ̄G

a2i

σ .

Proof. The equivariant chain complexes show that Q0(uσ) = aσ. The
result now follows by induction. �

Theorem 7.16. In the slice spectral sequence for BP (n), we have differ-
entials

d(u2i

2σ) = a2i+1−1
ρ̄G

a2i+1

σ N(v̄i).

Proof. This is immediate from the definition of the classes τi: τi de-
tects multiplication by N(v̄i). The previous theorem them gives this result
modulo classes annihilated by aσ. A simple computation shows that in this
range of possible targets, multiplication by aσ is faithful. �

As we shall see, this theorem is the essential result needed for the peri-
odicity and homotopy fixed points theorems.

7.3. Interlude KR and KO. To ground the previous differentials, we
present the example of the C2-fixed points of KR. This computation was
originally done by Dugger with his C2-slice spectral sequence [10]. We
reproduce it with our language and machinery. The E2-page of the spectral
sequence is shown in Figure 5. We have included the names of several
classes to help the reader. In particular, classes that occur on the zero line
are powers of v̄1 times complementary powers of u2σ. As always, boxes are
copies of Z while black dots are copies of Z/2.

The class v̄1 is an actual equivariant homotopy class, so we know it is
a permanent cycle in the slice spectral sequence. Similarly, aσ is in the
Hurewicz image. The only class unaccounted for is u2σ, and Theorem 7.16
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Figure 5. The Slice E2-term for KR
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Figure 6. The Slice E3-term for KR

shows that it supports a slice d3:

d3(u2σ) = a3
σv̄1.

This differential takes place in an equivariant stem (connecting the 2 − 2σ
and the 1−2σ stems). However, since this is a spectral sequence of algebras,
we see Z-graded versions of this:

d3(v̄2
1u2σ) = v̄2

1d3(u2σ) = a3
σv̄3

1.

We present the E3-page together with this differential in Figure 6. The
reader is directed to the positive parts of the homotopy, where the slice
spectral sequence looks very much like the homotopy fixed points spectral
sequence under the line of slope 1 through the origin. In negative degrees,
we see essentially the dual pattern, and we will not dwell much on those
stems.

For KR, the class v̄1 is a unit. This means that we also have a differential

d3(v̄−1
1 u2σ) = a3

σ,

and so a3
σ = 0 from E4 on. This produces a horizontal vanishing line in the

spectral sequence, and E4 = E∞. In particular (even if E4 were not E∞),
we see that u2

2σ is a permanent cycle. We also see that since aσ is nilpotent,
the geometric fixed points of KR is contractible. All of this followed simply
from the invertibility of v̄1, and these types of properties will be key in our
identification of the periodicity.

8. Homotopy fixed points, periodicity, and the spectrum Ω

In this section, we will complete our sketch, tying our Gap Theorem
with the differentials we discovered. In all cases, the classes N2n

2k (r̄i,k) play a
special role: they are carried by regular representation spheres and are seen
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by the differentials. Thus upon inverting families of these classes, we get
spectra with a gap and for which the slice spectral sequence is simplified.
Since these norms will occur quite frequently in all that follows, let

Nn
k (x) = NC2n

C
2k

(x).

8.1. The homotopy fixed point and periodicity theorems. The
last results needed for various localizations of MU(C2n) rely on an
interplay between things we can compute for the homotopy fixed points and
things we can compute for honest fixed points. We begin with a slightly gen-
eral theorem that will greatly help us. Let EG denote the free contractible
G-space. Recall also that we defined spaces EFm to be the universal space
for the family of proper subgroups of Cpm .

Theorem 8.1. Let R be a G ring spectrum. If for all m > 0
(
ẼFm ∧

R
)Cpm is contractible, then the natural map

R→ F (EG+, R)

is a G-weak equivalence.

Proof. The proof is by induction on the order of the group. If the the
group is trivial, then the result is obviously true. Assume now that for all
subgroups of Cpn the result is true and that the geometric fixed point object
is contractible. If we smash the map ι : R → F (EG+, R) with the isotropy
separation sequence, then we have a diagram

EFn+ ∧R ��

EFn+∧ι

��

R ��

ι

��

ẼFn ∧R

ẼFn∧ι
��

EFn+ ∧ F (EG+, R) �� F (EG+, R) �� ẼFn ∧ F (EG+, R).

By induction, the map labeled EFn+ ∧ ι is a G-weak equivalence. By the
assumption on R, the upper right corner is equivariantly contractible. The
map labeled ẼFn ∧ ι is a ring map, so we learn that it must also be an
equivalence. Therefore the map labeled ι is an equivalence. �

The results of the previous section show us exactly how to ensure that
these geometric fixed points sets are contractible for various MU(C2n)-
algebras.

Theorem 8.2. Let R be an MU(C2n)-algebra. If Nn
1 (r̄2i−1,k) is a unit

in π�R, then
(
ẼFk ∧R

)C
2k is contractible.

Proof. Since we are computing the homotopy groups of the C2k -fixed
points, by naturality of the slice spectral sequence we may assume that k = n
and show the result there.

Theorem 7.16 show that we have a slice differential

u2i−1

2σn
�→ a2i−1

ρ̄ a2i

σ Nn
2 (r̄2i−1,n).
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Since Nn
2 (r̄2i−1,n) is a unit, this allows us to conclude that starting on the

next page of the spectral sequence a2i+1
σ a2i−1

ρ̄ = 0. Simple computations
with the complexes occurring in the slice tower show that there are not
possible targets for a hidden aσ-multiplication (as this class is always at the
farthest edge of the vanishing region), so we conclude that after inverting
aσ, we get the zero ring. This gives the result. �

Corollary 8.3. If R is an MU(C2n)-algebra in which Nn
1 (r̄2i−1,k) is a

unit, then u2i

2σk
is a permanent cycle.

Proof. Again, the statement is one taking place for C2k fixed points,
so we may assume k = n. If we smash the slice tower of MU(C2n) with
S2jσ and take homotopy, then we get a spectral sequence computing π∗
(Σ2jσMU(C2n)). Using our complexes, it is easy to see that the last possible
differential on u2j−1

2σ (which indeed is the only possible differential) is the
one we found using power operations.

Since under the hypothesis the target of the differential on u2i

2σ is obvi-
ously already killed, we conclude that u2i

2σ is a permanent cycle. �

These two results are the heart of the Homotopy Fixed Point and Peri-
odicity theorem.

Theorem 8.4 (Homotopy Fixed Point and Periodicity Theorems). As-
sume given a sequence of non-negative numbers i1 through in, let i be the
maximum of the ij, let i′ denote the minimum of the ij, and assume
Δ̄ : Smρ →MU(C2n) is divisible by Nn

1 (r̄2ik−1,k) for all k. Then
(1) We have a weak equivalence(

Δ̄−1MU(C2n)

)C2n �
(
Δ̄−1MU(C2n)

)hC2n
.

(2) The class u2i

2ρ lifts to a non-zero homotopy class in Δ̄−1MU(C2n).
(3) π∗Δ̄−1MU(C2n) is 2n · lcm(2i+1, (2i′ − 1))-periodic.

While not immediately obviously so, all three parts of this result are
intimately related and are simple consequences of our earlier theorems. For
this reason, we link them into a single result

Proof. The proof of the first part is immediate from Theorems 8.1 and
8.2. For the second part, we know from Corollary 8.3 that for all k, u2i

2σk

is a permanent cycle and therefore a homotopy class. This means that for
all k Nn

k (u2i

2σk
) is a permanent cycle and therefore a homotopy class, and so

multiplying these classes gives

u2i

2ρ =
n∏

k=1

Nn
k (u2i

2σk
)

is a permanent cycle and a homotopy class.



40 M. A. HILL, M. J. HOPKINS, AND D. C. RAVENEL

The third result combines the first two. The class u2i

2ρ gives an equivari-
ant map

Σ2i+n+1
Δ̄−1MU(C2n) → Σ2i+1ρΔ̄−1MU(C2n),

and when we restrict to the trivial group, this map is the identity. Thus we
have an equivariant map that is an underlying equivalence, and that gives us
an equivalence on homotopy fixed points. Since these are the same as honest
fixed points, we conclude that the class u2i

2ρ is invertible in π�Δ̄−1MU(C2n).
The desired periodicity arises by multiplying u2i

2ρ by the appropriate powers
of Nn

k (r̄2ik−1,k) as k-varies (all of which will be invertible classes in trivial
stems). If we chose ik to be minimal, then we get the smallest predictable
periodicity. �

Since Δ̄ in the previous theorem is carried by a regular representation
sphere, we also conclude that π−2Δ̄−1MU(C2n) = 0. Since the homotopy
groups are periodic, this shows that a large number of groups are actually
zero. We should stress here the importance of the Homotopy Fixed Point
theorem. The Detection ad Periodicity Theorems are proved for the homo-
topy fixed points of Ω̃, not the honest fixed points. On the other hand, the
Gap Theorem is proved for honest fixed points which a priori only map to
the homotopy fixed points. The Homotopy Fixed Point Theorem provides
the bridge between the two kinds of results.

8.2. The spectrum Ω and the detection theorem. As was
described early on, our spectrum Ω̃ is a stand-in for E4 with the C8-action.
We will build Ω̃ by inverting equivariant classes for each of the subgroups
of C8, just as in the Homotopy Fixed Points Theorem, while ensuring that
we have good equivariant maps from these localizations to E4.

We first look at the underlying spectrum for MUC8 . This is MU ∧MU ∧
MU∧MU with the permutation action of C8, and the underlying homotopy
groups represent the data of having 4 formal group laws F1, . . . , F4 together
with a chain of isomorphisms

F1
γ−→ F2

γ−→ F3
γ−→ F4

such that γ4 = [−1](x). In particular, we have a canonical map

π∗(MU ∧MU ∧MU ∧MU)→ π∗E4

that classifies the universal deformation formal group law carried by E4,
together with its translates under the group C8. This then gives us by
construction a C8-equivariant map

MU ∧MU ∧MU ∧MU → E4.

Through this map, we will isolate equivariant elements which can be safely
inverted without destroying the detection of the Kervaire classes.

In particular, we have the following result, since E4 is v4-periodic and
since r15,1 ≡ v4 modulo the previous classes.
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Proposition 8.5. The map

MU ∧MU ∧MU ∧MU → E4

factors through
(
N3

1 v̄4

)−1
MU ∧MU ∧MU ∧MU .

To fully spell out the reasoning for inverting the classes we do, we must
have a brief digression into the Morava stabilizer group S4 [25]. By defini-
tion, this is the automorphism group of the Honda formal group law, and
it can be realized as the group of units of the maximal order of the division
ring over Q2 of Hasse invariant 1/4. In particular, using a presentation of
this division ring, we can write any element g ∈ S4 as

g =
∞∑

j=0

tj(g−1)T j ,

where tj(g−1) is an element of F15. As is suggested by the notation, the
symbols tj are functions on the Morava stabilizer group, and they are also
the images of the elements by the same name in BP∗BP . Thus this formula
reflects the interplay between the BP∗BP -coaction and the group action.
For us, the most important part is that we can check if the value of ti on
a group element is a non-zero element of π∗E4 modulo the maximal ideal.
Since π∗E4 is a complete local ring, any element in π∗E4 that has non-zero
reduction modulo the maximal ideal is a unit. Restricting attention to C4,
this gives us another class we can invert, since an elementary argument
involving valuations shows that t2(γ2) �= 0. Modulo lower classes, t2 ≡ r3,2.

Proposition 8.6. The map

MU ∧MU ∧MU ∧MU → E4

factors through
(
N3

1 r̄3,2

)−1
MU ∧MU ∧MU ∧MU .

As stated, the result about the interplay between the elements ti and
the group action is for MU ∧MU (really BP ∧BP ). We are working with
MU ∧MU ∧MU ∧MU . However, a similar analysis shows that we have the
same relationship between the classes r2i−1,3 and the generator γ (in fact,
this is essentially a way we could define r1,3). The same valuation argument
use for C4 shows that r1,3(γ) �= 0.

Proposition 8.7. The map

MU ∧MU ∧MU ∧MU → E4

factors through
(
N3

1 r̄1,3

)−1
MU ∧MU ∧MU ∧MU .

At this point, we can no longer say if there are any elements we can
obviously invert. We have inverted appropriate norm classes for each sub-
group, and we know that the resulting map has an equivariant map from
the underlying spectrum to E4. We can therefore define Ω̃.
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Definition 8.8. Let Ω̃ be(
N3

1 r̄1,3

)−1(
N3

1 r̄3,2

)−1(
N3

1 r̄15,1

)−1
MUC8 .

Recall that Ω was defined to be the fixed points of Ω̃. An immediate
application of our big theorems shows the following.

Corollary 8.9.
(1) The homotopy groups of Ω are 256-periodic.
(2) We have π−2Ω = 0.
(3) We have an equivalence Ω � Ω̃hC8.

These are exactly the properties needed to prove the Kervaire theorem.
We state without proof the final piece. The argument for this is classical: we
show using the homotopy fixed point spectral sequence and the comparison
with the Adams-Novikov spectral sequence that any element representing
the Kervaire classes maps to a non-zero element. Since the argument is of a
decidedly different flavor, we refer the reader to the main paper.

Theorem 8.10 (Detection Theorem). If θj ∈ π2j+1−2S
0 is non-zero,

then it has non-zero Hurewicz image in π∗Ω.

Since these elements are then detected in the zero group for j ≥ 7, we
conclude that these elements do not survive.
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