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1. Introduction and summary

This paper proves consistency and asymptotic normality of maximum like-
lihood (ML) estimators under weaker conditions than usual.

In particular, (i) it is not assumed that the true distribution underlying the
observations belongs to the parametric family defining the ML estimator, and
(ii) the regularity conditions do not involve the second and higher derivatives
of the likelihood function.

The need for theorems on asymptotic normality of ML estimators subject to
(i) and (ii) becomes apparent in connection with robust estimation problems;
for instance, if one tries to extend the author’s results on robust estimation of
a location parameter [4] to multivariate and other more general estimation
problems.

Wald’s classical consistency proof [6] satisfies (ii) and can easily be modified

.to show that the ML estimator is consistent also in case (i), that is, it converges
to the 6, characterized by the property E(log f(z, 8) — log f(x, 6,)) < 0for 6 = 6,
where the expectation is taken with respect to the true underlying distribution.

Asymptotic normality is more troublesome. Daniels [1] proved asymptotic
normality subject to (ii), but unfortunately he overlooked that a crucial step in
his proof (the use of the central limit theorem in (4.4)) is incorrect without
condition (2.2) of Linnik [5]; this condition seems to be too restrictive for many

purposes.
In section 4 we shall prove asymptotic normality, assuming that the ML

estimator is consistent. For the sake of completeness, sections 2 and 3 contain,
therefore, two different sets of sufficient conditions for consistency. Otherwise,
these sections are independent of each other. Section 5 presents two examples.

2. Consistency: case A

Throughout this section, which rephrases Wald’s results on consistency of the
ML estimator in a slightly more general setup, the parameter set O is a locally
compact space with a countable base, (X, ¥, P) is a probability space, and p(z, 8)
is some real-valued function on ¥ X ©O.
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Assume that 2y, 3, - - - are independent random variables with values in %
having the common probability distribution P. Let T.(zi, - -- , z.) be any se-
quence of functions 7',: ¥* — O, measurable or not, such that

6 15 o, T) — inf 1 3 oz, 0) >0
Ni=1 e MNi=1

almost surely (or in probability—more precisely, outer probability). We want
to give sufficient conditions ensuring that every such sequence converges almost
surely (or in probability) toward some constant 6.

If dP = f(z, 6,) du and p(x, 8) = —log f(x, 6) for some measure u on (%, )
and some family of probability densities f(z, 6), then the ML estimator of 6
evidently satisfies condition (1).

Convergence of T, shall be proved under the following set of assumptions.

ASSUMPTIONS.

(A-1). For each fixed 0 € ©, p(x, 0) is A-measurable, and p(z, 0) is separable in
the sense of Doob: there is a P-null set N and a countable subset ©' C © such
that for every open set U C O and every closed interval A, the sets

2 {zlp(z,0) € 4,V¥0 € U}, {z|o(x,0) €4,V € UN O}

differ by at most a subset of N.

This assumption ensures measurability of the infima and limits occurring
below. For a fixed P, p might always be replaced by a separable version (see
Doob [2], p. 56 ff.).

(A-2). The function p is a.s. lower semicontinuous in 0, that s,

3) inf p(x, 8') — p(z, 6), a.s.
¥ EU
as the neighborhood U of 6 shrinks to {6}.
(A-3). There is a measurable function a(x) such that
@ E{o(z,60) — a(x)}~ < o forall 6 €6,
E{o(z,0) — a(z)}* < o forsome 6§ €86.

Thus, v(6) = E{o(z, §) — a(z)} is well-defined for all 6.

(A-4). There is a 6y € © such that v(6) > v(6,) for ail 6 = 6.

If © is not compact, let © denote the point at infinity in its one-point com-
pactification.

(A-5). There is a continuous function b(6) > 0 such that

o - o p(z,8) — a(x)
O 2
for some tntegrable h;
(i) lim inf 5(6) > v(8);
(iii) 2 {lim inf ’i“i—l))(;)-@} > 1.

© is compact, then (i) and (3i) are redundant.
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ExamrLE. Let © = ¥ be the real axis, and let P be any probability distribu-
tion having a unique median 6,. Then (A-1) to (A-5) are satisfied for p(z, 6) =
|z — 6|, a(x) = |z|, b(8) = |6] + 1. (This will imply that the sample median is
a consistant estimate of the median.)

Taken together, (A-2), (A-3), and (A-5) (i) imply by monotone convergence
the following strengthened version of (A-2).

(A-2"). As the neighborhood U of 6 shrinks to {6},

&) E{inf p(z, ') — a(@)} — E{p(z, ) — a(@)}.
veU

For the sake of simplicity we shall from now on absorb a(z) into p(z, 6).
Note that the set {§ € 6|E(|o(x, §) — a(x)]) < «} is independent of the par-
ticular choice of a(z); if there is an a(z) satisfying (A-3), then one mlght choose
a(x) = p(x, bo).

Lemma 1. If (A-1), (A-3), and (A-5) hold, then there is a compact set C C ©
such that every sequence T, satisfying (1) almost surely ultimately stays in C.

Proor. By (A-5) (ii), there is a compact C and a 0 < ¢ < 1 such that

©) inf b(6) > "("0) + €.
ogC
by (A-5) (i), (iii) and monotone convergence, C' may be chosen so large that
£ 0\
1 — 1

(7) Get(‘? b(0) 2e
By the strong law of large numbers, we have a.s. for sufficiently large n

f p(x,, 0) > f P(xv 0) > 1 — €
® nf 8 ) 2 i o “
hence,
©® 7 3 (s ) 2 (1= 9b0) 2 260 + e

for V8 ¢ C, which implies the lemma, since for sufficiently large »
(10) inf 1 3 oz, 0) <2 3 pay 8) < 7(0) + 1
6 Mi=1 ni=1

By using convergence in probability in (1) and the weak law of large numbers,
one shows similarly that T, € C with probability tending to 1. (Note that a.s.
convergence does not imply convergence in probability, if T, is not measurable!)

TaeoreM 1. If (A-1), (A-2'), (A-3), and (A-4) hold, then every sequence T,
satisfying (1), and the conclusion of lemma 1, converges to 6, almost surely. An
analogous statement is true for convergence in probability.

Proor. We may restrict attention to the compact set C. Let U be an open
neighborhood of 6. By (A-2’), v is lower semicontinuous; hence its infimum on
the compact set C\ U is attained and is—because of (A-4)—strictly greater
than y(8,), say > v(6) + 4¢ for some ¢ > 0. Because of (A-2’), each § e C\ U
admits a neighborhood Uy such that
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(11) E{inf p(z, 6)} > v(6) + 3e.
¢cUs

Select a finite number of points 6, such that the U, = U,, 1 < s < N, cover
C \ U. By the strong law of large numbers, we have a.s. for sufficiently large n
andalll < s <N,

(12) inf L3 p(e, ) > 15 inf olzs, 0) > v(@) + 2¢
ycu. n o cU.
and
(13) 5 plas 60) < 760 + e
It follows that
(14) inf 1% o 0) > inf 13 ples 0) + ¢,
seC\U N ecu

which implies the theorem. Convergence in probability is proved analogously.

Remarks. (1) If assumption (A-4) is omitted, the above arguments show
that 7', a.s. ultimately stays in any neighborhood of the (necessarily compact)
set {# € O|y(8) = infy v(¢')}.

(2) Quite often (A-5) is not satisfied—for instance, if one estimates location
and scale simultaneously—but the conclusion of lemma 1 can be verified quite
easily by ad hoc methods. (This happens also in Wald’s classical proof.) I do
not know of any fail-safe replacement for (A-5).

3. Consistency: case B

Let O be locally compact with a countable base, let (X, U, P) be a probability
space, and let ¢(z, 6) be some function on X X © with values in m-dimensional
Euclidean space B™.

Assume that z;, 22, -+ - are independent random variables with values in %,
having the common probability distribution P. We want to give sufficient condi-
tions that any sequence T',: ¥* — © such that

(15) 1 v@, )—0

ni=1

almost surely (or in probability), converges almost surely (or in probability)
toward some constant 6.

If © is an open subset of R™, and if y(z, 8) = (3/96) log f(x, 6) for some dif-
ferentiable parametric family of probability densities on ¥, then the ML estimate
of 6 will satisfy (15). However, our ¢ need not be a total differential.

Convergence of T, shall be proved under the following set of assumptions.

ASSUMPTIONS.

(B-1). For each fixed 6 € ©, y(x, 0) is A-measurable, and Y (x, 0) is separable
(see (A-1)).

(B-2). The function ¢ is a.s. continuous in 9:
(16) lim W(z, 6") — ¢(z, 6)] =0, a.s.
—0
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(B-3). The expected value N(6) = Ey(x, 6) exists for all 6 € O, and has & unique
zero at 6 = 6,. ’

(B-4). There exists a continuous function which is bounded away from zero,
b(8) = by > 0, such that

i) sup Ml(:(;a) )| is integrable,

(i) Tim inf ’2((3;’ > 1,
[¥(z, 6) — A(6)|
et <t

In view of (B-4) (i), (B-2) can be strengthened to
(B-2"). As the neighborhood U of 6 shrinks to {6}

(17) E(sup [Y(z,0') — (=, 0)) — 0.
U

(iii) £ <lim sup
0> =

It follows immediately from (B-2’) that \ is continuous. Moreover, if there
is a function b satisfying (B-4), one may obviously choose

(18) b(6) = max (|A ()], bo).

LemMa 2. If (B-1) and (B-4) hold, then there is a compact set C C O such
that any sequence T, satisfying (15) a.s. ultimately stays in C.

Proor. With the aid of (B-4) (i), (iii), and the dominated convergence
theorem, choose C so large that the expectation of

[¥(x, 6) — A@)|

19 =
(19) v(z) sup @)
is smaller than 1 — 3e for some ¢ > 0, and that also (by (B-4) (ii))
WO
2 >
20) e 21
By the strong law of large numbers, we have a.s. for sufficiently large =,
In‘l 2=y 8) — O] 1
’ <= ) <1— 2
21) oec 5(0) <, Sv() <1 — 2
thus,

@) |3 X B ) = O] < (1 - 2060) < T2 RO (L - IO

for V6 ¢ C, or
(23) |5 T ¥ 0] 2 @) 2 et — 9
for V0 ¢ C, which implies the lemma.

TueoreM 2. If (B-1), (B-2), and (B-3) hold, then every sequence T, satisfying
(15) and the conclusion of lemma 2 converges fo 6, almost surely. An analogous
statement s true for convergence in probability.
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Proor. We may restrict attention to the compact set C. For any open neigh-
borhood U of 6, the infimum of the continuous function |[A(6)| on the compact
set C'\ U is strictly positive, say >5¢ > 0. For every § € C\ U, let Us be a
neighborhood of 6 such that by (B-2'),

(24) Egsggahﬁ(x, 0) — ¥, 0} <¢

hence, [N6) — M8)] < e for ¢ € Us. Select a finite subcover U, = Us, 1 <
s < N. Then we have a.s. for sufficiently large n

@) sup |1F [ 0) = A@)]
eC\U

1
< sup =X sup [¢(z, 0) — ¥(z,6,)]
1<s<N T U,

+ sup ,,%Z [W(z, 6:) — \G:)]| + €
1<s<N

< 4e.
Since [A(8)| = 5e for § € C \ U, this implies

(26)

» T ¥, )2 ¢

for 8 € C \ U and sufficiently large n, which proves the theorem. Convergence
in probability is. proved analogously.

4. Asymptotic normality

In the following, © is an open subset of m-dimensional Euclidean space E™,
(%, A, P) is a probability space, and ¢:¥ X 6 — R™ is some function.

Agsume that x;, 22, - -+ are independent identically distributed random var-
iables with values in ¥ and common distribution P. We want to give sufficient
conditions ensuring that every sequence 7', = T, (z1, - - - , Z.) satisfying

27) (1/V'n) _Z”:l ¥(@;, T.) = 0 in probability

is asymptotically normal.

In particular, this result will imply asymptotic normality of ML estimators:
1et f(z, 6), 8 € 6 be a family of probability densities with respect to some measure
uon (% %), dP = f(x, 6,) du for some 6, ¥(z,8) = (3/38) log f(z, 6), then the
sequence of ML estimators 7', of 6, satisfies (27).

Assuming that consistency of 7', has already been proved by some other
means, we shall establish asymptotic normality under the following conditions.

ASSUMPTIONS.

(N-1). For each fixed 8 € 6, ¥(x, 6) is U-measurable and ¥(z, 6) s separable
(see (A-1)).
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Put =
}\(0) = E¢(x; 0)7
u(x) 0; d) = 8su |¢(x; T) - lﬁ(.’l?, 0)"
8 <d

lr—8i <

(28)

Expectations are always taken with respect to the true underlying distribution P.

(N-2). There is a 6, € 6 such that \(6,) = O.

(N-3). There are strictly positive numbers a, b, ¢, dy such that

@ @) = a0 — 06 for [0 — 6 < dy,

(i) Eu(z,6,d) < b-d for |0 — 6| + d < d,, d=>0,

(ili) Efu(z,0,d)?] <c-d for [0 — 6+ d < dy, d = 0.

Here, |6] denotes any norm equivalent to Euclidean norm. Condition (iii) is
somewhat stronger than needed; the proof can still be pushed through with
Elu(z, 6,d)?] < o(|log d|™).

(N-4). The expectation E[|y(x, 6)|%] s finite.

Put

3 W, m) = ¥l 0) = M) + A0

29 Z,(r,0) = "= Aol

The following lemma is crucial.

LemMma 3. Assumptions (N-1), (N-2), (N-3) imply
(30) sup Z.(r, 6) >0

|r—60] <do
in probability, as n — .

Proor. For the sake of simplicity, and without loss of generality, take ||
to be the sup-norm, |§] = max (|6.], - - - , |0|) for & € R™ Choose the coordinate
system such that 6, = 0 and dy = 1.

The idea of the proof is to subdivide the cube |r| < 1 into a slowly increasing
number of smaller cubes and to bound Z,(r, 0) in probability on each of those
smaller cubes.

Put ¢ = 1/M, where M > 2 is an integer to be chosen later, and consider
the concentric cubes

@31) Ce= {0 lo| < (1 - 9*, k=01, ,k.

Subdivide the difference Ci_;\ Cx into smaller cubes (see figure 1) with edges
of length

(32) 2d = (1 - g)*'g,
such that the coordinates of their centers ¢ are odd multiples of d, and
(33) d = - o (1-2)

For each value of k there are less than (2M)™ such small cubes, so there are
N < ko (2M)™ cubes contained in Cp \ Ck,; number them Cq), « -+, Cav.
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Figure 1
Now let € > 0 be given. We shall show that for a proper choice of M and of
ko = ko(n), the right-hand side of
(34) P(sup Za(r,0) 2 2¢) < P(sup Z,(r, 0) = 2¢)
7&C T7ECk

N
+ 2. P(sup Z.(7,0) = 2¢)
=1 s€lo

tends to 0 with increasing n, which establishes lemma 1.
Actually, we shall choose

(35) M 2> (3b)/(ea),

and ky, = ko(n) is defined by

(36) 1 =g@bk<nr<(1—gkl,
where 3 < ¥ < 1 is an arbitrary fixed number. Thus
(37) o) = 1 < ol 2Bl < o),
hence

(38) N = O(log n).

Now take any of the cubes C;, with center £ and edges of length 2d according
to (32) and (33). For 7 € C(;, we have then by (N-3),

(39) A@)| = alr| = a-(1 = ¢)%,
(40) A7) — M®)| < Bu(z, & d) < bd < b(1 — g)fq.
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We have
n\T, < 7y =1
(41) Zn(r,0) < Za(r, &) + o
hence
(42) sup Z"(T, 0) < Un+ Va
7&CH
with
3 [, & d) + Bulz, £ )]
(43) U, = na(l = OF )
|z [¥ies D = 95 0) = 20|
(44) na(l — ¢)*
Thus,

@)  PU.2 9
= P{E [utes & d) — Bule, & 9] 2 enall — o) — 2Bu(z, &, ) |-

In view of (40) and (35),
(46)  ea(l — @)% — 2Bu(z, & d) 2 ea(l — q)* — 2bg(1 — ¢)* = bg(1 — @)%,
hence (N-3) (iii) and Chebyshev’s inequality yield

1 ?
@7 PU.2 9 < e wi =g ;

In a similar way,

c 1 ¢
(48) P(Vn Z 5) S 9b2q2(1 _ q)2 * n(l — q)k—l .
Hence, we obtain from (36), (42), (47), (48) that -
(49) P( sup Zof1,0) > 2¢) < K-nr! ‘
C)
with
i c c
(50) K=pa =9 Torea=o
Furthermore,
> [u(@y 0, d) + Bu(z, 0, d)]
(51) sup Z,(r,0) < 2+ —
7ECY, \/n

with d = (1 — ¢)» < n~. Hence,
(52) P(sup Z.(r, 0) = 2¢)
7&Ck,

< P(é1 [u(zs, 0, d) — Eu(zs, 0,d)] > 2Vne — 2nEu(z, 0, d)).



230 FIFTH BERKELEY SYMPOSIUM: HUBER

Since Eu(z, 0, d) < bd < bn~7, there is an ny such that for n > n,,

(53) 2Vne — 2nEu(z, 0,d) > Vne;

thus, by Chebyshev’s inequality,

54) P(sup Z.(r,0) > 2¢) < c-e2-n77,
TEC,

Now, putting (34), (38), (49) and (54) together, we obtain
(55) P(Sélcp Z.(1,0) 2 2¢) < 0O(n~7) + O(n'log n),
which proves lemma 3.

TueoreEM 3. Assume that (N-1) to (N-4) hold and that T, satisfies (27). If
P(|T. — 6| < do) — 1, then

(56) (1/Vm) 3 Wlas 60 + VANT) =0

tn probability.
Proor. Assume again 6, = 0, dy = 1. We have

(57) 3 Wy Tn) = 3 ey T) = ¥z, 0) = A(T)]

+ ; [¥(z;, 0) + NMT%)]-
Thus, with probability tending to 1

> W@ 0) + M) o~
— < Z (1,0 1/Vn
V'n + n|\(T,)| = . 0) + 1/¥Vn)
The terms on the right-hand side tend to 0 in probability (lemma 1 and assump-
tion (27)), so the left-hand side does also.
Now let € > 0 be given. Put K2 = 2E(|¢(z, 0)[?)/¢; then, by Chebyshev’s
inequality and for sufficiently large n, say n > n,, the inequalities

(58)

i ¥ (z, Tn)}

59) /v £ v, 0| < &
and
(60) 15 B 0) + AT € (Vi + 1T

are violated with probabilities <3e; so both hold simultaneously with prob-
ability exceeding 1 — e. But (60) implies

(61) VaMT(1 — ¢ < e+ (1/Vn) imi, 0)|, |
hence, by (59), Va|\T,)| < (K + ¢)/(1 — ¢). Thus,

(62) (1/Vn) ; ¥(@s, 0) + Van(T,)

S (K + De/(1 —¢)
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holds with probability exceeding 1 — e for n > n,. Since the right-hand side of
(62) can be made arbitrarily small by choosing ¢ small enough, the theorem
follows.

CoroLLARY. Under the conditions of theorem 3, assume that N has a non-
singular derivative A at 6, (that is, [N(6) — A(6,) — A-(6— 60)| = 0(|6 — 6])). Then
Vn(T, — 6,) is asymptotically normal with mean 0 and covariance matriz
A-IC(A')1, (where C stands for the covariance matriz of ¥(z, 6p), and A’ is the
transpose of A).

Proor. The proof is immediate.

ReMark. We worked under the tacit assumption that the T, are measurable.
Actually, this is irrelevant, except that for nonmeasurable 7',, some careful
circumlocutions involving inner and outer probabilities are necessary.

Efficiency. Consider now the ordinary ML estimator, that is, assume that
dP = f(z, 6) du and that ¢(z, 8) = (3/36) log f(z, 6) (derivative in measure).
Assume that ¢(z, 6) is jointly measurable, and that (N-1), (N-3), and (N-4)
hold locally uniformly in 6y, and that the ML estimator is consistent.

We want to check whether the ML estimator is efficient. That is, we want to
show that A(6) =0 and A = —C = —I(6,), where I(6,) is the information
matrix. This implies, by the corollary to theorem 3, that the asymptotic variance
of the ML estimator is I ().

Obviously, with 6, = 6, + t-(6 — 6), 0 < t < 1,

63) 0> [ [log/(z, 6) — log f(z, )1z, O du
= ffol ¥(x, 6;) dt f(x, 60) du- (8 — 6o)

= ﬁ)l A6 dt- (6 — 60).

(The interchange of the order of the integrals is legitimate, since ¥(z, 6,) is
bounded in absolute value by the integrable [¢(z, 60)| + u(z, 6o, (6 — 60]).)
Since \ is continuous, [§ A(8;) dt — A(6,) for 6 — 6y, hence A(6y)-n < 0 for any
vector 5, thus A(6;) = 0.
Now consider

(64) A(B) — M 60)

I

[ ¥(@, 01z, 60) du
~ [ ¥, Oz, 6) — 1, 8] du
_f !P((L‘, 0) [01 'l’(x, at)f(x, 05) dt du- (0 — 00).

I

]

But
©)  [¥@,0 [ v 0006 00 dtdu = [[] ¥, 000G, 005(r, 00 dtdu + 7(0)
= [ 10 @+ @),
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with
©6) @< [} [utz,0, 16 — Gblv (e, 09If(x, 6) du dt < O(0 — 6o]17)

by Schwarz’s inequality.

If 1(6) is continuous at 8, the assertion A = —I(6) follows. If I(§) should
be discontinuous, a slight refinement of the above argument shows that 7(8,)~*
is an upper bound for the asymptotic variance. I do not know whether (N-3)
actually implies continuity of I(6).

5. Examples

ExampLE 1. LetX = 6 = R™"(m > 2),andletp(z,0) = [z — 07,1 < p < 2,

where | | denotes Euclidean norm. Define T, by the property that it min-
imizes Y 7-1 p(x;, Th); or, if we put

__19 o |y — plo—2(p —
(©7) Ve, 0) =~ 550 0) = [r ~ 0 ~ 0),

by the property > 7. ¥(z: T») = 0. This estimator was considered by Gentleman

[3].
A straightforward calculation shows that both » and w? satisfy Lipschitz
conditions

(68) u(z, 0,d) < ei-d-|lx — 6|72

(69) u(z, 0,d) < co-d-|x — 6|72

for 0 < d < dy < . Thus, conditions (N-3) (ii) and (iii) are satisfied, provided
that

(70) Er—9r?2<K<w

in some neighborhood of 6,, which certainly holds if the true distribution has a
bounded density with respect to Lebesgue measure. Furthermore, under the
same condition (70),

9 _ (6
(71) 20 = B X
Thus
oN _ _61_# _ _ _ alpe
(72) trgé = E tr 3 = (m+p— 2)E|lz — 62 <0,

hence also (N-3) (i) is satisfied. Condition (N-1) is immediate, (N-2) and (N-4)
hold if E|z|?»~? < «, and consistency of T, follows either directly from con-
vexity of p, or from verifying (B-1) to (B-4) (with b(6) = max (1, [6]7Y)).
Exameie 2. (Cf. Huber [4], p. 79.)
Let ¥ = 0 = R, and let p(z, 0) = 3(x — 6)2 for |[x — 6] < k, p(z, 6) = 3k? for
[z — 6] > k. Condition (A-4) of section 2, namely unicity of 6, imposes a restric-
tion on the true underlying distribution; the other conditions are trivially sat-
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isfied (with a(z) = 0,b(6) = k2, h(z) = 0). Then, the T, minimizing 3 p(z;, T,)
is a consistent estimate of 6,.

Under slightly more stringent regularity conditions, it is also asymptotically
normal. Assume for simplicity 8 = 0, and assume that the true underlying
distribution function ¥ has a density F’ in some neighborhoods of the points
=k, and that F’ is continuous at these points. Conditions (N-1), (N-2), (N-3)
(i), (iii), and (N-4) are obviously satisfied with ¢ (z, 8) = (3/96)p(z, 6); if

(73) f_”;" F(dz) — kF'(k) — kF'(—k) > 0,

also (N-3) (i) is satisfied. One checks easily that the sequence 7, defined above
satisfies (27), hence the corollary to theorem 3 applies.
Note that the consistency proof of section 3 would not work for this example.
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