10.  INEQUALITIES FOR CRITICAL PROBABILITIES .

We first give a theorem of Hammersley's (1961) stating that for
any connected graph G the critical probability in a one-parameter
problem for site-percolation on Q(==pH(Q) in our notation) is at
least as large as the critical probability for bond-percolation on
Q(==pH(a), where a is the covering graph of G ; see Sect. 2.5).
Actually, the result is obtained by comparing the probabilities that a
fixed vertex Zq is connected to some set of vertices V via a path
with all vertices occupied, and via a path with all edges open, re-
spectively. The proof given below is from Oxley and Welsh (1979).
Hammersley (1980) has generalized this further to mixed bond and site
problems (see Remark 10.1(i) below).

Special cases of the above mentioned inequality

(10.1) PH(Q) b PH(Q)

are

(10.2) pH(QO) = critical probability for site-percolation on
2 1

/A > pH(Q]) =7
(see Ex. 2.1(i), 2.1(ii) and Application 3.4(1ii)) and

(10.3) pH(J) = %— > critical probability for bond percolation

on the triangular lattice = 2sin %%

(see Ex. 2.1(ii1) and Applications 3.4(i) and (iii)). In (10.3) we
clearly have a strict inequalitysand various data (Essam (1972))indicate
that pH(QO) = .59 so that one long expected (10.2) to be a strict
inequality as well. Higuchi (1982) recently gave the first proof of
this strict inequality. Intuitively, the most important basis for a
comparison of pH(qo) and pH(g]) is the fact that qo can be
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realized as a subgraph of Q]; one obtains (an isomorphic copy of)
QO by deleting certain edges from Q], see Fig. 2.1 and 2.2. and
Fisher (1961). The principal result of this chapter implies that for

many pairs of periodic graphs ¥, G with 3 a subgraph of G one
has

(10.4) P > py(G).

0f course one always has pH(“).Z pH(Q) whenever ¥ is a subgraph
of G . The strength of Theorems 10.2 and 10.3 1is that they give

a strict inequality in many examples such as (10.2) and (10.3) (see

Ex. 10.2(i), (ii)). Theorem 10.2 is actually much more general, and
also gives strict inclusions for the percolative regions in some
multiparameter percolation problems (see Ex. 10.2(i) below). The

price for the generality is a very involved combinatorial argument in
Sect. 10.3. The reader is advised to look first at the simple special
case treated in Higuchi (1982).

10.1 Comparison of bond and site problems.

Let G be any graph with vertex (edge) set 1(e) , and let
Pp be the one-parameter probability measure on the occupancy configu-
rations of its sites, given by

with (3.61), as in Sect. 3.4. For a vertex
vertices V of G set

Zg of G and a set of

cp(zO,V) = op(zo,V,Q) = Pp{ 3 path (vo,e],...,ev,vv) with

Vo T Zp0 Vy € V and all its vertices occupied |z0 is

occupied}

Analogously, we define Pp as a measure on the configurations of
passable and blocked edges of G . As in Sect. 3.1 we take

and
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Also, with Zg and V as above we set

Bp(zo,V) = Bp(zo,v,q) = Pp{ 3 path (vo,e1,...,ev,vv)

with Zg = Vg» Y, € V and all its edges passable}

Lastly we remind the reader that e(p,zo) was defined in (3.25),
and define here its analogue

5(p,20):= ﬁp{ 3  infinitely many vertices connected to Z,

by a path with all its edges passable} .

Theorem 10.1. Let G be any connected graph, z, 2 fixed vertex of
G, and V a collection of vertices of G. Then

(10.5) cp(zo,V) < Bp(zo,v) » 0<p<
Moreover,
(10.6) 6(p.zy) < po(p>zg) »

and consequently

(10.7) py(G) > pu(Q)

where G 1is the covering graph of G .

Proof: We only have to prove (10.5). One then obtains (10.6) by
taking for V the set

Vn:={v: v a vertex of G such that all paths from

zy to v contain at least n vertices}
and letting n > « . Indeed one has the simple relations
e(p,zo) = Tim Pn{zO is connected by an occupied path
n > c B
to Vn} = 1im p op(zO,Vn),

n > o

5( ,Zn) = 1im B (zA,V. ) .
P-Z now P 0’'n

(10.7) in turn follows from (10.6), the definition (3.62) of p,(G)
and the corresponding formula
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py(G) = supip e [0,1] : 8(p,zy) = 0}

(Here we use the fact that bond percolation on G 1is equivalent to
site percolation on G, as proved in Prop. 3.1.)

For proving (10.5) we shall drop the restriction that G is
connected. It suffices then to consider only finite graphs G, by
virtue of the following simple 1imit relation. Let gn be the
graph obtained from G by deleting all vertices in Vn and all
edges incident to some vertex in Vn' Then clearly

UP(ZO’V:Q) =n]lmm UP(ZO,V n Qn,qn) .

We now prove (10.5) for a finite graph G by induction on the
number of edges in G . First assume G has one edge e only. If
zy € V then ap(zo,v,q) > Pp{z0 is occupied IZO is occupied} = 1.

Thus op(zo,v) =1 and similarly s(zO,V) =1. If z4 £V and e
is not incident to Zg> then both sides of (10.5) are zero. If e
connects Z with a vertex Zys then both sides of (10.5) are still
zero if z, ¢ V. If, however, zy € V, then (10.5) follows from

op(zo,v) = Pp{zO and z, are occupied | zy is occupied}

=p= Ep {e s passab]e} = Bp(zosv)

(since z, can be connected only to z]). Now assume that (10.5)

has been proven for all graphs with m or fewer edges, and let G
have (m+1) edges. As before the case with zy € V is trivial.
Assume z, ¢ V. If there is no edge incident to Zg> then again
gp(zO,V) = sp(zo,V) = 0 . Otherwise let e be an edge with endpoints
Z4 and some other vertex, z, say. Introduce the following two
graphs:

Qd

c

graph obtained by deleting e = e\\{zo,z]} from G,

£
1]

graph obtained by contracting e,i.e, deleting

o

e = e\\{zo,z1}, but identitying z, with z, .

C

G

many edges from Zy to v as there are edges in G from zy or
Zq to v. Both qd and QC have at most m edges. Next, denote

has as vertex set the vertex set of G minus Zys and has as
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by B(zO,V,Q) (S(zO,V,Q)) the event that there exists a path
(vo,e1,...,ev,vv) with v, = Zps v, € V and all its bonds or edges
passable (all its sites or vertices occupied). One easily sees that
if e is blocked, then B(zo,v,q) occurs if and only if

B(zO,V,Qd) occurs, since any passable path from zy to V does not
contain e. Therefore

5 _ 5 dy- _ d
Pp{B(zO,V,Q) and e b]ocked}-—(1-p)Pp{B(zO,V,Q )}-(1-p)sp(z0,v,q )

Similarly, if z, is vacant and S(zO,V,Q) occurs, then there is an
occupied path on G from 20 to V, which does not go through e,
because any path which does not go through 2z, cannot contain e
either. In other words Z4 must be vacant and on the graph Qd minus
the vertex z](and the edges incident to zy on G there must exist
an occupied path from z0 to V. Since this occupied path is auto-
matically a path on qd we have

Pp{S(zO,V,Q) and  z, is vacant lzo is occupied} ,
d
< (1—p)op(zo,v,q ) .

Next consider the case in which e is passable. Then, if
B(zO,V,Qc) occurs, also B(zO,V,Q) occurs. Indeed, if

c

(zo,e1,v,...,ev,vv) is a passable path on G~ from zy to

v, € V, then either (20’81’V]""’ev’vv) or (zo,e,z],e1,v],...,ev,vv)

is a passable path on G from z, to LN (We abuse notation
somewhat here by using the same symbol for an edge or vertex on G and
the corresponding edge or vertex, respectively on qc . Also if

zZ; € V on G, then on Qc the vertex Zg» resulting from identifying
zy and z; on G, belongs to V). Conversely it is just as easy to
go from a passable path on G to a passable path with possible double
points on QC by removal of the edge e and identifying Z and

Zy- Therefore

Pp{B(zO,V,Q) and e passable} = p B (zO,V,QC) .

Y
Finally, if Z, is occupied, then S(zO,V,q) implies that there
exists an occupied path on QC from zq to V. By considering
separately the cases zy € V and Z4 ¢ V one obtains
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Pp{S(zO,V,Q) and z, occupiedlzO is occupied} = p cp(zO,V,QC) .

Finally, by the induction hypothesis

C
Bp(zo,V,Q )

Bp(ZO,V,Qd)

| v

c
op(zO,V,Q ) and

| v

d
op(zo,V,G )
Putting all these inequalities together we obtain

Bp(zO,V,Q) = Pp{B(zO,V,Q) and e 1is blocked}

+

ﬁp{B(zo,V,q) and e 1is passable}

fl

(1-6) 8, (20:¥:6%) + p 8_(20.V.6%)

| v

(1-6) 0, (2:V:6%) + P o (20:V,6°)

g_Pp{S(zo,V,Q) and  z, vacant | zy s occupied}

+ Pp{S(zO,V,Q) and z, occupied | z;, 1is occupied

= Up(Z(),V’Q) . D
Remark .

(i) We can also ask for the probability

v(p,p ,zO,V) : =P{ 3 path (vo,e1,...,ev,vv) with

Vo T Zgr Vy € V and all its edges passable and all its

vertices occupied} ,

when each vertex is occupied with probability p and each edge is
passable with probability p' (all edges and all vertices independent) .
Hammersley (1980) gives the following generalization of a result of
McDiarmid (1980).

(10.8)  v(8psp'szp,V) < v(ps8p'szy,V), 0 < 8,psp' < 1.

Here is Hammerersley's quick proof of (10.8). Let ¥ be the random
graph obtained by deleting each site other than Zg of G with
probability 1-p and each edge of G with probability 1-p'. ¥ may
have some edges for which only one or no endpoint is a vertex of
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¥ . Despite this slight generalization (10.5) remains valid for u
since one can simple ignore all edges which do not have a vertex of
¥ for both of their endpoints. Now take the expectation over ¥ of
the inequality

0g(zpsVsH) < Bg(z,V5H)
This gives (10.8). E.g. in the left hand side one can pass through
an edge only if it remained in #; this event has probability p'.

One can go through a vertex only if it stayed in ¥ and is now
occupied in ¥; this event has probability 8p. Thus

E OG(ZO’V,H) = Y(Gpap szosv) .

Similarly
E B5(zg>Vs¥#) = v(p,dp',z4,V).
(10.5) can be recovered from (10.8) by taking p = p' =1, since
o5(zgsV) = v(8,1,2p,V) and  Bs(z4,V) = v(1,8,24,V) .

10.2 Strict inequalities for a graph and a subgraph .

The set-up in this section will be the following.

(10.9) (G,G*) 1is a matching pair of periodic graphs in R2 , based
on (7.3),

(10.70) U],...,UA is a periodic partition of the vertices
of

and P_ is the A-parameter probability measure defined as in (3.22),
(3.23). HWe further assume that

(10.11) one of the coordinate axes, call it L, is an axis of
symmetry for G,G* and the partition h1,..., UA‘

We shall later be interested in subgraphs ¥ of G and the inequality

(10.4). For the time being, though, we concentrate on comparing the
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percolation probabilities on G (or rather G 1) under two

different probability measures. We shall show after Theorem 10.2

how the case of a subgraph ¥ of G fits into our framework. For a
1ittle while our attention will be on sz . b will be a periodic
subclass of the vertices of sz . Unfortunately we have to impose

an ugly and complicated looking technical condition. It is a purely
combinatorial condition, whose purpose is to guarantee that sufficiently
many sites in W  can be pivotal for the occurrence of occupied
horizontal and vertical crossings on pr of large rectangles. Despite
its forbidding appearance the condition is rather mild, as the examples
after Theorem 10.2 will show. We shall also show by example that

some condition of this form is needed to obtain the inequality (10.4).
Before formulating the condition we remind the reader of some of the
constants A,Ai introduced earlier. These depend on 7,G,G*,

Qpl and ;2 only.

(10.12) A > diameter of any edge of G,G*, sz or ng .

of height A3(width A3) posseses a horizontal (vertical) crossing on
,m (and hence also on G as well as on G*) with the property that
for any two points Yy¥p ON the crossing the diameter of the segment
of the crossing between Y and Yo is at most

Ay and Ay > 1 are such that each horizontal (vertical) strip

AS(l‘y'l - yZl + ]) .

Such A3, A5 exist by Lemma A.3 (Note that this lemma allows us to
construct crossings which consist of translates of a fixed path inde-
pendent of the length of the strip.) As before A, = ['A3 + A7+ 1.
We also choose A6 such that any two vertices of QPQ(QSZ) within
distance A3 + 10A of each other can be connected by a path on

qu(qu) of diameter f-AG . Further we use the following abbrevia-
tions

A7 = A3 + 47,

hg = (3A5+1)(2A6+4A + 100 + 1),

3

Lastly we make the following definitions.

Def. 10.1. A path (vo,e],...,ev,vv) on Qpl is called minimal
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if for any i < J for which Vi and vj are adjacent on one

sz
has j=1 + 1.

Def. 10.2. A shortcut of one edge of the path (vo,e],...,ev,vv) on

Qpl is an edge .e of ng between two vertices v; and vj on the
path with j > 1 + 2.

Comment .

(i) A path is minimal exactly when it has no shortcuts of one

edge. /17

Now let W be a periodic subclass of the vertices of sz .

Condition D. For some vertex x = (x(1), x(2)) € w there exists
a constant A > 2A8, a minimal path U= (uo,e],...,e ,up) on

o
qu and a path V¥ = (V0=e1’---’e§’V§) on Q*px such that the
following conditions are satisfied:

a) x = u for some iO’ i.e., U goes through x.
0
b) If i and j>1+2 aresuch that u, and uj lie on
the perimeter of a single face F e &, whose central vertex does not
belong to b , then either i+ 2 < <i, or i

0 f.i f.j -2,

c) U 1is a horizontal crossing of
B = B(x):=[x(1) - A, x(1) + AIx[x(2) - A, x(2) + A].

U Tlies below the horizontal line Rx {x(2) + A - A8} . Moreover,
(uT.0 = X, eio+_],...,ep,up) lies to the right of the vertical
line {x(1) - A+ A} x R, while (u,.e75...,e; ,u, = x) Tlies to
8 0’1 ig’ 1
left of the vertical line {x(1) + A - A8} x R,
d) V* connects x to the top edge of B inside the strip
- - 1 *
[x(1) - & + Ags x(1) + A A8] x R, i.e., (va,e*,kf.,ec,v;) are
1 ] 3 1 * pk * *
contained in this strip, (vo,e],...,ec_T,vc_l) < B(x), but eg

intersects [x(1) - A + A8,x(1) +A - A8] x {x(2) + A} . Moreover,
* .
vh and x are adjacent on W$2.

e} U and V* have no vertex in common.
Comments .

(ii) Basically a),c),d) and e) state that there exists a horizontal
crossing U of B(x) on G through x, and a connection V* from
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x to the top edge of B above U. There are some restrictions on
the location of U and V*, and U has to be minimal. However,
condition b) may put a crucial restriction of another kind on U.
Basically it requires that the pieces of U before and after x
should not come too close to each other in a certain sense. On the
other hand, condition b) is vacuous if & =0 or if all central
qu belong to W . This happens in several of the
examples below. The reader is urged to Took at these examples to get

vertices of

a feeling for Condition D. Example v) also illustrates that some
restriction is necessary to obtain (10.4).

(ii1) 1In condition c) and d) there is an asymmetry between
the roles of the horizontal and vertical direction, and between the
roles of the positive and negative vertical direction. This was
merely done not to complicate the conditions still further. One can
always interchange the positive and negative direction of an axis, or
the first and second coordinate axis by rotating the graph over
180° or 90°. /1]

We now turn to a discussion of the probability measures to be
considered. We assume that Pg € P is such that

A
(10.13) 0 << Py << T
and that Pp is given by (3.22), (3.23) with p = Py Further
0
(10.14) Condition A or B of Sect. 3.3 1is satisfied for Po-

As usual we extend Pp to a probability measure on the occupancy
configurations of W%g by means of (7.2) and (7.3). The extended

measure Pp js still a product measure of the form (3.22), (3.23)
0

with U = vertex set of W$2 . We shall also consider another
probability measure, Pp. , on the occupancy configurations of
W$£ . Pp. too will be a product measure:

(10.15) P, =1 Vv
P v a vertex

of W$2

with v, 2 probability measure on {-1, +1} . We assume that

v

(10.16) v, = H, for v#W
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but
(10.17) \)V{m(v) =1} < uv{w(v) =1} ,vew ,

where | is a periodic subset of vertices of sz . Pp. is also
assumed periodic, i.e.,

(10.18) vy = Yy if w=v + k1£] + k2€2 for some

kys k

12 ke Z

Thus, Pp. {v is occupied} takes still only a finite number of
values, on periodic subclasses of the vertices. We think of these
values as the components of a vector p', thereby justifying the
notation Ppl . Note, however, that p' can have more (or fewer)
components than p; Pp. does not have to be a A-parameter
probability measure. Also, for a central vertex v of ng which
belongs to w (10.17) and (7.2) imply

(10.19) vv{w(v) =1} <1 =14V{w(v) =1}

We are therefore no longer restricting ourselves to measures in which
all central vertices of . are occupied with probability one.
However, by (10.16) and (7.3) we still have
(10.20) vv{w(v) = -1} = uv{w(v) = -1} = 1 for every central
*
vertex of D2
It is also worth pointing out that (10.15) - (10.17) imply

Pp. {v 1is occupied} < Pp {v s occupied}
0

for all vertices v of W$2

Theorem 10.2. Assume Q,Q*,1:1,...,U X satisfy (10.9) - (10.11)
and that W is a periodic subset of the vertices of ¢ 3 such that
Condition D holds. Further let Pg be such that (10.13) and (10.14)

hold, and assume that Pp is extended such that (7.2) and (7.3) hold
0

for p = p,- Let Pp. be defined by (10.15) and satisfy (10.16) and
(10.17). Then, for any vertex z
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(10.21) Ep.{#wpz(zo)} <« and Pp'{#NpQ(ZO) = o} = Q,

where wpz(zo) is the occupied cluster on G , of zy -

We now explain how this result can be applied to deal with
subgraphs ¥ of G . We will consider subgraphs ¥ of G formed
by one or both of the following two procedures in succession:

(10.22) Remove all vertices of G 1in some periodic subclass
Vg of the vertices of G. Also remove all edges

incident to any vertex of UO .

(10.23) Remove the close-packing in all faces of &
30 is a periodic subset of 3.

0’ where

Note that we do not make any symmetry requirements for ¥ with
respect to any line. The periodicity requirement in (10.22) for y 0
means of course that (3.18) holds for o> while for 3, in
(10.23) it means that if F ¢ 3 then also F + k]g] + kzgz e 3,
for any integers k], k2' To remove the close packing of F means
to remove all edges which run through the interior of F and connect
two vertices on the perimeter of F. Recall that these edges where
inserted to manufacture G from 7 (see Sect. 2.2).

Now let Po satisfy (10.13) and (10.74) ((10.14) is a condition
on p, and G). Ppo also induces a probability measure on the

occupancy configurations of  ¥(we merely have to restrict P to the
0

A
vertices of ¥, i.e., to U uNVU,). Todefine P, in the
il P
present situation we take
(10.24) b =1, U {the central vertices of faces F ¢ 30} (w 1s
a subset of the vertex set of sz c b T @ if only

(10.23) is applied to form ¥; also &, =@ 1if only

0
(10.22) is applied to form H).
Next, we take for v a vertex of ng
(10.25) Pp' {v is occupied} = Pp {v is occupied} if v ¢ W,
0

and
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(10.26) Pp. {v 1is occupied} = 0 if ve p
Later on we shall show the easy fact that percolation on # under

P is equivalent to percolation on § under P_, , and that
Po pL p

(10.15) - (10.18) hold for the above 1y  and Pp. . This then leads
to the following result for subgraphs ¥ .

Theorem 10.3. Assume G,G*, Upseeesly satisfy (10.9) - (10.11)
and p, satisfies (10.13) and (10.14). Let ¥ be a subgraph of

G formed by one or both of the procedures (10.22), (10.23) and assume
Condition D holds with w as in (10.24). Then, for any Py in
of H.

some open neighborhood (in ® A) of p, and any vertex Z,

Ep {#(occupied cluster of zy on M)} <w
1

on H) ==} =0.

Pp {#(occupied cluster of z,

1

Special case. In a one-parameter problem (i.e., X =1) with G

and H as in Theorem 10.3 one obtains

py@) > py(Q) .
Examples .

Before turning to the proofs we illustrate the use of Theorems

10.2 and 10.3 and the verifiability of condition D with a few examples.
(i) Let G = Gy > the graph corresponding to bond percolation

on ZZ, imbedded as in Fig. 2.3 (see Ex. 2.1(ii); the vertices are

. 1T . . 1 ..
Tocated at (i + 7, i,) and (1515 + 5)s i.1, € Z) . has

Q'l ’pg
in addition vertices at (1],12), 11,i2 e Z. (see Ex. 2.3(ii) where

the same graph is discussed, but rotated over 45°). Q?,pl is shown
1 .

. . . . 1 .

in Fig. 10.1 below. It has vertices at (11,12 + E), (11 + 5 12),
(1] + %3 12 + %), 11, 12 e Z. For Ww we take the vertices of
q1’p2 on Zz,i.e.,

b = {(11,12) : i],iz e Z1}

We easily see that condition D holds in this example with x = the
origin. For U we take a path from (-A,0) to (A,0) along the first



Figure 10.1 QT by The solid segments are the edges of q? D

¢
The dashed lines are the lines x(1) = k] or x(2) = k2 s
ki el .

coordinate axis. For V* we take the path from v6 = (0, %) along

the 45° line to (%3 1) and then upwards along the vertical line
x(1) = %— to the point (%3 A) (see Fig. 10.2). b) s automatically

fulfilled since |y contains all central vertices of QUR .
. I
+V*

+
l +

l

ey
7/ \
\

7'5
\ /

/ N\
N /
N VI VS SRV Sy T

Figure 10.2 The dashed lines represent edges of q] b The path

U 1is drawn solidly. The path V* 1is indicated by
+++ ; it runs on Q? b
H]

Now as in Application 3.4(ii), let

A .
U {1] + 5 12) Disis e Y,

PP (R
Uz_{(1]912+§)-11,1281}.

We consider the corresponding two-parameter problem, as defined in
(3.20) - (3.23). Take Py = (po(l), pO(Z)) such that
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(1) +pp(2) =1, 0 <pyli) <1, 1 =1,2.

By Application 3.4(ii) condition A holds for such a Po- By Theorem
10.2 we therefore have

(10.27) Ep' {#sz(zo)} < o
for any Pp. of the form (10.15) with

(10.28) Pp, {v is occupied} = po(i), VEL; i=1,2, .

(10.29) Pp. {(i],iz) is occupied} < 1, 1],1 e Z.

2

Actually the set of p >> 0 1in parameter space where (10.27) holds
is open, by Cor. 5.1. Thus (10.27) continues to hold when Py in
(10.28) and is replaced by N sufficiently close to Py> even

when p](1) + p](Z) > 1. The best illustration for this is provided
by Theorem 10.3. We now define ¥ as the subgraph of G, obtained
by removing the close packing of all the faces which contain a point
(i], 12), i],iz € Z) . (Thus, if we call this last collection of
faces 3y then we only apply (10.23) with this 30). The resulting
H 1is clearly isomorphic to QO’ the simple quadratic lattice, and

by and U o are such that the resulting two-parameter problem on

¥ 1is precisely the two-parameter problem for site-percolation on

12 considered in Application 3.4(iv). We conclude from Theorem 10.3

that no percolation occurs under Pp for Py = (p](1), p1(2), in
1

some neighborhood of Po In particular, the non-percolative region
for two-parameter site-percolation on E? contains the (anti-) diagonal

{p: 0 <p(i) <1, p(1) + p(2) = 1}

strictly in its interior. Strictly speaking we only obtain this
conclusion from Theorem 10.3 for 0 << p << 1. However, we already

know from Application 3.4(iv) that no percolation occurs for

0 < p(1) f_pH(Qa), p(2) = 1, and hence by monotonicity (Lemma 4.1) no
percolation occurs for 0 < p(1) 5-pH(Q6)’ p(2) > 1 - pH(Qa) (see
Fig. 3.8). Similarly no percolation occurs for 1—pH(Q§)'§ p(1) <1,
0 < p(2) < py(GE)-

When restricted to p(1) = p(2) the above shows that there is
no percolation in a neighborhood of p(1) = p(2) = %—. This shows
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that (10.2) is really a strict inequality .

(ii) This time let G be the triangular lattice. In order to
obtain the familiar picture we imbed this lattice in such a way that
its faces are equilateral triangles (i.e., we use the imbedding of
Fig. 2.4 rather than the one for J described in Ex. 2.1(iii).)
qu = G 1in this case. Let the vertices be located at

ko Kk
(k]+-'*2““,——2-“/3—),k-|, kzsl,
and take

w={2k]+k2,k2'ﬁ},k-‘,k2€z.

In a way 1w consists of every other point; see Fig. 10.3.

Figure 10.3 The triangular lattice with the points of W indicated
by circles. V* 1is the dashed path.

Again condition D is easily seen to hold with x = the origin. For
U we take again a path from (-A,0) to (A,0) along the first coordinate
axis. For V* we take a path with "zig-zags" upward from the

point (%3 % /3) alternatingly through points (%3(j - %) /3) and

(0,3 /3) ,3=1,2,..., A.

We may therefore apply Theorem 10.3 to the one-parameter problem
on G . We know from application 3.4(i) that Pg = %—= critical
probability for site-percolation on G satisfies condition A. Let
H be the graph obtained by removing the vertices in W from G.(Thus

we apply only (10.22) with Uy = . ) We conclude that pH(H) >-% .
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However, one easily sees that removing the sites in W from G
yields the Kagome lattice of Ex. 2.5(i) for H . This is the
covering graph of the hexagonal lattice, so that pH(H) = critical
probability for bond percolation on the hexagonal lattice
=1 - 2sin f%— (see Prop. 3.1 and Application 3.4(iii).). Thus, we
obtained the obvious inequality 1-2 sin %B = pH(n) > 5 -

Since by Application 3.4(ii1) the critical probability for
bond-percolation on the triangular lattice equals one minus the

critical probability for bond percolation on the hexagonal lattice,
we also have

pH(bond percolation on triangular lattice) < %
Tnis is precisely (10.3) with a strict inequality.
(iii) In this example we compare 13 with Zz. We concentrate

on site-percolation, but practically the same argument works for
bond-percolation on 23 » or even the restriction of 223 to

12 x {0,1} (i.e., two layers of Z?). The latter graph contains
the following graph G, which is obtained by decorating one out of
nine faces of Qo(see Ex. 2.1(i) for QO). Each face
(1’1,1'1 + 1) x (iz,iz + 1) with both 1] = 1(mod 3) and i
is decorated as shown in Fig. 10.4.

2 1(mod 3)

ﬁ———--.—--é_
*

Figure 10.4 The graph G, obtained from G, by the indicated
decorations. The blackened cir91e is the vertex x.
The boldly drawn path is U . The path V* is dashed.
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G 1is a mosaic so that we can view G as one of a matching pair
based on (G,#). In this case G =G o, - Both coordinate axes are
axes of symmetry for G. For the subgraph # we take QO = the
simple square lattice. This corresponds to applying (10.22) only,
with 0° the collection of vertices used in decorating QO when
forming G . Condition D b) is vacuous since 3 =@, and Fig. 10.4
illustrates that the other parts of Condition D can also easily be
satisfied for any choice of x ¢ UO' Since G 1is invariant under a
rotation over 90° around the origin, it is immediate that (3.52) -
(3.55) hold for the one-parameter problem on  G; compare Applications
3.4(iv) and (v). As in those Applications it follows from Theorem

3.2 that Condition B of Sect. 3.3 holds for Py = pH(Q). We therefore
conclude from the one-parameter case of Theorem 10.3 that

(10.30) pH(site-perco1ation on 23)

5_pH(site-perco1ation on two layers of ZZ) < DH(Q)
< pH(site-perco1ation on Z?) = pH(QO).

To obtain a similar conclusion for bond-percolation on Z3 we

compare the covering graph @ of G with the covering graph of '22,
(see Ex. 2.5(i1)). We draw some faces of § in Fig. 10.5. The central
square in this figure corresponds to one of the decorated faces in

G . # 1is now formed from é by removing all vertices of # which
correspond to edges of the decorations. These vertices are marked

by solid circles in Figure 10.5. We leave it to the reader to verify
that ¥ 1is nothing but Q]. We therefore conclude in the same way

as in (10.30) that

1

p, (bond-percolation on z%) < 7 = py(Gy)

(see Application 3.4(ii) for the Tast equality).

(iv) The graph G in this example will be ®* , the matching
graph of the diced lattice 8. & was introduced in Ex. 2.1(v); &*
is illustrated in Fig. 10.6. One can think of ®* as a "decoration"
of the hexagonal lattice. Note that ®£* 1s not identical with the
matching graph of the hexagonal graph, because ®* has a vertex in the
center of each hexagon (the solid circles in Fig. 10.6). ﬁgﬁ is
also drawn in Fig. 10.6. It has a central vertex in each face of §
(see Fig. 2.7; these central vertices are indicated by the open
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Figure 10.5 The covering graph é of G . The dashed edges form the
decoration of one face of Gy -

Figure 10.6 ®* drawn as a "decoration" of a hexagonal lattice.
The "decoration" is indicated by dashed lines. There
is a vertex of £* at each center of the hexagons
(drawn as a solid circle). There is no vertex of g*
at the open circles; however, there is a vertex of

. g
ﬁpl at each open circle.
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circles in Fig. 10.6). For W we take the collection of these
central vertices. Condition D again holds. We content ourselves
with a picture of a possible choice for U and V* in Fig. 10.7 for
X an arbitrary vertex in W . Note that Condition D b) is again
vacuous since Ww contains all central vertices of qu = S;l .
Also (8*)* =8 and 8 S .

pL

Figure 10.7 The open circle is the vertex x . The boldly drawn path

is U . The dashed path is V* . The edges indicated by
~— - — belong to spz .

Once more we apply Theorem 10.3. This time we take for ¥ the
graph obtained by removing the close packing in all faces of &*, i.e.,
we apply only (10.23) with 3 all faces of 8. 7The resulting
¥ is just & ditself. pg= pH(s*) satisfies condition B when G is
taken ®* ( by Application 3.3(v) and Theorem 3.2 ). (Actually we checked
(3.52) - (3.55) for G = 8. However, (3.52) - (3.55) remain
unchanged when G is replaced by G* and p by 1-p. Thus (3.52)-
(3.55) hold when G = §*.) Theorem 3.2 then shows that Condition B

holds for Pg = pH(s*). The conclusion of the one-parameter case
of Theorem 10.3 1is now

pH(ﬂ) > pH(ﬂ*)

But by Theorems 3.2 and 3.1 P (8) = 1-pH(ﬁ*) so that we find

-

py(8) > 5 > p,(8%).
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From Fig. 10.7 one also sees that Condition D is fulfilled if
we take G =8, and W  the collection of the centers of the
hexagons. If ® 1is imbedded as described in Ex. 2.1(v) these
are the points

2 1 _ .

((ky +3) V3, 3(ky+58)), k; e Z, 2= 0or 15

in Fig. 10.6 this means that we remove the solid circles. If we
apply (10.22) with U 0" b the resulting graph is the
hexagonal Tattice and we obtain

pH(hexagonal lattice) > pH(diced lattice) > %—.
(these are critical probabilities for site-percolation).

Remark .

i) The procedure illustrated in this example will work in many
examples of matching pairs (G,G*) based on (7,8) to yield

py(G) = py(m > 5 > p(G¥)

Indeed apply Theorem 10.3 with G replaced by G*, and % the
collection of all faces of 7 . When removing the close-packing
from G* in all faces of 7 as in (10.23),the resulting subgraph
# is just m, or G. Lastly one uses pH(q) + pH(q*) = 1, assuming
Theorem 3.1 or 3.2 applies. One could have obtained pH(QO) > %‘ in
Ex. 10.2(1) above in this way. /]

v) This "negative" example shows that some kind of condition
1ike Condition D has to be imposed. We take for ¥® a mosaic, and
for G a graph obtained by decorating a periodic subclass of faces
of # . Choose the decoration in a face F such that it is attached
to only one vertex v , or two adjacent vertices v' , v", of ¥ on the

Figure 10.8. F 1is the interior of the hexagon, which is a face of
#. The vertices Wi-W, and the edges in F have

been used to "decorate" F.
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perimeter of F, e.g. as in Fig. 10.8. Even though ¥ 1is a subgraph
of G one always has pH(ﬁ) = pH(Q). Indeed in site-percolation, in
the situation of Fig. 10.8, the decoration could be of help in forming
an infinite occupied cluster only if v' and v" are both occupied.
But in this case v' and v" belong to that same cluster even if no
decoration is present. Condition D fails because there exists no min-
imal path through any of the added vertices in F which starts and
ends ouside F.

Remark .

ii) The theorems of this section give no strict inequality if
¥ is obtained from ¢ by removing edges of 7% or partial close-
packings only. If we remove one of the edges introduced when close-
packing a face of %, then we usually cannot find a subgraph hpx
which serves as the planar modification of 3, and we therefore have
trouble in defining a "lowest" horizontal occupied crossing. On the
other hand, if an edge e of % (and it translates by integral vectors)
is removed to form ¥, then one can artifically turn this into a situa-
tion where one removes a vertex. One introduces a new kind of vertex
for %, situated somewhere on 8 , and connected only to the endpoints
of e. The new vertex should be occupied with probability one on G ,
and it is this vertex which is removed to form H. However, this intro-
duces a new vertex on the perimeter of some faces of %, and therefore
G may no longer be obtained from the modified 7 by close-packing
faces. Nevertheless we believe a more complicated proof may work when
only edges of 9 are removed from ¢ to form ¥ . ///

Proof of Theorem 10.2. The proof consists of two parts. First a
combinatorial, or topological, part which derives another ugly
condition - Condition E stated in Step (ii) - from Condition D. We
begin with a probabilistic part, and defer the derivation of Condition E
from Condition D to a separate section (to make it easier to skip the
unpleasant and not very interesting part of the argument).

The probabilistic part begins 1ike the proof of Lemma 7.4. By
virtue of Theorem 5.1 it suffices for (10.21) to prove

Tim T(ZMQ; i,p ’qu) =0,1=1,2,

]

for some sequence M, = (M21,M22) with

Mzi +ow (g >») , i=1,2,
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In this whole proof we restrict ourselves to horizontal crossings,
i.e., we prove only

(10.31) Tim (M5 1.p",G ) = 0

g > o

for suitable ﬁ@ . The same proof can be used to show

lYimw T(ZMQ;Z,p‘,Qpl) =0 ;
the asymmetry between the horizontal and vertical direction in
Condition D discussed in Comment 10. 2(iii) will play no role in the
proof of (10.31).

Let E be the event that there exists an occupied horizontal
crossing on sz of a certain large rectangle. We want to show that
P ,{E} is small. As in Lemma 7.4 this is essentially done by showing

22) reduces this to proving that the number of pivotal sites in

for E 1is large. This is really the content of (10.62), which
is our principal new estimate here. From Lemma 7.4 and Remark 7(ii)
we know that with high probability there are many pivotal sites
for E on the lowest occupied horizontal crossing of the large
rectangle. (10.62) claims that many of these have to belong to
Ww . The proof of this is based on the idea that if few of the pivotal
sites belong to W , then one can make local modifications in the

p

d ~ . . = 1 1
aE-Pp(t){E} is large with p(t) tpo + (1-t)p' . Russo's formula
(4.
W

occupancy configuration so as to obtain many pivotal sites in w . To
obtain (10.62) one has to make the modifications in such a way that
one can more or less go back, i.e., reconstruct the original occupancy
configuration from the modified one. For this one first has to locate
the sites whose occupancy has been modified. Ta achieve this we must
have good control over the changes in the lowest occupied crossing
under our modifications of the occupancy configuration. The various
parts of Condition E give the necessary control.

Before we can even formulate Condition E we need a preparatory
step.

Step (i). Since Po satisfies (10.13) and (10.14) the conclusion
of Lemma 7.2 holds. For the remainder of this chapter we choose
ﬁi and  §, >0 such that (7.17), (7.19) and (7.21) hold. For
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large 2 we construct a Jordan curve J2 on 7 close to the
perimeter of [O,ZMQ]] X [0,12M22] by the method of Lemma 7.4. Spe-
cifically, we find simple curves ¢1 and ¢3 on 7 which connect
the top and bottom edges of the strips

[0,A3] x [-A4,12M22 + A4] and [2M11'A3’ 2M21] X [-A4,12M22 + A4],

respectively. Such curves can be found as parts of

—en - - e e eew  we w——

By

4
T
|
1
I
I
|
|
1
i
I
|
i

T
L ___.TZ____ 4

Figure 10.9 The solid rectangle is [O,ZMQ]] XE0,12M22];
the outer dashed rectangle is [0,2M21]
X [-A4,12M22+A4]; the inner dashed rectangle

vertical crossings of these strips. Also we take self-avoiding
horizontal crossings ry and ry on m of the strips
[o, ZMQ]] x [—A4, - 1] and [O,2Mz1] x [12M22 + 1, 12M22 + A4],

respectively. Starting from the left endpoint of rz(r4) Tet

u](u4) be the last intersection of r2(r4) with ¢1; and u2(u3) the
first intersection of r2(r4) with ¢3(see Fig. 10.9). As in Lemma
7.4 we denote the closed segment of ¢1 from Uy to Uy by 81,
the closed segment of ¢3 from u, to Ug by BZ’ the closed
segment of ro from Uy to Uy by A and the closed segment of

rs from uj to Uy by C(again see Fig. 10.9). J2 is the Jordan
curve consisting of Bl,A,B2 and C. We shall be considering paths
r = (vo,e],...,ev,vv) on pr with the properties (7.39)- (7.41)
(with Jk for J in these ). For brevity we shall refer to such

paths simply as crosscuts of int(Jz) in this chapter. For any such
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- +
path we define, as in Def. 2.11 Jz(r)(Jz(r)) as the component of
int(Jz)\\ r with A(C) 1in its boundary.

With any crosscut r which in addition satisfies

(10.32) r cz[0,2M£1] X [—m,GMgzj,

(roughly speaking this means that r Ties in the Tower half of J)
we shall associate a crosscut r# which also satisfies (7.34) -(7.41)
and which Ties "above" r. This associated r is found by means of
a specially chosen circuit K on ng and surrounding the origin.
To choose K vrecall that A is chosen in Condition D and set

(10.33) A 20(1\5 Fho v Ayt Ay H A DS 1),

il

9

(6A5 + 1) (3A9 + A6 + 4A3 + 70 + 1),

Next take for K a circuit on Qpﬁ surrounding the origin in the
annulus

(10.34) [-20 - Ay 20 + A3] x [-20 - Ays 20 + A3]‘\ (-20,20) x (-20,20).

Such a circuit can be constructed in the manner of J'Q above from
two vertical crossings $4 and S, on sz of

[-20 - A3, -20]1 x [-20 - A3,2® + A3] and [20,20 + A3] x [-20 - A
20 + A3], together with two horizontal crossings s
sz of [-20 - A3, 20 + A3] x [-20 - A 3

x [20, 20 + A3] , respectively. By our choice of the constant

AS (just after (10.12)) we can take the s; such that for any
two points Yys¥p oOnone s, there is a segment of Ss connecting
y; and y, with diameter < Ag(fyq-y,| + 1) We claim that any
pair of points y,;.y, on K is then connected by an arc of K of
diameter at most

33
2 and 54 on

30 -20] and [-20 - A,, 20 + A3]

(10.35) 3A5(|y]—y2] 2+ 1) .

This is obvious of Y15¥2 lie on one S When ¥ 1ies on Sy
Y, on s, and u s the intersection of $4 and S, on K, then
u lies in [-20 - Ay -20] x [-20 - Ags -20] , ¥y to the left of
Rx {-20} and y, below {-20} x R. From this it is not hard to
see that
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lys-ul < lyq=y,l + 20 5 0 =12,

One therefore obtains the estimate (10.35) for the arc which goes
from Y1 to u along $4 and then from u to Yo along So- then
¥y lies on S4 and Yo On sg, then ¥y lies to the Teft of the

vertical line x(1) = -20 and Y, to the right of x(2) =20 . 1In
this case

3(lyg-ypl + 283) > 120 + 60y > diameter of the
annulus (10.34)

Since K 1s contained in the annulus, (10.35) is obvious in this
case too (A5 has to be > 1 by its definition). Thus we showed
(10.35) 1in all typical cases.

We also want to arrange matters such that

(10.36) K is minimal,

in the sense that if vy and v, are two vertices of sz on K
which are adjacent on G E then K contains an edge of @ ) from

vy to Vo - (This is the obvious extension of Def. 10.1 to a

circuit). If K is not minimal, then we can make it minimal by insert-
ing a number of suitable shortcuts of one edge. E.g., if vy and

v, are adjacent and e 1is an edge of qu between them, but K
itself does not contain such an edge, then we can replace K by

one of the arcs of K between vy and ) and the edge e. Since

diameter (e) < A, the new circuit will still surround the square
(10.37) (-20 + A, 20 = A) x (=20 + A, 20 + 1),
and lie inside the square

(10.38) [-20 - Ay - A, 20 + Ay * A] x [-20 - A, - A, 20 + A, + A].

3 3

(Of course this holds only if we combine e with one of the two arcs
of K between vy and Vo3 it fails for the other arc). Also the
estimate (10.35) changes only a Tittle. Any two points Yys¥p ON
the new circuit are now connected by an arc of the new circuit with
diameter at most
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(10.39) 3A5(ly]-y2} + 20y + 30+ 1).

These observations remain valid even if we replace several arcs of
K by shortcuts. Indeed, denote for the time being the circuit
obtained after the insertion of shortcuts by K'. Then any y e K'
Ties within A of some vertex z e KN K'. 1In particular, if
¥1»¥, € K', then there exist zy,z, e KN K', 121—221 5_[y]—y2\ + 20 .
Also some arc of K between z, and z, has diameter < 3A:(|z;-2,]
+ 2A3 + 1). One can now find an arc of K' from ¥ “to 2 which
is within distance A from the arc of K from z, to Z,. (10.39)
is immediate from this, as well as the fact that K' T1ies outside
(10.37) and inside (10.38). We drop the orime in K' and for the
remainder we assume that K 1is a fixed circuit inside (10.38), which
surrounds (10.37), satisfies (10.36) and the estimate (10.39) .

For any vertex v=(v(1), v(2)) of sz we set

K(v) =K+ [ v(1) ] g + Lv(2) ] g

K(v) 1is the translate of K by (| v(1)],| v(2) |) and therefore

v ¢ int(K(v)). For any crosscut r = (VO’e1""’ev’Vv) on sz

of JZ which satisfies (10.32) (in addition to (7.39) - (7.41))we
set

(10.40) e(r) =_J£

(r) U U K(w),
w

where the union runs over the vertices w = (w(1), w(2)) of G on

pl
r which satisfy

—

(10.41) My -0-20 < w(l) <

Nﬁw

21 + 0+ 20,

and K = int(K) UK. Also &r) denotes the component of

int(d,) \ €(r) with C in its boundary. Note that & (r) is a
somewhat fattened up (near r) version of ~\_J;V(r). g (r) still lies
below the horizontal line x(2) = EM,, + 20 + Ay + A (by (10.32) and
(10.38)) so that for all large & 3&(r) is well defined and even
contains a whole strip of 1int(J) near its upper edge C(C 1lies
above x(2) = 12M22). We claim that for sufficiently large & there

exists a crosscut r" on sz which satisfies (7.39) - (7.41) and
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(10.42) 3(r) = JZ(Y‘#),
(10.43) Tpr) <0, oF ) catin),
and
(10.44) eru UKW ,
w

where the union in (10.44) runs over the same w as in (10.40). Of
course r# will simply be the "lower part" of the boundary of

F(r). A formal proof of the existence of r# proceeds by induction.
Assume the vertices which enter in the union in (10.40) are
WyseoosWo o Let

Klw,),

and Sk the component of int(dg) \Eik with C in its boundary.

Assume we already proved that 3k = J;(rk) for some r, on G

satisfying (7.39) - (7.41) and

k p&

. . k
(10.45) Jl(r) c Jz(rk), recru % K(wi) .

This statement is true for k = 0 if we take €, =_3£(r), 3, =
J;(r), rg =" We now show that the statement is then also true

for k replaced by k+1. We shall find e by a method similar to
the construction of r from r and r, in the beginning of the

2

proof of Prop. 2.3 (see the Appendix). €& 4l - € U K(wk+1). For

large enough 2 K(wk+]) does not intersect the left and right
pieces B1 and 82 of J by virtue of (10.41). If o 1is an arc
of K(wk+]) which lies in J+(rk) except for its endpoints, vq and
Vo which lie on e (see Fig. 10.10) then replace the piece of "
between vy and ) by o . This gives a new crosscut,

;k say, of int(J ) such that

o)

~

—+ —— e~
re © Jz(rk) and " c:Jg(rk) .

The proof of this statement is the same as for (A.38) - (A.40). If

~

K(wk+1) still contains a point above ;k’ and hence an arc above r,
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K(w

k+1)

Figure 10.10 The two dashed pieces of the circuit
.. +
K(wk+]) lie in Jz(rk)'

i.e., in J+(Fk), we repeat the procedure until we arrive at a
crosscut r+1? made up from pieces of 'k and K(wk+1) such

that K(wk+]) contains no more points of J ( k+1) It is clear from
the construction and the induction hypothes1s (10.45) that

k+1

(10.46) r UK(w,,,)cru ] K(w ),

kt1 < "k k+1

Also, as in (A.38)

—+
a1 <90

and this implies, just as (A.38) implies (A.39),

(10.47) 3y (r) e 33(r) S dp(r,y)

(of course (10.45) is used for the first inclusion). Finally, we must

show that 3k+] = J ( k+1) But, by (10.46) "ol S a1 - Therefore,

the connected subset 3k+1 of int(J ) \&kJr.l c int(Jz) \ L+ with

C in its boundary is contained in J ( k+1) To prove the inclusion
in the other direction, let y ¢ JZ( k+1) Then y can be connected
by a continuous curve, ¢ say, to C, such that ¢ minus its end-

point on C 1lies in J+( k+1) ;(rk) (by (10.47); compare

(A.40)). Thus y e J (rk) and y ¢ J° (r ). But neither can y 1lie
in K(wk+]) Indeed, the endpoint of ¢ on C 1lies in ext(K(wk+]))
(recall that € (r) 1lies below x(2) = 12 +20 + Ayt A). If

y s'K(wk+]), then ¢ would intersect K(w k+1)’ and since ¢ minus
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its endpoint on C Tlies in J;(rk+1), this would imply that
K(wk+1) still contains a point of J;(rk+]), contrary to our

construction of rk+]. Thus

y £ 3,(r ) UK(w ) .

. . . + - _
Since y was arbitrary in J (rk+]) ,and €41 € Jz(rk) U K(wk+1)

by the induction hypothesis, and K(wi) n 3 = @ for i <k we now have
+ .
Jz(rk+1) C:1nt(J2) \ 8k+1 '

. + . . ..
Further, since Jz(rk+1) is connected and contains C in its boundary
we also have

+
o (rea1) < Ja

and therefore

+

as desired.

Now that we have shown how to obtain K+ from r, Wwe can
take rf = o the crosscut obtained after the last K(w) has been
added. (10.42) - (10.44) are then just (10.48) with k+1 = m and

(10.45) with k = m (plus the simole observation

gty = int(3) \ T0F) < int(a)) \T5(r) < 35(r)
for the second part of (10.43)).

Step (ii). In this step we formulate Condition E, by means of
the path r;. Throughout we shall assume M21, M%Z large enough so
that the construction of Step (i) can be carried out. The specific
properties of r# will only be used later; for the time being we
only use the fact that to each r with properties (7.32) - (7.41)
and (10.32) we have assigned an r# in a specific way. Now assume
that w is an occupancy configuration on W$2 with all central
vertices of faces F e & (F ¢ &) occupied (vacant), and such that
there exists an occupied crosscut of int(JQ) which also satisfies
(10.32). Analogously to Lemma 7.4 we shall say that a vertex a on

r has a vacant connection to ¢ above r inside a set I 1if there
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exists a vacant path s* = (wa,ff,...,f¥,w¥) on QEQ which
satisfies the following conditions (10.49) - (10.51) :

(10.49) there exists anoedge +f* of W$Q between a and
wa such that f* c Jl(r) nr,
(10.50) el ,
(10.51) (w6,f*,...,w¥_.',f¥\{w¥}) = s*\{wx}) c J;(r) nr.
When T = RZ (so that the restrictions due to T are vacuous) we

simply talk about a vacant connection from a to C above r.

Once there exists some occupied r which satisfies (7.39)-(7.41)
and (10.32) we know from Prop. 2.3 that there then also exists a unique
such r with minimal Jg(r). We denote this path by R = (vo,e1,...,
ev,vv). Associated with R is a path R# as in Step (1)5 Now assume
a# is a vertex of R# which has a vacant connection to C above

R# inside

I‘ -

1 3
[ [EM ’?MM] xR .

21
Finally assume that x € w is such that Condition D holds for this x,
and set

Wy = {x + k]E] + kzgz:ki eZ,i = 1,2,} .

Since w was assumed periodic, wO W . Moreover, by the periodicity
assumptions in (10.9) Condition D remains valid when x 1is replaced
by any element of wO .

We now formulate Condition E. It requires that for suitable con-
stants <; we can find a configuration w which satisfies (10.53) -
(10.57). The specific values of the K, are unimportant. We only

need 0 < Ky <@ and that the «; depend only on G and A

*
i pQ’QpQ

but not on z,w,R,a#, p0 or p'.
Condition E. Let ¢ z_KO and et w be an occupancy configuration
on W$2 which has an occupied crosscut of int(JQ) and is such that

(10.52) all central vertices of qu ouEside W are occupied,
while all central vertices of ng are vacant.

Let R be the occupied crosscut of int(Jz) with JQ(R) minimal
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and Tet R#

vertex a# on R

be associated to R as in Step (i). Then for every

# which has a vacant connection to C above R#
inside T, there exists an occupancy configuration @ = &(w,aﬁ) on
”%z with the following properties (10.53) - (10.57).

(10.53) w(v) = w(v) for all vertices v of W$%

with  |v(i) - a#(i)] > Ky for 1 > 1 or 2.

(Recall that w(v) is the value of © at the vertex v of
¢ s and similarly for  w(v); the more explicit notation
&(w,a#)(v) for w(v) should not be necessary.)

(10.54) If v is a central vertex of G . which does
not belong to 1 , and hence w(v) = 1, then
w(v) = 1.

(10.55) If v is a central vertex of (¥ , and hence

w(v) = -1, then (v) = -1.

(10.56) In the configuration « there exists an occupied
crosscut R of int(Jd,) satisfying (7.39) - (7.41)
and with JQ(R) minimal among all such crosscuts.
Moreover on R there exists a vertex X from wo with
a vacant (in the configuration « ) connection Y* to

& above R, and such that 1§—a#] < Ky

~

(10.57) Any vertex y from mo which lies on the R of
(10.56) and which has a vacant connection to ¢ above
R in the configuration & satisfies (a) or (b)

below.

a) y 1lies on R and has a vacant connection to C
above R 1in the configuration w .
b) [y-a'| <y . /11

We merely add one explanatory comment. The requirements (10.54)
and (10.55) just guarantee that w also satisfies (10.52). By
(7.2), (7.3), and (10.16) the condition (10.52) has to be satisfied

with Pp -probability one as well as with Pp.—probabi]ity one. If
0

we did not have (10.52) for ;, then the simple estimate (10.64) would
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fail. Unfortunately, (10.54) necessitates much extra work; "strong
minimality" and "shortcuts of two edges" are used in Steps (iv) - (ix)
only for (10.54). The purpose of the other requirements in Condition
E should become evident in the next step.

Step (iii). In this step we derive (10.21) from Condition E. As
we observed above it suffices to prove

. YV 1 = LR
Tim T(2M£,1,p ’Qpl) 0,1=1,2,

g > o
and we shall only deal with (10.31). The proof of (10.31) mimicks
the proof of (7.35), at least initially. We restrict ourselves to
i = 1. Analogously to Lemma 7.4 we shall drop the subscriot & for
the time being, and set
E={3 occupied path r = (vo,e1,...,e ,V.) on

v v
ng with the properties (7.39) - (7.41) and (10.32)} .

Note that we have added the requirement (10.32); this was absent in the
definition of E in Lemma 7.4. Moreover, J as defined in Step (i)
differs somewhat from the J in Lemma 7.4. Nevertheless the argument
used in Lemma 7.4 still shows that

T(2M1;1,P ,ng) < Pp.{E} >
so that it suffices to prove
(10.58) Tim Pp.{E} =0

g > x

In addition to E we also introduce the event in which the

restriction (10.32) is dropped. We denote this by E1:
E1 = { 3 occupied path r = (vo,e1,...,ev,vv) on

sz with the properties (7.39) - (7.41)} .

Analogously to Lemma 7.4 we write for any r which satisfies (7.39)-
(7.41)

N(r) = N(r,w) = # of vertices of Gog, in kg and on
r 0 int(J) which have a vacant connection to C above
r
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Again note the slight differences with (7.50); the fact that we only
count vertices in mo is crucial. If E occurs then all the vertices
of R counted in N(R,w) are pivotal for (E1,w), by Ex. 4.2(iii).
Set

p(t) = t pg t (1-t)p'
and for x as in the Tast steo

a = P_{x is occupied} - P_,{x 1is occupied} .
Py p

Then, since wo consists of the translates of x by integral

vectors we have

o =min {P_ {v is occupied} - P_,{v is occupied}}
veb, Po P

and by assumotion (10.17) o > 0. By Russo's formula (Prop. 4.2)
we have as in (7.42), and (7.51).

(10.59) é%‘P (£} > o Ep(t) {# of pivotal sites in w, for

p(t)

E;3 > «a Ep(t) {N(R); E occurs}

We must now find a lower bound for the right hand side of (10.59)
Assume that E occurs, and that R = r for a path r satisfying
(7.39) - (7.41) and (10.32). If ot be the path associated to
r as in Step (i), set

M(r#) = number of vertices a# on r# which have

. Q N
a vacant connection to C above r” 1inside T.

Qur first estimate is that for each m we can choose 2, = Qo(m) such

0
that for all % > & and all 0<t<1.

(10.60) Pp(t){ E  occurs and M(R#) > m} > Pp.{E}-% 627 ,

where 627 is as in (7.19). To see this we observe that as in
(7.46), (7.51).

#
Pp(t) {E occurs and MQR"y > m} .
# #

.>_ },Pp(t) {R=Y‘3R =Y'}

#
Poce) M) 2 miR = v, Y = o

I
-~
——
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where the sum is over all paths r which satisfy (7.39) - (7.41) and
(10.32) and ot is the path associated to r by Step (i). By
definition of M(R#) and vacant connections. (see (10.49)- (10.51))
M(r") depends only on the occupancies of vertices outside J™(r").

On the other hand the event {R =r, RY = r#} = {R =r} , since

r’ and R# are the paths which are associated uniquely to r and

R, respectively. Further, by Prop. 2.3 {R = r} depends only on
occupancies of the vertices in J (r) cfﬁ_(r#) (by (10.43)). There-
fore, for fixed r# satisfying (7.39)-(7.41).

# _ #_ # #
Pot) M(r") >mlR = r, R" = r"} = Pp(t){M(r ) >m} .

Now as in Remark 7(ii) to Lemma 7.4 (especially (7.76)) we have
for all sufficiently large 2%

(10.61) P (t){M(r#) > m} 3_%vPD { 3 at least one vertex a# onr

P 0
with a vacant connection to E above r# inside T'},

#

where

T ) S
It =Ty = [z My» g M) xR

Moreover, exactly as in (7.61), the orobability in the right hand
side of (10.61) is at least

P_{ 3 wvacant vertical crossing on G* of
Py P&

3 5
(G Mgqs 7 Mggd @ [0y T2Mp, + Ay ]

1 .
ks 0*((?‘\421 - ])s 13M2’2)s 2,PO:QpR) > 627 .
(10.60) follows by combining these observations with the facts
E=g{R=Y‘, R#=Y‘#},

where the union runs over all r which satisfy (7.39)-(7.41) and
(10.32) , and

which follows from Lemma 4.1 and the fact that E s an increasing
event.
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The second important estimate for our proof concerns the event
G(m,n):= {E occurs, M(R#) >m, but N(R) < nm} .

We shall show that for some 15T, independent of n , m and
2(but dependent on Po and p').

B

T
(10.62) Po(e) L6(mn)} < 1yln + £y, iti% ’

for all sufficiently large & . Before proving (10.62) we show that
it quickly implies (10.58). Indeed, on the event

{E occurs, M(R#) >m, but G(m,n) fails}
one has N(R) > nm, so that by (10.60) and (10.62)

Ep(t){N(R); E occurs}

#
z_nm(Pp(t){E occurs, M(R"} > m} - Pp(t){G(m,n)})
1 1172 1 3
_>_nm("2‘627 P,D'{E} - T]U‘T)s 4_<.tf.2f
Thus, by (10.59), for large 2
3
44
1 > {E Poct) (Eq} dt
Yo
i T
_>_ anm _]J. ('2— 627 Ppl{E} - T-ln - m ) dt
4
_1 1 ‘172
=g o (5 857 PouiEr - yn - —=—)
Consequently, for all n,m
. 1 R 2
1;miui {5 8,, Pp.{E} - Tn -~} < el
or equivalently
. 2 2 12
limsup P_,{E} 5_—35;-(—aﬁa-+ ™n + ——a——)

2 > p

By first choosing n small, then m Targe we obtain the desired
(10.58). As we saw above this implies (10.31) and (10.21).
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Theorem 10.2 has been reduced to (10.62) which we now prove
iy means of Condition E. Let

H(A,n) = {E occurs, M(R#) = A, but N(R) <mm}

‘hen

10.63) G(m,A) = U H(x,n) .
A>m

.et w be a configuration in H(A,n) which satisfies (10.52). Then
)y definition of M(.), in the configuration w there are A vertices
mn R# which have a vacant connection to ¢ above R# inside T.
Jenote these by a?,...,aﬁ in an arbitrary order. To each one of
these there is assigned by Condition E a configuration &(w,aj) with
the properties (10.53)-(10.57) . Let S be any square. Denote
2y wg the set of all configurations which agree with w at all

sites in S. We show first that there exists a constant T3 > 0 (which

depends on p' and Po> but not on 2, S,uw , R or a#) such that

~ # 1 3
(10.64) Pp(t){ws(w’aj )} > T3 Pp(t){wS}’ ritsyg

~

This is easy to see, since w(w,a? ) is obtained from w by
changing at most «, sites for some kg depending on the graph
only, by (10.53). Moreover, if v is a site with w(v) = +1,
w(v) = -1, then either v 1is not a central site of ¢ g o or it is
a central site of sz which belongs to w (by (10.54)). 1In the
former case,for t > 1/4

Pp(t){v is vacant} > t Ppo{v is vacant}

> l-P {v is vacant} > 0,
Z 4 Py

since  py << T (see (10.13)). In the latter case, for t < 3/4

. t) P, .
Pp(t){v is vacant} > (1-t) b {v 1is vacant}

> %— v lwlv) =-13 > 0

by (10.17). On the other hand, if w(v) = -1 and w(v) = +1, then
by (10.55) v 1is not a central vertex of QEQ . Therefore, for
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t > 1/4

. . 1 . .
Pp(t){v is occupied} > Z-Ppo {v is occupied} > 0,
this time by Pg >> 0 (see (10.13)). Therefore, in all cases, if
v has a different state in « then in w, then

Polt) {v is in the state prescribed by w }

> 8 Po(t) {v is in the state prescribed by w}

for some § = G(po,p‘) > 0. Consequently (10.64) holds with

K
T3 =5 4
Next we note that for fixed 2 we can choose S so large that

all events which we consider only depend on the configuration in S.
Indeed we are only interested in w(v) for v in J =J U int(Jd), and

~

w(v) = w(v) except possibly for v with |v(i) -a'(i)]| < K for

some a# e J (see (10.53)). The last property also allows us to

choose &5(5’3#) as a function of wg and a# only (when S is
large enough). Accordingly we denote it by &S(MS’a#) below. We also
repeat the observation that by (7.2), (7.3) and (10.76) the condition

(10.52) holds with Pp -probability one as well as with Pp.-probability
0
one. Consequently it also holds with Pp(t)—probability one for all

0 <t< 1. We therefore conclude from (10.64) that

(10.65) Po(t) {H(A,m)} = 1} Pp(t){ws}

s
1 : ~ #
where ) is the sum over all confiqurations Wg in S for

s
which H(x,n) occurs, and (10.52) holds inside S. We now rearrange
the double sum in the Tast member of (10.65); on the outside we sum over
the possible "values" of &S(ws,aj ), and inside we sum over the wg
and j for which &S(ws,a? ) equals a specified confiquration. This
yields



1 _
Pp(t) {H(x,n)} < — Y Pp(t){ws} . (number of
@g
#

. # . ~ —
pairs  wg and a" on R (ws) with ws(ws,a#) = ug

and wg such that H(x,n) occurs) .
The sum over Gé runs over all possible confiqurations in S, and
we have written R#(ws) for R#(w), again because R# depends on
Wg only for Targe S. If we sum the last inequality over X > m,
then we obtain, by virtue of (10.63),

Pp(t) {G(m,n)} < T;m E_ Pp(t){GS}. (number of pairs
w
S

# J) with as(ms,a#) = G and wg

and a” on R#(w

such that G(m,n) occurs).

Finally we shall prove that for any given Es there are at most

Ks(nm + K6) pairs wg and a# on R#(ws) with &S(ws,a#)

:as
and such that G(m,n) occurs in wg - This will imply

Ks(nm + KG)’

Pp(t){G(m,n)} < m

3
which is the desired (10.62)(K5 and <6 depend only on Kq-K3 and sz),
Now fix a configuration K% in S and let wg be a configura-

tion such that G(m,n) occurs and let a# lie on R#(ws) such that

~

ws(ws,a#) = Bs. Then a# has to be a vertex with a vacant connection

to € above R#(ws) (these were the only a# for which we ever
considered wlw, a#)). By (10.56) ms(ws,a#) = Z% must then be
such that it has a lowest crosscut R of J and a vertex x from

W, with a vacant connection to & above ﬁ in configuration Es
and such that |§(i) - a#(i)l < Ky. Now we are only given Bs ,
and know neither R,R# nor a#. However R is the lowest crosscut in
configuration Bs, and hence there is at most one possibility for R
for a given Eé. Next we must check how many possibilities there are
for x. By (10.57), if BSN m
of vertices from wo on R with a vacant connection above R to

arose as Gs(ws,a#), then the number

¢ in BS is limited. It either is of the type described in
(10.57)(a) or (10.57)(b). There are at most nm vertices of type
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(10.57)(a) in int(Jd) if wg is such that G(m,n) occurs (because
by definition N(R,ug) < nm 1in this case). Also, there are at most
Kg vertices of type (10.57)(b) or on R N J. Thus, any Z% which

can arise from an Wg for which  G(m,n) occurs has at most

6 vertices in wo with a vacant connection above ﬁ(BS)

¢ in configuration 55. Thus, there are at most mm + Kg choices
for x for any wg which can arise at all. But once we picked
i, we have at most k., choices for a# by (10.56). Finally, if
we know 65 = Qs(ms,a ) and a#, then there are at most Kg
possibilities for Wg 5 because (by (10.53)) wg differs from

X #) = Bs only in a fixed neighborhood of a®. In total,

nm + g to

ws(ms,a
starting ﬁith BS we can make at most (nm + KG)K7K8 choices

for x, a and wg - This bound completes the proof of (10.62)

and Theorem 10.2 (modulo the derivation of Condition E from Condition
D in the next section). ]

Proof of Theorem 10.3. The principal idea was already explained
before the statement of the theorem. Let ¥ be the graph obtained
from 7% by close-packing only the faces F 1in 31:= F \ 3b » where
3 is as in (10.23). (30 = @ if ¥ 1is obtained by applying only
(10.22)). Clearly ¥ 1is one of a matching pair of graphs, based
on (m,&l), and % 1is a subgraph of G, while ¥ is the subgraph
of X obtained by removing all vertices in IJO(UO as in (10.22);
again UO =@ if only (10.23) 1is applied to construct ¥#). An
occupied cluster on ¥ is an occupied cluster on X which does not
contain any vertices of UO, and hence remains unchanged if all

vertices in UO are made vacant with probability one. Moreover

Cor. 2.1 applied to X shows that for any vertex 2, of X

#(occupied cluster of z, on ¥X)

0

< (#occupied cluster of Z,

Therefore

on H))

(10.66) Ep (#(occupied cluster of z,

0
< E(#(occupied cluster of zy on Mpm)) ,

where in the right hand side we make vertices in UO vacant with

probability one, and for other vertices of sz we use the measure
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PpO . However, be is just sz
faces in 30 (and the edges incident to these vertices removed). The
right hand side of (10.66) therefore equals

with the central vertices of

(10.67) Ep.(#(occupied cluster of z, on ng),
where

Pp. {v 1is occupied} = 0 if ve UO or if v 1is a central

vertex of a face F e 30 s

while

Pp' {v is occupied} = Pp {v is occupied} for all other
0

vertices v of sz

With w as in (10.24), these are just the relations (10.25) and

(10.26), which in turn say that Pp, is of the form (10.15) and

satisfies (10.16) and (10.17). Indeed, for v e Ww we now have

It

vv{w(v) 1} = Pp.{w(v) =1} =0 < uv{m(v) =1}

Ppo{w(V) =1},

]

because of Po >> 0 and (7.2). Thus Theorem 10.2 applies and
(10.67) is finite. But then also the left hand side of (10.66) is
finite. Theorem 10.3 now follows from Cor. 5.1 applied to the

graph ¥ . [:]

10.3 Derivation of Condition E from Condition D.

In this section we fill the gap left in the proof of Theorem
10.2. The proof is broken down into six steps, numbered (iv)-(ix)
(because we already had Steps (i)-(iii) of the proof of Theorem 10.2).
Condition E says that one can make a local modification in the occu-
pancy configuration around a site a# on R# with a vacant connec-
tion in €. The modified configuration is to have a site from wO
(defined in step (ii)) with a vacant connection above the lowest hori-
zontal crossing in the new configuration. Basically this is obtained
by translating the point x  together with the paths U and V*
of condition D and "splicing in" the translate of U into the lowest
crossing R and connecting the translate of V* to the vacant con-
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# to C. A good part of the construction takes place

in int(K(a)) (see Step (i) for an a with a® on K(a). We begin
with a method for making well controlled connections between (endpoints
of) paths.

Step (iv). By a corridor ¥ of width A, we mean the union of a

nection from a

finite sequence of rectangles DO""’DA or D1,...,DX of the form
(10.68) Dps = Laggaapi+hyIx[byyabyi+ks T,
(10.69) Dois1 = L32i4129p447%Kp 147 1 [y 5Dy ¥17]

with k21.,k21.+1 3_2A7 and arbitrary aj, bj’ and satisfying the con-

nectivity condition that Dj and Dj+] have a corner in common and

intersect in a square of size A7><A7. However, Dj-] and Dj+] must

have disjoint interiors; see Fig. 10.11. The first edge of the corridor

L

[ VR U |-

o
o

- - = -]

Figure 10.11 A typical corridor. The solid rectangles have odd
indices, the dashed rectangles have even indices.

A
K= U Di will be the short edge of DO which does not belong to

i=0
D1, i.e., [ao,a0+A7]><{b0} or [ao,a0+A7]><{bO+k0}, whichever one is
disjoint from D]. The last edge of ¥ 1is that short edge of Dk
which does not belong to D, ;. A similar definition holds if

K =
i

n cC >

Di (which starts with a rectangle of odd index). For the
1
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duration of this proof only we shall call a path r = (vo,e],...,ev,ev)
on Qpl strongly minimal if it is minimal (see Def. 10.1), and if in
addition for any i < j such that v and vj are vertices of 7
which are not adjacent on 7, but 1ie on the perimeter of one face

F € & whose central vertex u does not belong to W, one has j = i+2

and Vit is a central vertex of sz which does not belong to 1 .

In a strongly minimal path two vertices on the perimeter of a single
face F e & whose central vertex does not belong to W are always
connected in one of two ways: either by a single edge of the path which
belongs to the perimeter of F, or by two successive edges of the path
which go through a central vertex of ng not in W. Note that two
vertices Vi and vj may be simultaneously on the perimeter of several
faces and that there may be several central vertices which are adjacent
to both Vs and vj; for this reason we did not require Vigp = U in
the above definition. In analogy with Def. 10.2 we shall call a short-
cut of two edges of the path (vo,e1,...,ev,vv) a string e, u, f of
an edge, vertex and edge of ng such that for some 1 < j, v and

v. are not adjacent on sz, v. and u (u and v.) are the end-

3
points of e(f) and u is a central vertex of § 1y which does not

belong to W, and is different from all the Vi 0<i<v. (Since
a central vertex has only non-central neighbors (Comment 2.3(iv)) v
and Vj have to 1ie on the perimeter of some face F e & of 7 if
there is a shortcut of two edges between them.)

A minimal path for which there do not exist shortcuts of two edges
is strongly minimal. However, the converse is not quite true. A
strongly minimal path (vo,e1,...,ev,vv) can have a shortcut of two
edges e, u, f between two vertices Vi and Vj’ but this can happen
only if Jj = i+2, Vs and Vj lie on the perimeter of a face F] g &
of 7 and Vie is the central vertex of F], but does not belong to
Ww . In this case u has to be the central vertex of another face
F2 e & of %, u must be outside W and Vis Vi must lie on the
perimeter of F,, as well as on the perimeter of F1.

In this step we prove that for every corridor ¥ of width A7

there exists a strongly minimal path r = (vo,e1,...,ev,vv) on sz

such that
(10.70) r € X and vo(vv) are within distance 3A

from the first (last) edge of X .
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This statement remains true if ng is replaced by ng . Note that
no statements about the occupancy of r are made. The proof is carried

out only for sz and only by means of a single case illustration.
Assume X = %; Di and that a corner on the top edge of DO’

[ao,a0+A7] x}Bg+k0}, is also a corner of D1. Then the first edge of

¥ is the bottom edge of Dy, [aj.agtA,]x {by}. Assume also that D,
and DZv have a corner in common which Ties on the bottom edge of DZv'
Then the last edge of X is the top edge of D, [aZv’32v+A7]

X {b2v+k2v} . To find a strongly minimal r satisfying (10.70) let
Soj be a vertical crossing on sz of

~

021 = [a2i+2A,a21+A7—2A]><[b21+2A,b21+k 1-2A]

2

and Soi+1 @ horizontal crossing on qu of

Doisr 3= [8pq4142Msan q ko g =20 x [y 1 +20,by 0 +Ao-20].

A11 these crossings exist by our choice of A3 and A7 = A+4A.  Now,

/ 370
since Dj and D.+1 intersect in a A7><A7 square, Dj and Dj+1
intersect in a (A7—4A)x (A7—4A) = A3><A3 square. The latter square

is crossed horizontally by sj and vertically by sj+], if j is odd.
Thus sj and sj+1 intersect, necessarily in a vertex of G P A
similar argument works for even Jj. We can therefore put together
pieces of sy,...,s, ~to obtain a path § = (GO,?1,...,? ) with
possible double points, which satisfies

u
cg’’o

. 5 . . v
(10.71) (UysFpsneenf 0 ) S ¥ = 1L=JO D,
and
(10.72) f, intersects [a0+2A,a0+A7—2A]><{b0+2A}, while f_

intersects [a2v+2A,a2v+A7—2A]><{b2v+k 20}

2v”
(see Fig. 10.12 for v = 1). By loop removal, as described in Sect. 2.1
we can make s into a self-avoiding path, without changing its initial
or endpoint. Since Toop removal only takes away pieces of a path, we
obtain after loop removal a self-avoiding path, which we shall denote
by s = (UO’f1""’f1’uT)’ which satisfies the analogue of (10.71), i.e. .
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Figure 10.12 An illustration of ¥, X and s for v=1. The

~

solid rectangles are the Di s the dashed ones the Di'
The boldly drawn path is s .

(]0-73) (U],f-],---’uT_-I,uT_]) C}C .
However (10.72) need not be valid any longer. Nevertheless Uy = GO,
ug = Uc so that, by (10.72) and (10.12)

(10.74) Uy is within distance A of [a0+2A,aO+A7—2A]x {b0+2A} ,
and u_ is within distance A of [a +2A,a +A,-2A]
o v v 7

x {b2v+k -2A} .

2v
We shall now replace s by a minimal path, by introducing shortcuts of
one edge, whenever necessary. Specifically, assume s 1is not minimal.
Let us be the first vertex which is adjacent on sz to a uj with
j > i+2. Take the highest j with this property and replace the piece
f1+1’ui+1""’fj-] of s by a single edge of sz from uj to uj.
By repeated application of this procedure we obtain a minimal path from
u, to u_, which we still denote by s = (us>fys...,f ,u_). Since its
0 T 0’1 T

vertices form a subset of the vertices of the original s we have (see
[in 72\\
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(10.75) {u],...,uT_1} CX .,

Of course (10.74) remains valid.
If s 1is not s}rong]y minimal we also introduce shortcuts of two
edges. This time we take the smallest i for which there exists a
j > i+2 such that U and uj lie on the perimeter of a face F e &,
whose central vertex does not belong to W, but not such that j = i+2
and Ujyp 2 central vertex of ng outside Ww. Again we take the
maximal J with this property, and replace the piece f1+1,u1+],...,fj_]
of s by a piece of two edges and a vertex in between, e, u, f say,
with u the central vertex of F and e(f) the edge from Uj to u
(from u to uj). The insertion of this piece of two edges neither
introduces double points, nor destroys the minimality of s. Indeed if
u were equal to Uy for some k < i, then by the minimality of s
this would require i = k+1 and j = k+1 (since Upe would then be
adjacent to uy and uj). This is clearly impossible, as is u = u
A similar argument excludes u = Uy with k > j. Thus the new path
has no double points. Also, if u 1is adjacent to some Up with
k < i then Uy has to 1ie on the perimeter of F (the central vertex
of F 1is adjacent only to vertices on the perimeter of F). Then Uy
and uj with j > k+2 1ie on the perimeter of F whose central ver-
tex u is outside Ww. This contradicts the choice of u; as the
first vertex with such a property. Thus u 1is not adjacent to

i

u
with k < i and a similar argument works for k > i. Consequent1§

the new path is minimal, as claimed. After a finite number of insertions
of shortcuts of two edges we arrive at a strongly minimal path

r = (vo,e],...,ev,vv) with Vo = Ugs Yy = U We claim that this path

r satisfies (10.70). r satisfies the last part of (10.70) by virtue
of (10.74). But also r © X follows. Indeed any edge or shortcut of

two edges has diameter at most 2A, by virtue of (10.12). Therefore r
contains only points within distance 2A from some vertex

Upseeeslo_7s i.e.,

r © (2A)-neighborhood of X € X (see (10.75)).

Thus r has the properties claimed in (10.70). It is clear that the
whole argument goes through unchanged on Q;z .

We shall use the above procedure for making a path strongly minimal
a few more times. We draw the readers attention to two aspects of the
procedure. Firstly, we do not insert a shortcut of two edges between
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any pair of vertices U and Us 4o if Us 41 is already a central
vertex of some face F e & of 7, with Us 41 ¢ W . Secondly, the
procedure is carried out in a specific order, first loop removal, then
insertion of shortcuts of one edge and finally insertion of shortcuts
of two edges. In all three of these subprocedures we work from the
initial vertex of the path to the final one.

Step (v). In this step we make a remark about combining strongly
minimal paths. Let r = (VO’e1""’ev’Vv) and s = (uo,f],...,fo,ug)
be strongly minimal paths on qu such that

|vv—u0| < ASEA

By definition of Mg (see the lines following (10.12)) there then
exists a path t on sz from v, to Uy with diameter (t) E-AG .
Now consider the path (with possible double points) consisting of r,

t and s (in this order) and make it into a strongly minimal path
from Vo to Uy The procedure for making the path strongly minimal
consists of loop removal and insertion of shortcuts of one or two edges
as described for § and s 1in the last step. Denote the resulting
strongly minimal path from Vo to Uy by <r,t,s> . Then the follow-
ing holds.

(10.76) <r,t,s> contains all vertices Uy of s for which

(distance from uj to r) > Agt2h for all j>1i,3<o.

To prove (10.76) observe that u;, can be removed from s during loop
removal only if us belongs to a loop which starts on r Ut and ends
with a ”j’ j > i, because s itself is self-avoiding. But this means
that “j equals some vertex on r U t. 1In this case the distance from
uj to r is < Ags since any point of t is within distance A6 from
the initial point of t, which equals the endpoint vy, of r. Next
assume U is removed when a shortcut of one or two edges is inserted.
One endpoint of the shortcut has to be a vertex of the combination of
r,t and s following us - This has to be a uj with j > i. If
the shortcut has any point in common with r Ut then the above argu-
ment again gives us (10.76), in view of the fact that the diameter of
the shortcut is at most 2A. Finally any shortcut disjoint from r Ut
would be a shortcut for s itself, and no such shortcuts are inserted
because s was already strongly minimal. Thus (10.76) always holds.
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Assume now that s Tlies within distance 2A from some rectangle
B, and that r Tlies outside B (in addition to the assumptions on r
and s already made in the beginning of this step). Then «<r,t,s>
also has the following property:

(10.77) <r,t,s> contains only points of r Us plus points

within distance A6+4A from each of r, s and Fr(B).

The proof of (10.77) is essentially contained in the proof of (10.76).
Certainly t T1lies within distance A6 from each of its endpoints, v,
(which lies on r) and Ug (which lies on s). Moreover Ug lies
inside B or within 2A from Fr(B). In the former case t runs from
the outside of B to a point inside B and hence intersects Fr(B).

In both cases t 1lies within A6+2A from Fr(B). The only points on
<r,t,s> which do not belong to r Ut Us are points of certain short-
cuts. If the shortcut contains a point of t or runs from a point of
r to a point of s, then the above argument again shows that all points
of the shortcut are within distance Agtah  from v, s and from Fr(B).
Finally, as we saw in the proof of (10.76) no shortcuts from a point of
s to a point of s are inserted, and for the same reason no shortcuts
from a point of r +to a point of r are inserted. This takes care of
all possible cases and proves (10.77).

Step (vi). This very long step gives a number of preparatory steps
for the description of the Tocal modifications of occupancy configura-
tions which figure in Condition E. The basic objective is to construct
a path R which is a crosscut of int(Jl) and which differs only
slightly from the "lowest occupied crosscut" R of 1nt(JZ) and, most
importantly, contains a translate X of the vertex x in Condition D,
such that % has (almost) a vacant connection to E above R. We
choose for X a translate of x, such that X is not too far away

# which has a vacant connection s* to

from R and is near a point a
] ~
C above R (actually above R#). To obtain R we replace a piece of
R by a curve on G which contains X. To construct the vacant

pL pe . *
connection from X to C we construct a connection on ng

#, and then continue along s* to

from X
to the initial point of s*, near a
E. Unfortunately, the details are complicated and the reader is advised
to refer frequently to Figure 10.13-10.17 to try and see what is going
on.
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Now for the details. Let w be an occupancy configuration in
which the event E occurs (see Step (iii) for E). Let
R = (VO’el”"’ev’Vv) be the occupied crosscut of int(Jz) with
minimal JE(R) among all occupied crosscuts which satisfy (7.39)-(7.41)
and (10.32). Associated with it is a crosscut rf satisfying (7.39)-
(7.41) and (10.42)-(10.44) (with r, v’ replaced by R, RY) as in Step
(i). Assume further that a’ ¢ R* has a vacant connection
s* = (wk Wi ], . f*,w*) to E above R in T

We shall now use the specific properties of R# to prove that the
following relations hold (K is the special circuit of Step (i) and
K(a) = K+ La(1)_jg]+ La(Z)__[g2 as before):

(10.78) (distance from a’ to Ry >0 ,

(10.79) #e K(a) for some vertex a on R with

[+}]

3
Mu—o—ZAia(U <5 Mgy v0+20 , and

N —

(10.80) s* < ext K(a).

Assume that (10.78) fails. Then we can find some point b on R with
la#—bl <0 and hence for some vertex w of ng on R (w can be
taken as an endpoint of the edge containing b)

wg-w| < |wg-af|+ [af-b| + [b-w]

< 0+2A

Since K surrounds the square (10.37) this means that wa e int(K(w)).
Further, from wa eT, we obtain

M -e—ZAng)ié

21 7 M

+0+2A

N —

21

In other words K(w) € &R) (see (10.40) and (10.41)). This, however,
is impossible since &R) 1is disjoint from &(R) (by definition of
3(R)), while by (10.42) 3(R) = J;(R"). Thus w§ , which is a point of
+( #) (see (10.51)) cannot lie 1n €(R). This contradiction implies
that (10.78) holds.

(10.79) is now easy. By virtue of (10.44) a’ ¢ R* 1ies on R or
on some K(a) for which (10.79) holds. a’ ¢ R is excluded by (10.78).
Also (10.80) follows, since s*\{w?} ciJ;E(R#) (see (10.51)), and as we



304

saw above J;(R#) = FR) is disjoint from all K(a) which can arise
in (10.79). Moreover w; € E (by (10.50)) lies above the line
x(2) = 12M, (see Step (i)) and outside K(a) since R satisfies
(10.32).

For the remainder fix a vertex a of sz on R such that
(10.78)-(10.80) hold. For the sake of argument assume that a® Ties
on the "left half of the lower edge of K(a)", i.e.,

(10.81) at(1) <a(1), a%(2) <a(2)-20+n ;

see Fig. 10.13. Similar arguments will apply in the other cases. Let
x € W have the properties listed in Condition D and choose k],k2 e Z

Figure 10.13

such that X := x+(k],k2) lies in the closed unit square centered at
#
(10.82) a +(5A7+2A8+3A+A+1 Mg thgtAg+10A+A+] ).

Then, by the periodicity X also has the properties listed in Condition
D. We can therefore find B = B(X) and paths U on Qpl’ V* on QSQ

such that a)-e) of Condition D (with X for x) hold. We note that by
(10.37) and (10.38) K(a) Ties in the annulus
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G = [| a(l) J-20-nq-0, [ a(1) j+26+n5+A]
x [ a(2) |-20-03-A, | a(2) [+20+A5+A]
\ ([ a(1) J-20+p,| a(1) J+20-17)

x (| a(2) ]-20+A,| a(2) |+20-A).

By (10.81), (10.82) and (10.33) B = B(x) lies in the interior of
the inner boundary of G . In fact

(10.83) distance (B,G) > A6

We now want to "splice U into R" and connect V* to s*. We first
connect those endpoints of U and V* near the perimeter of B to
K(a) <G , by paths which run to the outside of G. These paths should
not interfere with each other, nor should they be too far away from B
(for purposes of the construction to follow). We put these paths inside
three corridars Hz, Rr and X* of width A7. A typical illustration
of these corridors is shown in Fig. 10.14. Formally, we require that

they have the properties (10.84)-(10.92) below.
(10.84) The corridors are disjoint from B (= interior of B(X)).

(10.85) The first edge of Hl(xr) is on the left (right) edge
of B, i.e., on {X(1)-A} x[%X(2)-A,%(2)+A]
({X(1)+A} x [X(1)-4,x(2)+A]). Moreover the first edge

of ¥, (¥.) intersects the edge e (ep) of U (cf.

Condition Dc). Finally the distance between X, (Mr)

and {uio,...,up} ({UO""’uio}) is at least A6+9A,
while the distance between H& U Mr and V* s at

Teast A6+5A .

(10.86) The first edge of X¥* 1is on the top edge of B, in the
segment [i(])-A+A8,§(1)+A-A8]><{2(2)+A} and intersects
the edge e; of V*. The distance between ¥* and U
is at least A8‘

(10.87) Let Dy be the last rectangle in the corridor ¥,. It
is of the even-indexed type (10.68) and intersects G
only in the latter's bottom strip
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[ a(1) J-20-ng-0,[ a(1) J+20+Ag+A] x [| a(2) |-20-Ag-A,
| a(2) |-20+A]). The intersection of D, and this
bottom strip is a rectangle of size A7><(A3+2A). The
last edge of Mg lies in the exterior of G, at a
distance > 30 from G. D, 1lies to the right of the
vertical Tine {| a(1) |-26+3A} xR, i.e., more than 2A
units to the right of the left strip of G. Lastly, all

points of M& within distance 2A from G 1lie in Dl .

(10.88) Either (10.87) also holds with MQ replaced by Mr and
D2 by the last rectangle D, of Mr, or D, is of the
odd-indexed type (10.69) and intersects G only in the
latter's left strip, [| a(1) J—Z@—A3—A,L_a(1) |-20+1]

x [| a(2) J-20-A3-0, | a(2) J+20+Ag+A].  In this case the
intersection of Dr and the left strip is a rectangle
of size (A3+2A)><A7, the last edge of Hr lies in the
exterior of G at a distance > 3p from G. Also all
points of Mr within distance 2A of G T1ie in Dr’
and D Ties above the horizontal line Rx{| a(2) ]-20
+30} (i.e., more than 2A wunits above the bottom strip
of Q).

(10.89)  a ¢ ¥* N K(a) S ¥* NGy ¥* NG 1ies below the horizontal
Tine Rx{] a(2) ]-0}.

(10.90) The distance between any pair of the corridors X , ¥

L r
and #* is at least A8 (A8 is defined before Condition D).

(10.91) A1l three corridors MQ, H} and X* Tlie within distance
Ly of at (hg 1is defined in (10.33)).
(10.92) ¥* N K(a) Tlies "between MQ NG and Rr N G". More

precisely, if b 1is any point of ¥* N K(a), then any
continuous curve from hl to Mr inside G of diameter
< 0 fintersects the Tine segment b+t(1,1), —2A3-4A <t
< 2hg+4A.

These horrendous conditions are actually not difficult to satisfy
as illustrated in Fig. 10.14 for the case where at s sufficiently
far away from the left edge of G so that (10.87) can be satisfied for
MQ as well as Hr' We content ourselves with this figure and a few
minor comments indicating why (10.84)-(10.92) can be satisfied. For
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Figure 10.14 The hatched regions are the corridors Koo X and x* .

L

(10.85) and (10.86) we remind the reader that e e and e; inter-
sect the left, right and top edge of B, respectively, by Condition

D. Mgreover, U= (uo,e1,...,ep, up) l1ies below the horizontal line
Rx {x(2) + A'AB}’ while V* Ties in the vertical strip

[x(])-A+A8, x(1) + A—A8] x R. Lastly (uio,eio+1,...,up) lies to the
right of {x(l)—A+A8} x R and (uo,e],...,ui ) lies to the left of

0
{x(1)+A—A8} x R. (10.91) can be satisfied by (10.33) and because

(10.93) la (1) x(1)] < 5(n sHAHAHAGHAFAFT )

8

(see (10.82)). Lastly, with regard to (10.92) we remark that the seg-
ment b+t(1,1), |t] < 2A3+4A, is on a 45° Tine through b and cuts G
"close to" the lower strip of G . Also Hz Nnag and Mr NG lie close
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to the lower edge of G. A path from h& nNa to Hr NG of diameter
< © , has to remain below the horizontal line x(2) = [ a(2) |-o+A
(by (10.87)). Therefore such a path cannot intersect the segment
{La(1) J¥x[La(2) J+20-A,| a(2) J+26+Ag+A}  which cuts the top strip
of G. This segment together with the segment b+t(1,1),|t] < 20g+AA
divide G into two components, whenever b e ¥* NG (by (10.89)).
(10.92) basically says that HQ NG and Rr NG do not 1ie in the
same component of G when G 1is cut by these two segments. This is
obviously the case when Rz’ “r and H* are located as in Fig. 10.14.
It should be obvious that the precise values of the various con-
stants Ai and © are without significance.
Once the corridors H&, X . and X¥* have been chosen we choose

strongly minimal paths rs onr Qpl inside Mi’ i=2or r, which
start within distance 3A from its first edge and end within distance
30 from its last edge, by the method of Step (iv) (see (10.70)). Since
the last edge of ¥, is at least 3A wunits outside G (by (10.87),
(10.88)), the endpoint of rs lies in the exterior or on the exterior
boundary of G. The first point of r; 1lies within 3A from B and

therefore inside the inner boundary of1 G and at distance > 30 from
this inner boundary (by (10.83)). Hence rs intersects K(a). A fortiori
there exists a first vertex of ris b; say, which can be connected to

a vertex of K(a), Ca(d) say, by a path of two edges on QPQ' We connect
b1 to Ca(i) by such a path of two edges. If possible we take for the
intermediate vertex between bi and Ca(i) a central vertex of qu
which does not belong to Ww. Also we connect the initial point of

re (rr) to u (up_]) by a path t, (tr) on sz of diameter < Ag.
This can be done by one choice of Ag since the initial point of ry

is within 3A from the first edge of Ml, which intersects ey by
(10.85). Thus the distance between the initial point of r, and Uy

is at most A4A+A,. A similar statement holds for r, and Us_q- Next

e u; to Uj 1 into a strongly minimal
path, U say, which still runs from Uy to up_], by insertion of
shortcuts of two edges if necessary (see the method used for the path
s 1in Step (iv); recall that U dis minimal by Condition D). Now con-
sider the following path on pr (with possible double points) from
ca(z) to Ca(r): From ca(z) go via two edges to the vertex sz of
rys traverse r, backwards, then go along tz to ups along U from
up to uj q. along t,. to the initial point of r,, then along r,
to the vertex br of Fps and finally via two edges to ca(r) (see

we make the piece of U from
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r. ~
U
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1 K(a)
-~ - G
Ca(r Ca(z
Figure 10.15

Fig. 10.15). This whole path is made into a strongly minimal path i in
the following way. First make rs till bi plus the two-edge connection
from bi to Ca(i) into a strongly minimal path, Fi say, by the
method applied to the path s in Step (iv). Since ry itself was
already strongly minimal, and since bi is the first point on r
which can be connected by two edges to K(a), one easily sees that no
loops have to be removed, nor shortcuts of one edge have to be inserted
during the formation of Fi. Moreover, at most one shortcut of two
edges has to be inserted to obtain a strongly minimal ?i. Indeed, if
the connection from bi to Ca(i) goes through the vertex ¥; of
sz, then the only shortcut which may have to be inserted is from some
vertex on the piece of rs between its initial point and bi to Yy
Note that such a shortcut lies within 3A from K(a) and hence further
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than 2A away from U (by virtue of (10.83)). Now that F1 and U
have been formed we first combine FQ, t, and U 1into the strongly
minimal path <?£,t£,U> as in SteE (v) (see (10.76)). Finally we
obtain the strongly minimal path X as the combination <<Fz,t2,ﬂ>,t
of this last path with t. and Fr.

It will be very important that one has

r >
t’rr

~

(10.94) X 1is a vertex on X,

~

as we now prove. Firstly X cannot be removed when U 1is turned into
the strongly minimal path U. This is so because U is already minimal
by hypothesis (see Condition D), and X = u1.0 could be removed only by
insertion of a shortcut of two edges, and only if such a shortcut runs
from u; to uj with i < io < j. By Condition D b) no such shorE-
cuts exist. Secondly, when we form <FZ,tQ,U> from Fz’ tl and U,

by the method of Step (v), then X = u; is not removed, on account of
0
(10.76) and (10.85). Indeed, all points Ug 410l have a distance
0
of at least A6+9A to ry CZMQ. Thus, also any shortcuts introduced
in the formation of U and ending at one of uj +],...,up have dis-
0
tance at least A6+5A to ¥, (which 1ies within 2A from r.).
Third]y, when ?r, tr and <r2,t2,U> are combined to <<?£,t2,u>,tr,Fr>
= X, then X s still maintained. This is so because no intersections
or shortcuts between Fz U t2 and Fr 9] tr exist, the distance between
these two sets being at least

A8-2A6-4A > 6A ,

by virtue of (10.90). Also the distance between Upsee-sUs _p» OF any
0

shortcuts ending at one of these points, and Fr is at least A6+5A,
by (10.85) again. As in the proof of (10.76) one obtains from this that

x will not be removed when forming X. This proves (10.94).
We set

(10.95) Xi(i) = closed segment of X between Cali) on K(a)

and X, 1 =% or r.
The proof of (10.94) just completed also shows that

(10.96) There exist no shortcuts of two edges for X with one
endpoint each on of YQ(R)\{X} and Xr(i)\&i}
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We also leave it to the reader to use (10.83), (10.77) and the

description of X - especially the statements about Fi before the
proof of (10.94) - to verify that

~

(10.97) any vertex on X which can be connected to K(a) by one
or two edges of ng lies within distance 2A of

) Caur)

For later purposes it is also useful to know that
o iy
(10.98) X\\{Cu(z)’ca(r)} int(K(a)).

To prove this we go back to the construction of Fi' This is made from
the piece of rs from its initial point to bi’ a two-edge connection
from bi via the vertex Y5 to Ca(i)’ and possibly a shortcut from

Y5 via a central vertex, y% say, to a vertex, yg say, on the piece

of r; between its initial point and bi . Since ry from its initial
point to b, lies in int(K(a)), we see that also ?{\ca(i) < int(K(a)),
unless y; or y% belongs to K(a). However y; cannot Tie on K(a)
by the minimality properties of bi’ for if Y; € K(a), then bi would
be connectable to K(a) by a single edge. Similarly ¥; ¢ K(a),

because yg cannot be connected to K(a) by a single edge. Thus

¥, U Fr\\{ca(z),ca(r)} < int(K(a))
and also
t, U uu t, lie in 1int(K(a)), even at a distance
> 470 from K(a) .

(Again recall (10.83) and the fact that t, (tr) has one endpoint at
Uy (Ep_]).) Finally any shortcuts inserted while making X from Fl,
te, Us tys F. lie in int(K(a)) by (10.83) and (10.77) with its proof
(recall that there are no shortcuts between ~FO U ty and FV U tv).

It is our objective to make (most of) X, including X, part of
the "lowest" occupied horizontal crosscut of J2 in the modified
occupancy configuration. Before we can do this we also have to describe
part of the path which will form the vacant connection from X to E
in the modified configuration. Specifically we construct a path on QEQ
from v6 (= the initial point of V*) to wh (= the initial point of
s*). We first take a path r* on Q;Z in X¥* which begins within
distance 3A from the first edge of ¥* and ends within A7+3A from
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a®. This can be done by virtue of (10.89) and the fact that ¥* has

width A7. We connect v; to the first point of r* by a path on

EQ of diameter < Ag. We also connect the final point of r* to
w6 by a path on Q*z of diameter A6. This can be done since

]a#-wal < A (cf. (10.49)) so that the distance from the last point of
r* to wj is at most A7+4A . Now take the path (with possible
double points) from v6 to w6 which proceeds via V*, the connection
between v; and the first point of r*, r* and finally the connection
from the last point of r* to wa. Make it self-avoiding by Toop-
removal (it is not important that it become (strongly) minimal). The
resulting path on q;z » Will still run from v6 to wa . Call it X*.

We shall need the fact that
(10.99) X* s disjoint from X.

This follows from the following remarks, Firstly U and V* have no
point in common by virtue of Condition De) and the fact that the only
vertices which can lie on D\LJ are central vertices of G e and hence
are not on the path V* on Q;z . Secondly, all points of XSX*)
further away than A6+4A from ¥ U K. (¥*) must belong to U(V*).
F1n§11y points within A6+4A from ¥, U X, (¥*) cannot belong to
X*(X) by (10.90), (10.85) and (10.86) .

We now start on making (most of) X part of the lowest crossing.
In order to achieve this we want to connect X with R. Note first

that

~

(10.100) X is disjoint from R,
because by construction X Ties within A6+4A from B U Mz u Mr, hence
within
A6+4A+2A9
from a# (see (10.91) and (10.33)), which is less than the distance

from R to a' (by (10.78)). Despite (10.100) R is not too far

away from X. Indeed R contains the vertex a 1in the interior of
K(a), while for large enough &, the initial (final) point of R on
B](Bz) has first coordinate < Ay (z_ZMQ]—
ext(K(a)) for all sufficiently large &. (See Step (i) for B, and
recall that a satisfies (10.79).) Thus R intersects K(a) at
least twice. We next derive some information about the location of
to

A3), and therefore lies in

these intersections. Let Ky be the arc of K(a) from Co

# .
cu(r) through a". We claim that

%)
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(10.101) diameter(K#) 5_6A5(2A9+2A +50+1) <0,

3
and

(10.102) ¥* N K(a) S Ky

To prove (10.101) and (10.102) let b be any point of ¥* N K(a).
Then, by (10.91)

‘b‘ca(i)l < |b-bs| + lbi"ca(i)l < 2hgt2h, 1 = R,r,

since bi 3 Mi and bi is connected to Cy(4) by two edges. Thus,
by the construction of K - in particular by (10.39) - b and cu(

L)
are connected by an arc, ¢ say, of K(a) of diameter at most

(10.103) 3A5(2A9+2A +50+1).

3

First we must show that this arc does not contain Cu(r)' Assume to
the contrary that moving along ¢ from cq(%) to b one passes
Ca(r) before reaching b. Then the subarc ¢' of ¢ from Ca(ﬁ)
Ca(r) does not contain b. However, b, e ¥. and lbi’ca(i)‘ <2h .
Thus by (10.87), (10.88) bi lies in the last rectangle Di of Mi .
Since the location of D2 is at least 2A wunits to the right of the
left strip of G (see (10.87)) and within hg of a’ (see (10.91)) -
which lies to the left of a (see (10.81)) - it follows that Cy(g)

(which 1ies within 2A from D, S X,) Tlies in the Tower strip of G.

to

Hence, ca( can be connected to some point of Dl by a horizontal

line segmeﬁ% in the lower strip of G and of length < 2A. Similarly,
Ca(r) can be connected to a point of Dr < Mr by a straight 1ine seg-
ment in G (horizontal or vertical) of length < 2A . ¢' together
with the two straight line segments from Ca(i) to Hi form a con-
tinuous curve in G from X, to #. of diameter < 4\ plus the ex-
pression in (10.103). Since this diameter is at most ©, (10.92)
implies that the curve must intersect the segment b+t(1,1), |t| < 2A,+4A.
The two straight 1ine segments which were added to ¢' Tie within 2A
of X U, and by virtue of (10.90) do not intersect the segment
b+t(1,1), [t] < 2A5+4A, which lies within 2Aj+4A from ¥*. Thus ¢
already intersects the segment in some point b', whose distance from

b 1is at most 2A3+4A. Again by the construction of K and the esti-
mate (10.39), b' 1is connected to b by an arc, y say, of K(a) of
diameter at most

(10.104) 3A5(4A3+7A+1).
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Now by our assumption the curve ¢ starting at ca(z) first passes
through b', then through ca(r) and then ends at b. ¢ cannot be
the piece of ¢ from b' through Ca(r) to b, in fact ¢ cannot

contain Cu(r)’ for then by (10.90) its diameter would be at least

lcu(r)-b| > distance (¥ ,¥*)-2A > Ag-210 ,

8

which exceeds (10.104). Thus, the piece of ¢ from b' to b and vy
have to be two arcs of K(a) from b' to b, exactly one of which
contains the point Ca(r) of K(a). This can only be if together
these two arcs make up all of the Jordan curve K(a), and if at least
one of these arcs has a diameter 3_%—diameter (K(a)) > 20-n (see
(10.37)). Since this is not the case we have derived a contradiction
from the assumption that ¢ contains the point Ca(r)' Thus the path
¢ from Ca(2) to b does not contain Ca(r)' In the same way we find
an arc 6 of K(a) from b to Ca(r) of diameter at most equal to
the expression in (10.103) and not containing Cu(2)" ¢ followed by
6 gives us an arc of K(a) from Ca(l) to Ca(r) through b and of
diameter at most equal to the right hand side of (10.101). This arc
must be the same for all choices of b 1in ¥* N K(a). Otherwise, as
above, K(a) would be the union of two different arcs from ca(i) to
Ca(r)’ each with diameter at most equal to the right hand side of
(10.101). This, however, contradicts the fact that diameter (K(a))
> 40-2A . But for b = a’ the arc from Ca(2) to Co(r) through a’
is just Ky so that (10.101) and (10.102) follow.

We shall use two consequences of (10.101) and (10.102). These are

(10.105) ROK, =0
and
(10.106) X* N K(a) < Ky and hence X* NK(@a) NR=9 .

(10.105) is immediate from (10.101) since a’ e Ky has distance at
least © to R (see (10.78)). The second statement in (10.106) will
follow from the first part and (10.105). As for the first part of
(10.106), by (10.83) and the construction of X*, any point c of

X* N K(a) 1lies on r* N K(a) < ¥* N K(a) or Ties on the connection of
diameter < A, from the endpoint of r* to w6. Since lwa-a#l <A,
any point ¢ of X* N K(a) 1lies within distance A6+A from some
point b in ¥* N K(a). Again by the estimate (10.39) b is then
connected to ¢ by an arc ¢ of K(a) of diameter at most
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3A5(A6+2A3+4A+1) < A8—2A .

On the other hand b 1is connected to cu(l) and Cu(r) by two arcs
of K(a) of diameter at least

1im |ca(i)-b| > min distance(%i,k%)-ZA > A
i=L,r i=g,r

8-2A
(see (10.90)), and as we saw in the proof of (10.101) and (10.102) these
arcs have only the point b 1in common and together make up K# A
must start out following one of these arcs, and the endpoint of ¢

must come before the endpoint of this arc since

min |c

1.)—b] > diameter(z).
i=,r

af
Consequently ¢ 1is contained in one of the above arcs from b to
Ca(i)’ i=42 or r, and a fortiori ¢ is contained in K#. This
proves (10.106).

We now know that R intersects K(a)\\K# at least twice (see the
lines immediately preceding (10.101), and (10.105)). Therefore if one
moves along the arc of K(a) from ca(l) to Ca(r) which is not K#,
then one passes through at least two points of R. Llet
%) (VB(r)) be the first (last)
point of R one meets in going along K(a)\ Ky from c

R = (VO’el""’ev’Vv) and let Vo (
Denote by Ki’ i =2 or r, the (closed) arc of K(a) between ¢
and Vs(i) which does not contain K# (see Fig. 10.16). From tge
above description we see that VB(Q) # VB(r)’ and

a(r)”

(10.107) Ki MKy =fc 5y K NK. =9,

Ki nR ={VB(1)} K# NR=29.
We can now define a new crosscut R of int(JR) which contains X
"spliced into R" (see Step (i) for J/). The path R on sz con-
0 to
VB(Z) or VB(r)’ whichever comes first. Let Yy and & be such that

sists of several pieces. We start with the piece of R from v

B(y) = min(B(2),B(r)), B(8) = max(B(2),8(r)) .

Thus  {y,8} = {&,r} and the first piece of R is the piece of R
from Yo to VB(Y). VB(Y) is ?n endpoint of Ky. We now contlnue
R along KY to its other endpoint Ca(y)' Next we move along X to
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Figure 10.16  Schematic diagram. The dashed and boldly drawn curves
together make up the circuit K(a) . The boldly drawn

pieces of K(a) are the arcs KQ and Kr , while

K# is the arc between K2 and Kr which contains a# .

Ca(s) (recall that X is a path with endpoints Cy(g) and Cg(r))'
From cu(a) we move along K(S to VB(G)' The last piece of R s
the piece of R from _YB(G) to vy The curve traversed in this way
from Vo to vy is R. It is made up of paths on sz, and as we
shall now show,

R has no double points.

Indeed, since R itself has no double points, and the same holds for
the arcs K, and K. of K(a) gnd for the path X, the only way R
can have a double point is when X intersects R U K2 U K. 1in a point
distinct from its endpoints cu(z) and Cu(r)’ or if Ki intersects
R in a point other than Vali)? i=42or r. All these possibilities
are ruled out though by (10.100), (10.98) and (10.107). Thus R is
indeed a self-avoiding pfth on G ) from Vo to v, - We stress that
R contains the vertex x of X (see (10.94)).

We want to show that R 1is a crosscut of Jo» 1.e.,
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(10.108) R\{vo,vv} < int(dy), vy e Bysv € B, .
In addition we want to know that R T1ies above R, i.e.,
(10.109) RcI)(R) and Jo(R) < Jp(R).

We begin with the first inclusion in (10.109). It is clear that the
_fgo pieces of R from Vo to VB{Y) ?nd from VB(S) to v belong to
JQ(R). Thus, for the first inclusion in (10.109) we only have to show
that the connected curve consisting of Kz’ X and Kr lies in 'EZ(R).
As we just saw, (10.100), (10.98) and (10.107) imply that this curve

only has its endpoints, VB(Q) and VB(r)’ on R. It therefore

suffices to show that Kl Uuxu Kr {VB(%)’ VB(F)} does not intersect

Fr(J+(R)), but contains some point of JZ(R). As a first step we show
a# € J;(R).

To see this note that a# € R# \\R CTJE(R)‘\R, by virtue of (10.43),

(10.78). But neither does a’ belong to the pieces B1,B2 or C of

JQ because B](Bz) Ties to the left (right) of the vertical line {A3} x R

({2M,,-A,} x R) and C T1ies above the horizontal Tine Rx {12M,,}
L1 73 # 2%

(see Step (1)), while a" e K(a) with
1 3
7 Mg1-0-20 < a(1) < 5 My +0+20

(see (10.79)), and a e R, whence

a(2) < 6M,,

(see (10.32) and beginning of this Step). Thus, for sufficiently large
2

. # .1
(10.110)  distance (a B, UB, U C) > min (EMQ]-@-ZA-A3), 6M22}

- diameter K(a) > 2 diameter K(a) + A.

We have now shown that a# does not belong to

+ #

Fr(J;(R)) ©R U By UB, UC, so that indeed a” < Ji(R).

Next, (10.110) shows that K(a) = K(a) U int(K(a)) does not
intersect B] U 82 U C. This and (10.105) imply that K# does not
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intersect Fr(J;(R)), and since at € K# we see that
c e K, SJT(R), i=2,r
al(i) # AR o

By virtue of (10.107) we then obtain also
K. \iv } J* (R), i=4,r.
Finally, we already saw in (10.98) and (10.100) that
X = K(aT\R,
which is disjoint from Fr(J;(R)). Thus also
X =3I (R).

This proves the first inclusion of (10.109). In the course of its
proof we also saw that K2 Uuxu Kr < K(a) does not intersect
By UB, UC. But neither can K, U X U K. intersect the arc A of

Jo since A CZJSL(R) n Jl, while

¥ +
Also
Va(iy = R\ (B) UB,) < int(d,)

Thus K, Uuxu Kpr Ciint(Jz). Since R 1is a crosscut of Jgs (7.39) -
(7.41) show that R\ {vy,v } < int(J,), Vg € Bys v, € B,. (10.108) is
now obvious. Finally, the second inclusion in (10.109) follows from
the first one, in the same way as (A.40) follows from (A.38) in the
Appendix.

As a final step before defining the modified configuration @ we
construct a connection on Q;Q to E above R. This connection, call
it Y*, will consist of X* - whichoruns from va to w6 - followed by
s* - which runs from wa to wreC (see beginning of this step).
Actually X* followed by s* could still have double points; Y* s
the path obtained by loop-removal from the composition of X* and s*.
To show that Y* is a connect1on from X to C above R note first
that Y* ends at wre C and that s*\\{w*} < J (R#) because by
assumption s* is a vacant connection of a# to C above R# Thus,
by (10.43) s*\\{wg} c JQ(R) and a fortiori s*\\{w*} does not inter-
sect R. But neither does s* intersect K uxu K < X(a) by vir-
tue of (10.80). Thus, s* does not intersect the crosscut R of J
and ends on E. S1nce some neighborhood of C intersected with

int(J,) belongs to J'(R) and s*\\{w¥} < int(J,) we conclude
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(10.111) s*\ {w*) CJZ(R_) i

Neither can X* dintersect R. To see this, observe that we already
know that X* is disjoint from X (see (10.99)) and that X* N K(a)
<Ky (see (10.106)). Also X* does not contain the points Ca(2)
and Co(r) of K(a) since by construction any point of X* 1lies on
V* or is within distance Aﬁ from K*, while Coli has a distance
at least A8—2A from ¥* by (10.90), and V* < int(K(a)) by (10.83).
This means that

X¥ 0 (K, UK) = X*NK@)n (K U KY‘)\{COL(!L)’CQL(Y‘)}
S Ky N (K, U Kr)\{ca(z),ca(r)} =P (see (10.107)).

Lastly, to show that X* is disjoint from R we can copy the proof of
(10.100) verbatim. X* too lies within distance A_+4A+2A, from a#

6 9
On the one hand, this together with (10.170) shows that X* does not

intersect B] U B2 UC for large £. On the other hand, together with
(10.78) this gives

(10.112)  distance(X*,R) > ©-(Ag+4A+20g) > 2 .

Thus X* s disjoint from R U B1 U 82 UC and a fortiori from
Fr(JZ(ﬁ)). Since we already saw that the endpoint wa e s* of X*
belongs to JZ(ﬁ), it follows that all of X* Ties in Jz(ﬁ). Combined

with (10.111) this gives the desired conclusion

(10.113) Y\ w*} < 93 (R).

We note also that the initial point of Y* = initial point of X* = v6
which is adjacent on W$Z to X by Condition Dd) (with x replaced
by X). Thus Y* 1is indeed a connection on Q;Z from X to C
above R. Note that we do not claim Y* to be vacant, though.

Figure 10.17 illustrates the end result of our construction of R
and Y*. In Fig. 10.17 we have more or less drawn the various pieces
in the same relative location as in Fig. 10.13-10.16.

Step (vii). We are finally ready to describe the modification &
of the occupancy configuration w. We remind the reader that w
satisfies (10.52). We form & by means of the following steps:
(a) Make all sites on R which are vacant in w occupied in &.
(b) Make vacant all sites of sz which 1ie in 3;(?7\'§ and which
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Figure 10.17 The outer circuit is J2 . The solidly drawn crosscut

is R . The dashed path is Y* . The small square near
the center is B = B(X), which has X as its center .

can be connected to a vertex on K2 uxu Kr via one or two edges of
sz. Excluded from this change are central vertices of Qpl which do
not belong to I,
(c) Make all vertices on Y* vacant.
(d) Make occupied all non-central vertices of Q*Q which lie in
JZ(ﬁ)\\Y* and which are connected to a point of X* via one or two
edges of QSZ .

No other changes than the ones listed in (a)-(d) are made in the
configuration w to obtain .

Before we can start on the verification of Condition E we must show
that the steps (a)-(d) are compatible, i.e., that they do not require a
certain vertex to be made occupied as well as vacant. This is easy,
however. Indeed (a) only involves vertices on R, (b) only vertices in
3£(§)\'§ and (c) and (d) only vertices in J;(ﬁ) uc (by virtue of
(10.113)). Thus. Steps (a). (b) and the pair (c) and (d) deal with
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disjoint sets of vertices. It is also clear that Steps (c) and (d)
deal with disjoint sets of vertices. Therefore no conflict exists
between any of the required modifications.

We denote by & the occupancy configuration which results from
w by Steps (a)-(d). We check in this step that (10.53)-(10.55) hold
for ®. (10.54) is immediate from steps (a)-(d) and the fact that
Y* is a path on Q;Q, hence does not contain any central vertices of
qu‘ Thus, in none of the steps is an occupied central vertex of G 2
outside W made vacant. Also (10.55) is immediate if we take into
account that R 1is a path on Qpl and hence does not contain central
vertices of Q;z . Lastly, (10.53) follows from the fact that R is
already occupied and s* already vacant in the configuration w (see
beginning of Step (vi), where R and s* are introduced). Therefore
(a) requires only changes of vertices on 9 uxu K, cK(a). Also
(c) requires only changes of vertices on X*, which by construction
1ies within distance A6 from K(a) U ¥*; in turn ¥* 1ies within>
distance Ay from K{a) by (10.91) and (10.79). The changes in (b)
and (d) lie within 2A from the set Kg Uuxu K, or X+ Consequently
5(v) # w(v) 1is only possible for a v within A +Ag*20 from K@y,
which contains a#, and which has diameter 5_8@+4A3+4A (see (10.38)).
This proves (10.53).

Step (viii). In this step we verify (10.56). The essential part
is to show that in the configuration & there exists a lowest occupied
crosscut R of int(Jz) on ng, which almost equals the path R, and
in particular contains X. The existence of a Towest occupied crosscut
R of 1nt(J£) - i.e., an occupied path R on sz which satisfies
(7.39)-(7.41) and such that Ji(ﬁ) is minimal among all such paths -
follows from Prop. 2.3, because R 1is an occupied crosscut on G )
of Jp in & (by (10.708) and Step (viia)). Let R = (YO’h1""’hA’yA)'
We remind the reader that R = (VO’el""’ev’Vv) and that the pieces

(VO’el""’eB(Y)’VB(Y)) énd (VB(Q)’EB(6)+1""’ev’vv) Of_AR are
also the first and last piece of R; between these pieces R consists
of the composition of Ky, X, and K, (or this path in reverse). We
shall now prove the following statements:

(10.114)  (ygshyseeshgr ) ¥gy)) = (Vgalys---8gi ) aVg(yy)

(10.1]5) (‘y>\—\)+6(5)’h>\—\)+6(6)+]’...’h}\’y)\)

I ORAGE R SRE
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(10.116) Any 'y, with B(y) < i < A-v#B(8) 1ies within distance
A of a vertex on Kz u i U Kr’

(10.117) X 1is one of the vy, .

Of course (10.114)-(10.116) say that R shares its beginning and last
piece with R and R and in between deviates only Tittle from R.

To prove (10.114)-(10.117) we first must assemble some facts about
the non-existence of certain shortcuts for R. It is convenient to use
the following notafjon. R(y) = (VO’el""’eB(Y)’VB(Y))’ the beginning
piece of R and R; R(8) = (VB(G)’eB(5)+1""’ev’vv)’ the last piece of
R and R. Let 2z be an arbitrary point of R(Y)\\VB( ) Since R
and R are crosscuts of 1nt(J2) which have the piece R(y) 1in common,
there exist arbitrarily small neighborhoods N of =z such that

N 0 int(3, 0\ R = N N int(d ) \R(y) = N N int(J, \ R
and such that NN int(Jl)\\R consists of two components, N and N
say, with
(10.118) N* €3 (R), N < J7(R).

We claim that for any such N also

(10.119) N' S aiR), N < (R).
This is easy to see from (10.109). Indeed (10.109) implies
- . —+ . —+ = -
Jo(R) = 1nt(J£)\ J (R) = mt(‘]z)\JQ(R) = J,(R)

and hence
N < I3 (R).

But N N 1nt(J£f\'ﬁ consists of the two connected sets N and N+,
and NN int(Jz)\\ﬁ' must intersect J;(ﬁ) as well as Ji(ﬁ) (since N
is a neighborhood of a point z on the crosscut R of int(JZ); see
Newman (1951), Theorem V.11.7). Thus both inclusions in (10.119) must
hold.

We use (10.119) to prove that if w satisfies (10.52) then

(10.120) there does not exist a shortcut of one or two edges of R
inside 'Ji(ﬁ), which has one endpoint among

VoV o Vg(y)-12Vg(s)+1 2 Yy
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(See Def. 10.2 and Step (iv), for the definition of shortcuts.) Suppose

first that the edge e of sz is a shortcut of R of one edge which

runs from some v., 0 <1< B(y)-1 toa vertex u of R, and is such

that e ij;(ﬁ). Then by Def. 10.2 e is not an edge of R itself,

since u is a vertex of R which is not the immediate predecessor or

successor of v, on R. But then e is disjoint from R. e also

cannot belong to J, because then both v; and u must belong to

J2 NR = {VO’VV} and the vertices Vo and v, on B1 and B2 respec~

tively (see (7.40), (7.41)) are too far apart to be connected by the

single edge e. Thus, by the planarity of G I e is also disjoint

from J,. Since e <J,(R) this implies e C Jy(R). Therefore, if N

is a neighborhood of v; for which°(10.118) and (10.119) hold, then

e NNCN CZJE(R). Consequently e < Ji(R) entirely. On the other

hand u is a vertex on §'C23;(R) (by (10.109)) so that

u e'ﬁé(R) n EZ(R) = R. oThis means that e connects V. with u, two

vertices of R, while e 1lies strictly below R, i.e., in J;(R). Re-

placing the arc of R between Vs and u by e then gives an occupied

crosscut of Jy which lies in 'ﬁi(R) and which is not equal to R.

This contradicts the choice of R as the occupied (in the configuration

w) crosscut of int(Jz) with minimal J;(R); see Prop. 2.3. Thus, no

shortcut of one edge for R exists which lies inside 'ii(ﬁ) and has

one endpoint among VO""’VB(y)—1 . _
Next suppose that e, u, f 1is a shortcut of two edges for R

inside 'ﬁi(ﬁ) which starts at some v., 0 < i < Va(y)-1 In this

case u must be a central vertex of sz which neither belongs to W

nor is one of the vertices Vj’ 0 <j<B(y) of R. This again excludes

the possibility that e belongs to R or to Jz (since Jz lies on

7 and contains therefore no central vertices; see Step (i)). As above

this implies e C J;(R). On the other hand the endpoint other than u

of f Ties on ﬁ'CZEZ(R) (see (10.109)). Consequently e, u, f inter-

sects R, necessarily in a vertex, w say, of sz. Thus e followed

by f contains a path, t say, from v; to w, t Tlies in Ji(R),

except for its endpoints v and w on R. t can contain at most one

vertex not on R, to wit the vertex u. But as a central vertex of G 2

not in W ,u is occupied in the configuration w (by (10.52)). Thus

we would have the occupied path t below R connecting the two vertices

v; and w on R. As above this contradicts the minimality of R. This

proves the cases of (10.120) where the shortcut has one endpoint among

Vis 0<i < B(y)-1. The same argument can be used for the Vs with
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B(&)+1 < i <v .
We conclude from (10.120) that any shortcuts for R in I (R)

have to have their endpoints on Kg Uxu Kr (this includes VB( and

vg(é)). KlN and K. are pieces of K(a), hence minimal paths (szg
(10.36)). X was even taken strongly minimal in Step (vi). There can
still be shortcuts for R between these three pieces. Some of these
will be harmless but we have to rule out shortcuts between points on
"opposite sides of X". Shortcuts from XQ(Z)\ {X} to Xr(i)\\{i}

are already ruled out by (10.96) (see (10.95) for the definition of XQ

and ir). lle now prove

(10.121) there do not exist shortcuts of one or two edges of R

inside 3@ with one endpoint on Xl(i) and the other

on Kr or with one endpoint on Xr(i) and the other

on KQ.
Again we give an indirect proof of (10.121). Assume that e or (e,u,f)
is a shortcut of R connecting a vertex z; on KQ with a vertex Z,
on ir(x). Then by (10.97)

[zz—cu(Q)I <20 or IZZ'Cu(r)l < 2A

Since by construction Ca(2) lies on- K(a) and within 2A from i

b2 € M& it has distance > 2A from Xr(i), by (10.90) and (10.83). (Xr
contains only points within 2A from U or within A +4A from e < Mr,
as in (10.77).) Thus

lzz'cq(r)l <2r and 121-Ca(r)| 5.[21'221*'|22"Cu(r)| < 4

6

By the estimate (10.39), there must then exist an arc K
ze to ¢ with
1 al

] of K(a) from

r)
(10.122) diameter(K]) < 3A5(7A+2A3+1).

Now, since zy € Kz one arc between z, and ?a(r) contain? cu(z)
and the arc K# from Cu(l) to Cu(r) (see Fig. 10.18). Since the
diameter of K, is at least (see (10.90))

ICQ(Q)—CQ(F)I Z_lbz—br]—4A z_distance(Mz,h})-4A > Ag-4h,

which exceeds the right hand side of (10.122). Thus K1 must be the
other arc of K(a) from z to Ca(r)' However, this second arc of

K(a) from z; to c has to contain K, from Valr) to ¢

alr) alr)
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[ ] %

Ya(8)

Ya(r) |

c K

a(r) # Ca(z)

Figure 10.18 Schematic diagram of K(a) indicating the relative
location of various points. Kz is boldly drawn;
K# is dashed.

and this has diameter at least

(10.]23) lVB(Y‘)-COL(Y')I > IVB(r)'a#i - lcu(r)—a#‘ > G-AQ‘ZA
since IVB(P)-a#] >0 (by (10.78)) and

# #
[C(r)2 | < legqrybpl +Ibp-a"| < 204y

(by (10.91)). But the right hand side of (10.123) also exceeds the

right hand side of (10.122), so that neither arc of K(a) from z, to
a(r) is posijb1e for Kl' This contradiction proves~that there is no
shortcut of R from a vertex on K, +to a vertex on Xr(x). The same

%
argument shows that there is no shortcut from Kr to Xz(x) and there-

C

fore proves (10.121).
Our final claim about shortcuts is that if w satisfies (10.52),
then

(10.124) there do not exist shortcuts of one or two edges for R
in '3£(§) with one endpoint on each of K, and K, -

We prove (10.124) for shortcuts of two edges, the case of a shortcut of
one edge being similar, but easier. Assume (e,u,f) is a shortcut of
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two edges for R in 'ﬁi(ﬁ), which starts at z; on K, and ends at
z, on Kr’ Let K, be the arc of K(a) which connects z; to z,
and is contained in K, U Ky U K., (see Fig. 10.19). As above

(10.125) diameter(K,) > diameter{K,) > Ag-4A > 305 (50+204%1).

On the other hand the estimate (10.39), together with the fact |z1—22|
< 2\, implies that there exists an arc Ky of K(a) from z; to z,
with

diameter(K3) 5_3A5(5A+2A3+1).

Thus K3 is not K,, but K5 must be the arc through VB(R) and

Va(r) (see Fig. 10.19). Now consider the closed curve G consisting

# Saln)

Figure 10.19  Schematic diagram of K(a) indicating the relative
location of various parts. K2 is boldly drawn, K3
is dashed.

of K2 from z, to z, followed by f and e. G 1is a path with
possible double points on sz. We first show that

(10.126) G 1is a simple Jordan curve.

Since K(a) is a simple Jordan curve, the only way G could have a
double point is when u e K, =K, U K# U Kp.- But u f-KQ U K, &R
because if (e,u,f) 1is a shortcut of two edges for R, then u 1is not
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a vertex of R (see Step (iv)). But also uce Ky is impossible for

then e and f are edges with both endpoints on K(a), and therefore1)

e followed by f would be an arc of K(a) from z, to z, contain-
ing a point of K#. This could only happen if e followed by f con-
stitutes the arc K, - which would go through the point u of K# -

and consequently diameter (K2) < 20 . Since this is excluded by (10.125),
it follows that (10.126) holds.

Next we observe that a e int(G). This must be so because by def-
inition of K(a) a € int(K(a)) at a distance at least 20-A-1 from
any point of K(a) (see (10.37)). On the other hand G 1is formed from
K(a) by replacing the arc K; between 2z, and Z, by e U f. Since

diameter(K3)+d1ameter(e)+diameter(f)

5_3A5(5A+2A3+1)+2A <0< 20-A-1 ,

this replacement cannot take a from int(K(a)) to ext(G).

We now have the point a of R (see (10.79)) in 1int(G), while
Vg € B] is outside G, because B1 is to the left of the vertical line
x(1) = Ag (see Step (i)) and

a(1) > + M -0-28 > diameter(G)+A

=2 4 3

for large & (see (10.79)). Similarly, v, is outside G. Therefore R
must intersect G 1in at least two distinct vertices of § ' such that
R intersects int(G) 1in arbitrarily small neighborhoods of each of
these vertices. By (10.105) R does not intersect K#, while by choice
of K, and K. R intersects K, U K. only in Va(1) and Va(r)
(see (10.107)). If Va(1) (VB(r)) belongs to G at all, then it must
equal Zq (22)’ and in particular, belong to e (f) (see Fig. 10.19 and
recall that u ¢ KZ)‘ It follows from this and from G < KQ U K# U Kr
Ue UF that R NG 1is contained in e U f. Starting at vop R must
therefore enter int(G) through a vertex on e U f and exit again
through another vertex of e U f to reach v, Since e U f contains
only the three vertices z;, u and z,, R must intersect int(G) as

well as ext(G) in arbitrarily small neighborhoods of one of the z;.

1) A little care is needed here because we allowed multiple edges between

a pair of vertices. However, in the present case u 1is a central
vertex of sz’ and the construction of ng in Sect. 2.3 is such

that there exists exactly one edge in G

2 between a central vertex
and any of its neighbors. P
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For the sake of argument let this happen at zq. Then Z4 belongs to
Kz R {VB(Q)} » T.e., 74 VB(Q) and one of the edges es(l) or

e8(2)+] of R has its interior in int(G) and the other in ext(G).
This means that R intersects G transversally at z4 VB(Q). But
the arc K from VB(Q) to ca(z) belongs to G, since z] = VB(Q)

and z, € K (see Fig. 10.19). As we saw in the proof of (10.109) this
arc belongs to JZ(R)’ or more precisely

KQ’\{VB(Q)} c J;(R).

This, together with the transversality of R and G at v forces

B(2)
e < J,(R).

We are now in the same situation as in the proof (10.120). ; would

have to be part of a path below R of one or two edges, and occupied

in the configuration w. No such path exists by the minimality of

Ji(R) and Prop. 2.3. (10.124) follows from this contradiction.

With (10.96), (10.120), (10.121) and (10.124) in hand, it is now
relatively simple to prove (10.114)-(10.117). Assume first (10.114)
fails and let g be the smallest index with hE # eE . Then 1<¢g
< B(y). Since R satisfies (7.39)-(7.41) hE C11nt(J ). Now consider
first the case & > 2. Then by the minimality of g, yg 1° v£_1 e R
as well as y&;] = Ve € R. Since hg_# e and Q is planar, it
follows that h does not intersect R, and for all sufficient]y small

neighborhoods N of VE_]

(10.127) ﬁg NN<(RANN (3, UR).

On the other hand R is the occupied crosscut of 1nt(JZ) in the con-
figuration © with J (R) minimal. In particular

(10.128) RET(R)
since also R 1is an occupied crosscut of int(Jz) in &, (by Step
(viia); see also (2.27)). Thus, by (10.127) and (10.128),

he N SN N @ RN\ Fr(3;(R) = N NI, (R).

In view of (10.118) and (10.119) this means also

hE NNeENN JQ(R)

for suitable N. Since hE # eg implies also that hg does not inter-
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sect R - again because sz is planar - it follows that
(10.129) he < 03 (R).
Exactly the same argument works if & =1 and Yo lies on R, for then
Yo € R N B1 = {vo}, i.e., Yo = Vo On the other hand, if Yo does not
lie on R, then aqumatica11y £=1 and h1 cannot reach R or R
before yy, i.e., h1 = h. is again disjoint from Fr(di(ﬁ)) and from
Fr(J;(R)) (use the analogue of (7.40) for R). Since also
hy €R CT7(R),

the initial point Yo of h belongs to the part of B] in
Fr(Ji(ﬁ)f\'ﬁ , which is the segment between u; and v, (apply (7.40)
to R and see Fig. 10.9). But thig segment of By from u; to Yo
also equals Fr(Ji(R))\\R so that h] belongs to JQ(R) near yj.
(10.129) therefore holds in the case & =1 as well.

To derive a contradication from (10.129) we consider the set

Z := {vertices of sz which are vacant in w but
occupied in @} .

~

If ﬁ has no vertex in = , then R 1is also an occupied crosscut of
int(Jg) 1in the configuration w . In this case (2.27) shows that

R Cig;(R), and therefore R cannot contain any part of any edge - such
as hg - strictly below R. Thus, if (10.114) fails, and hence (10.129)
holds, then R must contain a vertex in = . Let m be the smallest
index with Y. € Now observe that by Steps (viia)-(viid) and
(10.109)

(1}

R S —
EC J%(R) = JQ(R).
Also, all vertices on R are occupied in w, hence are outside =, so

that
(10.130) £ ©J,(R)\R, whence = NJT;(R) =0 .

By definition of & and (10.129), YooY a'Ui(R) (even when
£ = 1) and hence by (10.130) = > & . We claim that

(10.131) Y; ¢R for £<ic<m

Indeed, if (10.131) would fail and j would be the smallest index > &
with yj e R, then j <7 and the path (yg_],hg,...,hj,y.) minus
its endpoints Ye 15Y; would Tie in Ji(R) (by (10.129)) and have all
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its vertices yg,...,yj_] occupied in w since j < m. This would
again contradict the minimality of JE(R) in the configuration w.
Thus (10.131) holds. On the other hand, by (10.129), the path
(yg_],hg,...,hﬂ,yﬂ) starts with Rg in JQ(R), and by (10.130) cannot
reach £ without intersecting R. This contradiction proves the
jmpossibility of (10.129). Thus (10.114) must hold.

(10.115) must hold for the same reasons as (10.114). We merely

have to interchange the roles of B1 and v, with the roles of B

0 2

and v, -
Next we prove (10.116) and (10.117). Let R = (}b,ﬁi,...,ﬁk,yk)).

We already know from (10.114) and the definition of R that

Yi= ¥y = V3, 0 <7 <B(y), and hj=hJ=ej,1§jiB(Y)
Now assume for a certain i
(10.132) y; = yj for some j with y; = yj € K2 Uxu Kr .

By (10.114) this holds for i = j = B(y). If hiyy 1s an edge of R,
then we can simply move along h1+] to Vi and then S10.132) also
holds with . replaced by Yia (unless Y341 ¢ Kl Uxu Kr)' The
case of interest is the one where hi+1 is not an edge of R. First
consider the case where Yil again belongs to R. Then the edge

h1+] forms a shortcut of one edge for R. It Ties necessarily below

R, i.e., in 'ji(ﬁ) because of (10.128). By (10.120), (10.121), (10.124)

the endpoints of hi+l’ Y; = yj and yi+]~= yk say, must inwthis case
both belong to Kl U XQ(X), both~to Kr U Xr(i), or both to X. The
last case cannot occur because X 1is a minimal path, by construction.
In the other two cases X does not occur between y. and yk on R

~ ~ ~ J
since Xj(i) is the piece of X between X N Ki and X, i=2 or r,

by the definition (10.95). Note that X = y5 or X=y, is not
excluded, though. In any case, if we replace the segment of R between
§5 and yk by h1+] then X still lies on the modified path. More-
over, ¥yiiq =~yk will again be a vertex of R on R, and as long as
Yin E_Kz UX UK, we are back to (10.132) with y., }5 replaced by
Yi+1e Yk

The other possibility a]]gwed by (10.132) is that Y547 does not
belong to R. Since Yisq € R ij;(i) (by (10.128)) this implies
Y e'ji(ﬁ)\'ﬁ. Also, since y.,q € R it must be occupied in the
configuration &, and by Step (viib) this means that Yi+7 has to be a
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central vertex of sz which does not belong to W. The neighbor Yit
of Y341 is then not a central vertex of in (Comment 2.3(iv)).
Again by Step (viib) it follows that y.,, cannot lie in JL(R\R.
Since y,,, is an endpoint of h,,q - which starts at Yin € J"(R)\R

2

- we have Yis2 € Eﬂ(R), anguhence Yiso € R, say Yit2 =_¥k' Thus, in
this case either yj and Yy are successive points of R or
(hi+1’y1+1’hi+2) is a shortcuf'of two edgf§ for R_'in JQ(R)' Again,
if we replace the segmeft of R between Y5 aﬂq Yi bz_(hk+1,y1+1,hi+2),
then we do not remove x. This is obvious if Yk and yj are successive
points on R, while the argument is essentially as above in case
(h1+1’y1+1’hi+2) is a shortcut for R. The only new case to considgr
this time is the one where the shortcut runs between two points of X.

But then (10.96) guarantees that X is not removed during the replace-
ment. Once again, with }k we are back at (10.132) with Yi» y& re-
placed by Yigps Y - Start1?g with ¥B(Y) » Which satisfjgs (10.132)

we use the above argument until we arrive at Yy-vtals)

yK+v+B(6)
after which

(yx—ws(a) ’hx-v+e(a)+1 2ot ’h)\’yx)

= (.YK_\)+B(6) ,hK'V+B(5)+] LICECR ’hK "YK)

(Vg(5)8p(s)+17 82y

by (10.115) and the definition of R. It follows from this that R is
formed from R by replacing a number of pieces of R between two ver-
tices of R on K2 Uuyxu Kr by pieces of § of one or two edges.
None of these replacements results in the removal of X. This proves
(10.116) and (10.117).

Finally we complete the proof of (10.§§). The existence of the
crosscut R of int(Jl) with minimal Ji(R), and containing X from
by we already proved (see especially (10.117)). We know from (10.93)
and (10.33) that

%-a'| < o

Also, we showed at the end of Step (vi) that Y* 1is a connection on

;2 from X to C above R. But R Cfﬁ;(ﬁ) (see (10.128)) and this

implies

(10.133) JL(R) < 33 (R)
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as shown by the derivation of (A.41) from (A.38). Thus Y* is also a
connection from X to E above R. Moreover it is vacant in the con-
figuration & by Step (viic). Thus, everything claimed in (10.56)
has been verified.

Step (ix). In this step we complete the deduction of Condition E
by verifying (10.57). Llet y e Wy be a vertex of R and let
1* = (za,kf,...,kg,zg) be a Xacant congection on Q;z (in the con-
figuration @) from y to C above R (cf. the definition (10.49)-
(10.51) with T = R®). If y 1is not one of the v; with 0 < i <
< B(y)-1 or R(s)+1 < i <v , then by (10.114)-(10.116) y 1lies with-
in distance A from K2 Uuxu Kr ©X(a). Since a” e K(a), (b) of
(10.57) holds for such y with Kg = diamter(K)+A . Thus we may
restrict ourselves to y = vi € R with 0 < i < B(y); the case where
y = v; with B(8) <1 <v 1is similar.

We begin by showing that

(10.134) Z* 1is a vacant connection (in &) from y to E

above R.
The point of (10.134) is that Z* 1is even above R, not only above E.
To see (10.134) we observe that (by requirement (10.49)) there exists

an edge k* of W$K between y and 2z} such that k* CZJ;(ﬁ).
Thus for any small neighborhood N of y

k* NN SN NJ(R).

However, now that we have (10.114) we can use the argument which de-
rives (10.119) from (10.118) - with (10.133) or (10.128) replacing
(10.109) - to obtain also

4,3y + =
NN JQ(R) =N N Jz(R)

for suitable small neighborhoods N of y. For such N one has
k* AN SN NJR).

Thus, near y k* 1lies in J;(ﬁ), and then all of k* Ties in J;(ﬁ).
This is the analogue of (10.49) for Z* and R dinstead of s* and r.
The analogue of (10.50) is z* € C, which is true because Z* is a

6
connection to C. To prove (10.134) it therefore suffices to show

(10.135) ¥\ {z}} < J‘;(ﬁ).
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Since k CIJZ(ﬁ) and z¥ s an endpoint of k, hence in 3;(?), and
since Z*\\{zg} Clint(Jz) (by (10.51) with r replaced by R), (10.135)
can fail only if some point of Z* 1lies on R. The first intersection
of Z* and R has to be one of the vertices z? in this case, say
zg . zg also has to be a vertex of R. This is not possible for then
zg has to vacant in the configuration W, being on Z*, as well as
occupied, being a vertex of R, which is occupied in @, by Step (viia).
Thus (10.135) and (10.134) hold.

He now introduce

g* := {vertices of q;i which are occupied in w but
vacant in @} .

If Z* has no vertex in E*, then Z* 1is also vacant in the config-
uration w. Moreover J;(ﬁ) c J;(R), as we saw in (10.109), so that
in this case, by virtue of (10.134) Z* 1is a vacant connection from
y to E above R in the configuration w. Thus in this case (a) of
(10.57) holds. There remains the case where Z7Z* has a vertex in &*,
We shall now show that (a) of (10.57) must hold in this case as well.
To prove this, let z; be the first vertex of Z* in E*. By Step
(vii)(a)-(d),

—

g% N (Jg(ﬁ)\ R) cy* .

Actually, we saw in the proof of (10.53) at the end of Step (vii) that
Step (viic) requires only changes in the occupancies of vertices on
X*. Therefore

(10.136) 5% N (TJ}E(R’)\R_) c X*,

In particular z; is a vertex on X* N Y* and we can define 1 as
the smallest index i <n with z? e X* N Y*. Since 26 and zT
are within distance 2A of y € R, and since (10.112) shows that

distance (X*,R) > 2A , 26 and z? cannot lie on X*. Therefore
2<m<nm

Now z;_1 and z¥ 5 both 1ie in J;(ﬁ) (by (10.135)) and they can be
connected by one or two edges of QEQ to z; e X*. Being vertices of
Z*, z¥ ; and z*¥ , have to be vacant in the configuration &. In
view of Step (viid) this means that both z;_] and z;_z have to be

central vertices of QSQ or belong to Y*. If z* . e Y*, then

z¥ 1€ Y*\ X* < s*
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(see the construction of Y* towards the end of Step (vi)). If z*

=1
is the vertex w$ of s*, then

(10.137) (28okt s okE_pozk g = wWhSTE L Pk

is a path with possible double points on QE% » consisting of the
beginning piece of Z*, until an intersection of 7Z* and s*, and a
final piece of s* from this intersection of s* with Z* to
wk e C. This path is vacant in the configuration w, since z§,...,z*_;
do not 1ie in EZ* and are vacant in &, while s* is a vacant connec-
tion in w from a’ to E above R (see beginning of Step (vi)).

Also, as we saw above

k* < J0y(R) € 05(R)  (cf. (10.109)),

(z5k¥, ... kxg,z* 1) € 76\ {z%)} < 3] (R) < J)(R)
(cf. (10.135), (10.109)),

and finally, because s* 1is a connection to E above R#
+ +
(W3sF5q e FEN D)) © s*\ W2} € H(RF) S UR(R)  (cf. (10.43)).

It follows from this that the path in (10.137) after loop-removal, to
make it self-avoiding, forms a vacant connection in w from y to E
above R. Thus, if z;_] e Y*, then (a) of (10.57) holds. The same
argument works if z* , e Y*. This leaves only the case where neither
z¥_ 1 € Y*¥ nor z¥ , e Y*. This case, however, cannot arise, for as

we saw above this would require both z* . and z* , to be central
vertices of G*, . Since 2z , and z* , are neighbors on G¥ = this
is impossible (Comment 2.3 (iv)). We have thus proved (10.57) in all
cases and completed the proof of Condition E.



