
CHAPTER 5

Reduction of Fuchsian differential equations

Additions and middle convolutions introduced in Chapter 1 are transformations
within Fuchsian differential operators and in this chapter we examine how their
Riemann schemes change under the transformations.

Proposition 5.1. i) Let Pu = 0 be a Fuchsian differential equation. Suppose
there exists c ∈ C such that P ∈ (∂ − c)W [x]. Then c = 0.

ii) For ϕ(x) ∈ C(x), λ ∈ C, µ ∈ C and P ∈W [x], we have

P ∈ C[x] RAdei
(
−ϕ(x)

)
◦ RAdei

(
ϕ(x)

)
P,(5.1)

P ∈ C[∂] RAd
(
∂−µ

)
◦ RAd

(
∂µ
)
P.(5.2)

In particular, if the equation Pu = 0 is irreducible and ordP > 1, RAd
(
∂−µ

)
◦

RAd
(
∂µ
)
P = cP with c ∈ C×.

Proof. i) Put P = (∂−c)Q. Then there is a function u(x) satisfying Qu(x) =
ecx. Since Pu = 0 has at most a regular singularity at x = ∞, there exist C > 0
and N > 0 such that |u(x)| < C|x|N for |x| ≫ 1 and 0 ≤ arg x ≤ 2π, which implies
c = 0.

ii) This follows from the fact

Adei
(
−ϕ(x)

)
◦Adei

(
ϕ(x)

)
= id,

Adei
(
ϕ(x)

)
f(x)P = f(x)Adei

(
ϕ(x)

)
P (f(x) ∈ C(x))

and the definition of RAdei
(
ϕ(x)

)
and RAd(∂µ). □

The addition and the middle convolution transform the Riemann scheme of the
Fuchsian differential equation as follows.

Theorem 5.2. Let Pu = 0 be a Fuchsian differential equation with the Rie-
mann scheme (4.15). We assume that P has the normal form (4.43).

i) (addition) The operator Ad
(
(x− cj)τ

)
P has the Riemann scheme

x = c0 =∞ c1 · · · cj · · · cp
[λ0,1 − τ ](m0,1) [λ1,1](m1,1) · · · [λj,1 + τ ](mj,1) · · · [λp,1](mp,1)

...
...

...
...

...
...

[λ0,n0 − τ ](m0,n0 )
[λ1,n1 ](m1,n1 )

· · · [λj,nj + τ ](mj,1) · · · [λp,np ](mp,np )

 .

ii) (middle convolution) Fix µ ∈ C. By allowing the condition mj,1 = 0, we
may assume

(5.3) µ = λ0,1 − 1 and λj,1 = 0 for j = 1, . . . , p

and #{j ; mj,1 < n} ≥ 2 and P is of the normal form (4.43). Putting

(5.4) d :=

p∑
j=0

mj,1 − (p− 1)n,

43
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we suppose

mj,1 ≥ d for j = 0, . . . , p,(5.5) {
λ0,ν /∈ {0,−1,−2, . . . ,m0,1 −m0,ν − d+ 2}
if m0,ν + · · ·+mp,1 − (p− 1)n ≥ 2, m1,1 · · ·mp,1 ̸= 0 and ν ≥ 1,

(5.6) 
λ0,1 + λj,ν /∈ {0,−1,−2, . . . ,mj,1 −mj,ν − d+ 2}
if m0,1 + · · ·+mj−1,1 +mj,ν +mj+1,1 + · · ·+mp,1 − (p− 1)n ≥ 2,

mj,1 ̸= 0, 1 ≤ j ≤ p and ν ≥ 2.

(5.7)

Then S := ∂−dAd(∂−µ)
∏p

j=1(x − cj)−mj,1P ∈ W [x] and the Riemann scheme of
S equals

(5.8)



x = c0 =∞ c1 · · · cp
[1− µ](m0,1−d) [0](m1,1−d) · · · [0](mp,1−d)

[λ0,2 − µ](m0,2) [λ1,2 + µ](m1,2) · · · [λp,2 + µ](mp,2)

...
...

...
...

[λ0,n0 − µ](m0,n0 )
[λ1,n1 + µ](m1,n1 )

· · · [λp,np + µ](mp,np )


.

More precisely, the condition (5.5) and the condition (5.6) for ν = 1 assure S ∈
W [x]. In this case the condition (5.6) (resp. (5.7) for a fixed j) assures that the sets
of characteristic exponents of P at x = ∞ (resp. cj) are equal to the sets given in
(5.8), respectively.

Here we have RAd(∂−µ)RP = S, if

(5.9)

{
λj,1 +mj,1 are not characteristic exponents of P

at x = cj for j = 0, . . . , p, respectively,

and moreover

(5.10) m0,1 = d or λ0,1 /∈ {−d,−d− 1, . . . , 1−m0,1}.

Using the notation in Definition 1.3, we have

S = Ad
(
(x− c1)λ0,1−2

)
(x− c1)dT ∗

1
x−c1

(−∂)−d Ad(∂−µ)T ∗
1
x+c1

· (x− c1)d
p∏

j=1

(x− cj)−mj,1 Ad
(
(x− c1)λ0,1

)
P

(5.11)

under the conditions (5.5) and

(5.12)

{
λ0,ν /∈ {0,−1,−2, . . . ,m0,1 −m0,ν − d+ 2}
if m0,ν +m1,1 + · · ·+mp,1 − (p− 1)n ≥ 2, m1,1 ̸= 0 and ν ≥ 1.

iii) Suppose ordP > 1 and P is irreducible in ii). Then the conditions (5.5),
(5.6), (5.7) are valid. The condition (5.10) is also valid if d ≥ 1.

All these conditions in ii) are valid if #{j ; mj,1 < n} ≥ 2 and m is realizable
and moreover λj,ν are generic under the Fuchs relation with λj,1 = 0 for j =
1, . . . , p.

iv) Let m =
(
mj,ν

)
j=0,...,p
ν=1,...,nj

∈ P(n)
p+1. Define d by (5.4). Suppose λj,ν are

complex numbers satisfying (5.3). Suppose moreover mj,1 ≥ d for j = 1, . . . , p.
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Defining m′ ∈ P(n)
p+1 and λ′j,ν by

m′
j,ν = mj,ν − δν,1d (j = 0, . . . , p, ν = 1, . . . , nj),(5.13)

λ′j,ν =


2− λ0,1 (j = 0, ν = 1),

λj,ν − λ0,1 + 1 (j = 0, ν > 1),

0 (j > 0, ν = 1),

λj,ν + λ0,1 − 1 (j > 0, ν > 1),

(5.14)

we have

(5.15) idxm = idxm′, |{λm}| = |{λ′m′}|.

Proof. The claim i) is clear from the definition of the Riemann scheme.
ii) Suppose (5.5), (5.6) and (5.7). Then

(5.16) P ′ :=
( p∏
j=1

(x− cj)−mj,1

)
P ∈W [x].

Note that RP = P ′ under the condition (5.9). Put Q := ∂(p−1)n−
∑p

j=1 mj,1P ′. Here
we note that (5.5) assures (p− 1)n−

∑p
j=1mj,1 ≥ 0.

Fix a positive integer j with j ≤ p. For simplicity suppose j = 1 and cj = 0.
Since P ′ =

∑n
j=0 aj(x)∂

j with deg aj(x) ≤ (p− 1)n+ j −
∑p

j=1mj,1, we have

xm1,1P ′ =
N∑
ℓ=0

xN−ℓrℓ(ϑ)
∏

1≤ν≤n0
0≤i<m0,ν−ℓ

(ϑ+ λ0,ν + i)

and

N := (p− 1)n−
p∑

j=2

mj,1 = m0,1 +m1,1 − d

with suitable polynomials rℓ such that r0 ∈ C×. Suppose

(5.17)
∏

1≤ν≤n0
0≤i<m0,ν−ℓ

(ϑ+ λ0,ν + i) /∈ xW [x] if N −m1,1 + 1 ≤ ℓ ≤ N.

Since P ′ ∈W [x], we have

xN−ℓrℓ(ϑ) = xN−ℓxℓ−N+m1,1∂ℓ−N+m1,1sℓ(ϑ) if N −m1,1 + 1 ≤ ℓ ≤ N

for suitable polynomials sℓ. Putting sℓ = rℓ for 0 ≤ ℓ ≤ N −m1,1, we have

P ′ =

N−m1,1∑
ℓ=0

xN−m1,1−ℓsℓ(ϑ)
∏

1≤ν≤n0
0≤i<m0,ν−ℓ

(ϑ+ λ0,ν + i)

+
N∑

ℓ=N−m1,1+1

∂ℓ−N+m1,1sℓ(ϑ)
∏

1≤ν≤n0
0≤i<m0,ν−ℓ

(ϑ+ λ0,ν + i).

(5.18)

Note that s0 ∈ C× and the condition (5.17) is equivalent to the condition λ0,ν+i ̸= 0
for any ν and i such that there exists an integer ℓ with 0 ≤ i ≤ m0,ν − ℓ − 1 and
N −m1,1 +1 ≤ ℓ ≤ N . This condition is valid if (5.6) is valid, namely, m1,1 = 0 or

λ0,ν /∈ {0,−1, . . . ,m0,1 −m0,ν − d+ 2}
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for ν satisfying m0,ν ≥ m0,1 − d+ 2. Under this condition we have

Q =
N∑
ℓ=0

∂ℓsℓ(ϑ)
∏

1≤i≤N−m1,1−ℓ

(ϑ+ i) ·
∏

1≤ν≤n0
0≤i<m0,ν−ℓ

(ϑ+ λ0,ν + i),

Ad(∂−µ)Q =

N∑
ℓ=0

∂ℓsℓ(ϑ− µ)
∏

1≤i≤N−m1,1−ℓ

(ϑ− µ+ i)

·
∏

1≤i≤m0,1−ℓ

(ϑ+ i) ·
∏

2≤ν≤n0
0≤i<m0,ν−ℓ

(ϑ− µ+ λ0,ν + i)

since µ = λ0,1 − 1. Hence ∂−m0,1Ad(∂−µ)Q equals

m0,1−1∑
ℓ=0

xm0,1−ℓsℓ(ϑ− µ)
∏

1≤i≤N−m1,1−ℓ

(ϑ− µ+ i)
∏

2≤ν≤n0
0≤i<m0,ν−ℓ

(ϑ− µ+ λ0,ν + i)

+
N∑

ℓ=m0,1

∂ℓ−m0,1sℓ(ϑ− µ)
∏

1≤i≤N−m1,1−ℓ

(ϑ− µ+ i)
∏

2≤ν≤n0
0≤i<m0,ν−ℓ

(ϑ− µ+ λ0,ν + i)

and then the set of characteristic exponents of this operator at ∞ is

{[1− µ](m0,1−d), [λ0,2 − µ](m0,2), . . . , [λ0,n0
− µ](m0,n0 )

}.

Moreover ∂−m0,1−1Ad(∂−µ)Q /∈W [x] if λ0,1+m0,1 is not a characteristic exponent
of P at ∞ and −λ0,1 + 1 + i ̸= m0,1 + 1 for 1 ≤ i ≤ N −m1,1 = m0,1 − d, which
assures xm0,1s0

∏
1≤i≤N−m1,1

(ϑ− µ+ i)
∏

2≤ν≤n0
0≤i<m0,ν

(ϑ− µ+ λ1,ν + i) /∈ ∂W [x].

Similarly we have

P ′ =

m1,1∑
ℓ=0

∂m1,1−ℓqℓ(ϑ)
∏

2≤ν≤n1
0≤i<m1,ν−ℓ

(ϑ− λ1,ν − i)

+

N∑
ℓ=m1,1+1

xℓ−m1,1qℓ(ϑ)
∏

2≤ν≤n1
0≤i<m1,ν−ℓ

(ϑ− λ1,ν − i),

Q =

m1,1∑
ℓ=0

∂N−ℓqℓ(ϑ)
∏

2≤ν≤n1
0≤i<m1,ν−ℓ

(ϑ+ λ1,ν − i)

+

N∑
ℓ=m1,1+1

∂N−ℓqℓ(ϑ)

ℓ−m1,1∏
i=1

(ϑ+ i)
∏

2≤ν≤n1
0≤i<m1,ν−ℓ

(ϑ− λ1,ν − i).

Ad(∂−µ)Q =
N∑
ℓ=0

∂N−ℓqℓ(ϑ− µ)
∏

1≤i≤ℓ−m1,1

(ϑ− µ+ i)

·
∏

2≤ν≤n1
0≤i<m1,ν−ℓ

(ϑ− µ− λ1,ν − i)

with q0 ∈ C×. Then the set of characteristic exponents of ∂−m0,1Ad(∂−µ)Q equals

{[0](m1,1−d), [λ1,2 + µ](m1,2), . . . , [λ1,n1 + µ](m1,n1 )
}
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if ∏
2≤ν≤n1

0≤i<m1,ν−ℓ

(ϑ− µ− λ1,ν − i) /∈ ∂W [x]

for any integers ℓ satisfying 0 ≤ ℓ ≤ N and N−ℓ < m0,1. This condition is satisfied
if (5.7) is valid, namely, m0,1 = 0 or

λ0,1 + λ1,ν /∈ {0,−1, . . . ,m1,1 −m1,ν − d+ 2}
for ν ≥ 2 satisfying m1,ν ≥ m1,1 − d+ 2

because m1,ν − ℓ−1 ≤ m1,ν +m0,1−N −2 = m1,ν −m1,1+d−2 and the condition
ϑ− µ− λ1,ν − i ∈ ∂W [x] means −1 = µ+ λ1,ν + i = λ0,1 − 1 + λ1,ν + i.

Now we will prove (5.11). Under the conditions, it follows from (5.18) that

P̃ := xm0,1−N Ad
(
xλ0,1

) p∏
j=2

(x− cj)−mj,1P

= xm0,1+m1,1−N Ad
(
xλ0,1

)
P ′

=
N∑
ℓ=0

xm0,1−ℓ Ad
(
xλ0,1

)
sℓ(ϑ)

∏
0≤ν<ℓ−N+m1,1

(ϑ− ν)
∏

1≤ν≤n0
0≤i<m0,ν−ℓ

(ϑ+ λ0,ν + i),

Q̃ := (−∂)N−m0,1T ∗
1
x
P̃

= (−∂)N−m0,1

N∑
ℓ=0

xℓ−m0,1sℓ(−ϑ− λ0,1)
∏

0≤ν<ℓ−N+m1,1

(−ϑ− λ0,1 − ν)

·
∏

2≤ν≤n0
0≤i<m0,ν−ℓ

(−ϑ+ λ0,ν − λ0,1 + i)
∏

0≤i≤m0,1−ℓ

(−ϑ+ i)

=

N∑
ℓ=0

(−∂)N−ℓsℓ(−ϑ− λ0,1)
∏

1≤i≤ℓ−m0,1

(−ϑ− i)

·
∏

0≤ν<ℓ−N+m1,1

(−ϑ− λ0,1 − ν)
∏

2≤ν≤n0
0≤i<m0,ν−ℓ

(−ϑ+ λ0,ν − λ0,1 + i)

and therefore

Ad(∂−µ)Q̃ =
N∑
ℓ=0

(−∂)N−ℓsℓ(−ϑ− 1)
∏

1≤i≤ℓ−m0,1

(−ϑ+ λ0,1 − 1− i)

·
∏

0≤ν<ℓ−N+m1,1

(−ϑ− 1− ν)
∏

2≤ν≤n0
0≤i<m0,ν−ℓ

(−ϑ+ λ0,ν − 1 + i).

Since

(−∂)N−ℓ−m1,1

∏
0≤ν<ℓ−N+m1,1

(−ϑ− 1− ν) =

{
xℓ−N+m1,1 (N − ℓ < m1,1)

(−∂)N−ℓ−m1,1 (N − ℓ ≥ m1,1)

= xℓ−N+m1,1

∏
0≤ν<N−ℓ−m1,1

(−ϑ+ ν),
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we have

Q̃′ := (−∂)−m1,1 Ad(∂−µ)Q̃ =
N∑
ℓ=0

xℓ−N+m1,1

∏
0≤ν<N−ℓ−m1,1

(−ϑ+ ν)

· sℓ(−ϑ− 1)
∏

0≤ν<ℓ−m0,1

(−ϑ+ λ0,1 − 2− ν)
∏

2≤ν≤n0
0≤i<m0,ν−ℓ

(−ϑ+ λ0,ν − 1 + i)

and

xm0,1+m1,1−N Ad(xλ0,1−2)T ∗
1
x
Q̃′ =

N∑
ℓ=0

xm0,1−ℓ
∏

0≤ν<ℓ−m0,1

(ϑ− ν) · sℓ(ϑ− λ0,1 + 1)

·
∏

0≤ν<N−m1,1−ℓ

(ϑ− λ0,1 + 2 + ν)
∏

2≤ν≤n0
0≤i<m0,ν−ℓ

(ϑ+ λ0,ν − λ0,1 + 1 + i),

which equals ∂−m0,1Ad(∂−µ)Q because
∏

0≤ν<k(ϑ− ν) = xk∂k for k ∈ Z≥0.

iv) (Cf. Remark 7.4 ii) for another proof.) Since

idxm− idxm′ =

p∑
j=0

m2
j,1 − (p− 1)n2 −

p∑
j=0

(mj,1 − d)2 + (p− 1)(n− d)2

= 2d

p∑
j=0

mj,1 − (p+ 1)d2 − 2(p− 1)nd+ (p− 1)d2

= d
(
2

p∑
j=0

mj,1 − 2d− 2(p− 1)n
)
= 0

and

p∑
j=0

nj∑
ν=1

mj,νλj,ν −
p∑

j=0

nj∑
ν=1

m′
j,νλ

′
j,ν

= m0,1(µ+ 1)− (m0,1 − d)(1− µ) + µ(n−m0,1 −
p∑

j=1

(n−mj,1))

=
( p∑
j=0

mj,1 − d− (p− 1)n
)
µ−m0,1d− (m0,1 − d) = d,

we have the claim.
The claim iii) follows from the following lemma when P is irreducible.
Suppose λj,ν are generic in the sense of the claim iii). Put m = gcd(m)m.

Then an irreducible subspace of the solutions of Pu = 0 has the spectral type ℓ′m
with 1 ≤ ℓ′ ≤ gcd(m) and the same argument as in the proof of the following
lemma shows iii). □

The following lemma is known which follows from Scott’s lemma (cf. §9.2).

Lemma 5.3. Let P be a Fuchsian differential operator with the Riemann scheme
(4.15). Suppose P is irreducible. Then

(5.19) idxm ≤ 2.

Fix ℓ = (ℓ0, . . . , ℓp) ∈ Zp+1
>0 and suppose ordP > 1. Then

(5.20) m0,ℓ0 +m1,ℓ1 + · · ·+mp,ℓp − (p− 1) ordm ≤ mk,ℓk for k = 0, . . . , p.
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Moreover the condition

(5.21) λ0,ℓ0 + λ1,ℓ1 + · · ·+ λp,ℓp ∈ Z

implies

(5.22) m0,ℓ0 +m1,ℓ1 + · · ·+mp,ℓp ≤ (p− 1) ordm.

Proof. LetMj be the monodromy generators of the solutions of Pu = 0 at cj ,
respectively. Then dimZ(Mj) ≥

∑nj

ν=1m
2
j,ν and therefore

∑p
j=0 codimZ(Mj) ≤

(p + 1)n2 −
(
idxm + (p − 1)n2) = 2n2 − idxm. Hence Corollary 9.12 (cf. (9.47))

proves (5.19).
We may assume ℓj = 1 for j = 0, . . . , p and k = 0 to prove the lemma. By

the map u(x) 7→
∏p

j=1(x − cj)
−λj,1u(x) we may moreover assume λj,ℓj = 0 for

j = 1, . . . , p. Suppose λ0,1 ∈ Z. We may assume Mp · · ·M1M0 = In. Since
dimkerMj ≥ mj,1, Scott’s lemma (Lemma 9.11) assures (5.22).

The condition (5.20) is reduced to (5.22) by putting m0,ℓ0 = 0 and λ0,ℓ0 =
−λ1,ℓ1 − · · · − λp,ℓp because we may assume k = 0 and ℓ0 = n0 + 1. □

Remark 5.4. i) Retain the notation in Theorem 5.2. The operation in Theo-
rem 5.2 i) corresponds to the addition and the operation in Theorem 5.2 ii) corre-
sponds to Katz’s middle convolution (cf. [Kz]), which are studied by [DR] for the
systems of Schlesinger canonical form.

The operation c(P ) := Ad(∂−µ)∂(p−1)nP is always well-defined for the Fuchsian
differential operator of the normal form which has p + 1 singular points including
∞. This corresponds to the convolution defined by Katz. Note that the equation
Sv = 0 is a quotient of the equation c(P )ũ = 0.

ii) Retain the notation in the previous theorem. Suppose the equation Pu = 0
is irreducible and λj,ν are generic complex numbers satisfying the assumption in
Theorem 5.2. Let u(x) be a local solution of the equation Pu = 0 corresponding to
the characteristic exponent λi,ν at x = ci. Assume 0 ≤ i ≤ p and 1 < ν ≤ ni. Then
the irreducible equations

(
Ad
(
(x − cj)r

)
P
)
u1 = 0 and

(
RAd(∂−µ) ◦ RP

)
u2 = 0

are characterized by the equations satisfied by u1(x) = (x− cj)ru(x) and u2(x) =
Iµci(u(x)), respectively.

Moreover for any integers k0, k1, . . . , kp the irreducible equation Qu3 = 0
satisfied by u3(x) = Iµ+k0

ci

(∏p
j=1(x − cj)

kju(x)
)
is isomorphic to the equation(

RAd(∂−µ) ◦ RP
)
u2 = 0 as W (x)-modules (cf. §1.4 and §3.2).

Example 5.5 (Okubo type). Suppose P̄m(λ) ∈ W [x] is of the form (11.35).
Moreover suppose P̄m(λ) has the the Riemann scheme (11.34) satisfying (11.33)
and λj,ν /∈ Z. Then for any µ ∈ C, the Riemann scheme of Ad

(
∂−µ

)
P̄m(λ) equals

(5.23)



x = c0 =∞ c1 · · · cp
[λ0,1 − µ](m0,1) [0](m1,1) · · · [0](mp,1)

[λ0,2 − µ](m0,2) [λ1,2 + µ](m1,2) · · · [λp,2 + µ](mp,2)

...
...

...
...

[λ0,n0 − µ](m0,n0 )
[λ1,n1 + µ](m1,n1 )

· · · [λp,np + µ](mp,np )


.

In particular we have Ad
(
∂1−λ0,1

)
P̄m(λ) ∈ ∂m0,1W [x].

Example 5.6 (exceptional parameters). The Fuchsian differential equation
with the Riemann scheme x =∞ 0 1 c

[δ](2) [0](2) [0](2) [0](2)
2− α− β − γ − 2δ α β γ
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is a Jordan-Pochhammer equation (cf. Example 1.8 ii)) if δ ̸= 0, which is proved
by the reduction using the operation RAd(∂1−δ)R given in Theorem 5.2 ii).

The Riemann scheme of the operator

Pr = x(x− 1)(x− c)∂3

−
(
(α+ β + γ − 6)x2 − ((α+ β − 4)c+ α+ γ − 4)x+ (α− 2)c

)
∂2

−
(
2(α+ β + γ − 3)x− (α+ β − 2)c− (α+ γ − 2)− r

)
∂

equals  x =∞ 0 1 c
[0](2) [0](2) [0](2) [0](2)

2− α− β − γ α β γ

 ,

which corresponds to a Jordan-Pochhammer operator when r = 0. If the param-
eters are generic, RAd(∂)Pr is Heun’s operator (6.19) with the Riemann scheme

 x =∞ 0 1 c
2 0 0 0

3− α− β − γ α− 1 β − 1 γ − 1

 ,

which contains the accessory parameter r. This transformation doesn’t satisfy (5.6)
for ν = 1.

The operator RAd(∂1−α−β−γ)Pr has the Riemann scheme x =∞ 0 1 c
α+ β + γ − 1 0 0 0
α+ β + γ 1− β − γ 1− γ − α 1− α− β


and the monodromy generator at ∞ is semisimple if and only if r = 0. This
transformation doesn’t satisfy (5.6) for ν = 2.

Definition 5.7. Let

P = an(x)∂
n + an−1(x)∂

n−1 + · · ·+ a0(x)

be a Fuchsian differential operator with the Riemann scheme (4.15). Here some

mj,ν may be 0. Fix ℓ = (ℓ0, . . . , ℓp) ∈ Zp+1
>0 with 1 ≤ ℓj ≤ nj . Suppose

(5.24) #{j ; mj,ℓj ̸= n and 0 ≤ j ≤ p} ≥ 2.

Put

(5.25) dℓ(m) := m0,ℓ0 + · · ·+mp,ℓp − (p− 1) ordm

and

∂ℓP := Ad
( p∏
j=1

(x− cj)λj,ℓj )

p∏
j=1

(x− cj)mj,ℓj
−dℓ(m)∂−m0,ℓ0 Ad(∂1−λ0,ℓ0

−···−λp,ℓp )

· ∂(p−1)n−m1,ℓ1
−···−mp,ℓpa−1

n (x)

p∏
j=1

(x− cj)n−mj,ℓj Ad
( p∏
j=1

(x− cj)−λj,ℓj )P.

(5.26)
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If λj,ν are generic under the Fuchs relation or P is irreducible, ∂ℓP is well-defined
as an element of W [x] and

∂2ℓP = P with P of the form (4.43),(5.27)

∂ℓP ∈W (x)RAd
( p∏
j=1

(x− cj)λj,ℓj )RAd(∂1−λ0,ℓ0
−···−λp,ℓp )

· RAd
( p∏
j=1

(x− cj)−λj,ℓj )P

(5.28)

and ∂ℓ gives a correspondence between differential operators of normal form (4.43).
Here the spectral type ∂ℓm of ∂ℓP is given by

∂ℓm :=
(
m′

j,ν

)
0≤j≤p
1≤ν≤nj

and m′
j,ν = mj,ν − δℓj ,ν · dℓ(m)(5.29)

and the Riemann scheme of ∂ℓP equals

(5.30) ∂ℓ
{
λm
}
:=
{
λ′m′

}
with λ′j,ν =


λ0,ν − 2µℓ (j = 0, ν = ℓ0)

λ0,ν − µℓ (j = 0, ν ̸= ℓ0)

λj,ν (1 ≤ j ≤ p, ν = ℓj)

λ0,ν + µℓ (1 ≤ j ≤ p, ν ̸= ℓj)

by putting

(5.31) µℓ :=

p∑
j=0

λj,ℓj − 1.

It follows from Theorem 5.2 that the above assumption is satisfied if

(5.32) mj,ℓj ≥ dℓ(m) (j = 0, . . . , p)

and
p∑

j=0

λj,ℓj+(ν−ℓj)δj,k /∈
{
i ∈ Z ; (p− 1)n−

p∑
j=0

mj,ℓj+(ν−ℓj)δj,k + 2 ≤ i ≤ 0
}

for k = 0, . . . , p and ν = 1, . . . , nk.

(5.33)

Note that ∂ℓm ∈ Pp+1 is well-defined for a given m ∈ Pp+1 if (5.32) is valid.
Moreover we define

∂m := ∂(1,1,...)m,(5.34)

∂maxm := ∂ℓmax(m)m with

ℓmax(m)j := min
{
ν ; mj,ν = max{mj,1,mj,2, . . .}

}
,

(5.35)

dmax(m) :=

p∑
j=0

max{mj,1,mj,2, . . . ,mj,nj} − (p− 1) ordm.(5.36)

For a Fuchsian differential operator P with the Riemann scheme (4.15) we define

(5.37) ∂maxP := ∂ℓmax(m)P and ∂max

{
λm
}
= ∂ℓmax(m)

{
λm
}
.

A tuple m ∈ P is called basic if m is indivisible and dmax(m) ≤ 0.

Proposition 5.8 (linear fractional transformation). Let ϕ be a linear fractional

transformation of P1(C), namely there exists
(

α β
γ δ

)
∈ GL(2,C) such that ϕ(x) =

αx+β
γx+δ . Let P be a Fuchsian differential operator with the Riemann scheme (4.15).

We may assume − δ
γ = cj with a suitable j by putting cp+1 = − δ

γ , λp+1,1 = 0 and
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mp+1,1 = n if necessary. Fix ℓ = (ℓ0, · · · ℓp) ∈ Zp+1
>0 . If (5.32) and (5.33) are valid,

we have

∂ℓP ∈W (x)Ad
(
(γx+ δ)2µ

)
T ∗
ϕ−1∂ℓT

∗
ϕP,

µ = λ0,ℓ0 + · · ·+ λp,ℓp − 1.
(5.38)

Proof. The claim is clear if γ = 0. Hence we may assume ϕ(x) = 1
x and the

claim follows from (5.11). □
Remark 5.9. i) Fix λj,ν ∈ C. If P has the Riemann scheme {λm} with

dmax(m) = 1, ∂ℓP is well-defined and ∂maxP has the Riemann scheme ∂max{λm}.
This follows from the fact that the conditions (5.5), (5.6) and (5.7) are valid when
we apply Theorem 5.2 to the operation ∂max : P 7→ ∂maxP .

ii) We remark that

idxm = idx ∂ℓm,(5.39)

ord ∂maxm = ordm− dmax(m).(5.40)

Moreover if idxm > 0, we have

(5.41) dmax(m) > 0

because of the identity

(5.42)
( p∑
j=0

mj,ℓj − (p− 1) ordm
)
· ordm = idxm+

p∑
j=0

nj∑
ν=1

(mj,ℓj −mj,ν) ·mj,ν .

If idxm = 0, then dmax(m) ≥ 0 and the condition dmax(m) = 0 impliesmj,ν = mj,1

for ν = 2, . . . , nj and j = 0, 1, . . . , p (cf. Corollary 6.3).
iii) The set of indices ℓmax(m) is defined in (5.35) so that it is uniquely deter-

mined. It is sufficient to impose only the condition

(5.43) mj,ℓmax(m)j = max{mj,1,mj,2, . . .} (j = 0, . . . , p)

on ℓmax(m) for the arguments in this paper.

Thus we have the following result.

Theorem 5.10. A tuple m ∈ P is realizable if and only if sm is trivial (cf. Def-
initions 4.10 and 4.11) or ∂maxm is well-defined and realizable.

Proof. We may assume m ∈ P(n)
p+1 is monotone.

Suppose #{j ; mj,1 < n} < 2. Then ∂maxm is not well-defined. We may
assume p = 0 and the corresponding equation Pu = 0 has no singularities in C by
applying a suitable addition to the equation and then P ∈ W (x)∂n. Hence m is
realizable if and only if #{j ; mj,1 < n} = 0, namely, m is trivial.

Suppose #{j ; mj,1 < n} ≥ 2. Then Theorem 5.2 assures that ∂maxm is
realizable if and only if ∂maxm is realizable. □

In the next chapter we will prove that m is realizable if dmax(m) ≤ 0. Thus
we will have a criterion whether a given m ∈ P is realizable or not by successive
applications of ∂max.

Example 5.11. There are examples of successive applications of s◦∂ to mono-
tone elements of P:

411, 411, 42, 33
15−2·6=3−→ 111, 111, 21

4−3=1−→ 11, 11, 11
3−2=1−→ 1, 1, 1 (rigid)

211, 211, 1111
5−4=1−→ 111, 111, 111

3−3=0−→ 111, 111, 111 (realizable, not rigid)

211, 211, 211, 31
9−8=1−→ 111, 111, 111, 21

5−6=−1−→ (realizable, not rigid)

22, 22, 1111
5−4=1−→ 21, 21, 111

5−3=2−→ × (not realizable)
The numbers on the above arrows are d(1,1,... )(m). We sometimes delete the trivial
partition as above.
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The transformation of the generalized Riemann scheme of the application of
∂kmax is described in the following definition.

Definition 5.12 (Reduction of Riemann schemes). Let m =
(
mj,ν

)
j=0,...,p
ν=1,...,nj

∈

Pp+1 and λj,ν ∈ C for j = 0, . . . , p and ν = 1, . . . , nj . Suppose m is realizable.
Then there exists a positive integer K such that

ordm > ord ∂maxm > ord ∂2maxm > · · · > ord ∂Kmaxm

and s∂Kmaxm is trivial or dmax

(
∂Kmaxm

)
≤ 0.

(5.44)

Define m(k) ∈ Pp+1, ℓ(k) ∈ Z, µ(k) ∈ C and λ(k)j,ν∈C for k = 0, . . . ,K by

m(0) = m and m(k) = ∂maxm(k − 1) (k = 1, . . . ,K),(5.45)

ℓ(k) = ℓmax

(
m(k)

)
and d(k) = dmax

(
m(k)

)
,(5.46) {

λ(k)m(k)

}
= ∂kmax

{
λm
}

and µ(k) = λ(k + 1)1,ν − λ(k)1,ν (ν ̸= ℓ(k)1).(5.47)

Namely, we have

λ(0)j,ν = λj,ν (j = 0, . . . , p, ν = 1, . . . , nj),(5.48)

µ(k) =

p∑
j=0

λ(k)j,ℓ(k)j − 1,(5.49)

λ(k + 1)j,ν =


λ(k)0,ν − 2µ(k) (j = 0, ν = ℓ(k)0),

λ(k)0,ν − µ(k) (j = 0, 1 ≤ ν ≤ n0, ν ̸= ℓ(k)0),

λ(k)j,ν (1 ≤ j ≤ p, ν = ℓ(k)j),

λ(k)j,ν + µ(k) (1 ≤ j ≤ p, 1 ≤ ν ≤ nj , ν ̸= ℓ(k)j)

= λ(k)j,ν +
(
(−1)δj,0 − δν,ℓ(k)j

)
µ(k),

(5.50)

{
λm
} ∂ℓ(0)−−−→· · · −→

{
λ(k)m(k)

} ∂ℓ(k)−−−→
{
λ(k + 1)m(k+1)

} ∂ℓ(k+1)−−−−→ · · · .(5.51)


