CHAPTER 5

Reduction of Fuchsian differential equations

Additions and middle convolutions introduced in Chapter 1 are transformations within Fuchsian differential operators and in this chapter we examine how their Riemann schemes change under the transformations.

Proposition 5.1. i) Let $P u=0$ be a Fuchsian differential equation. Suppose there exists $c \in \mathbb{C}$ such that $P \in(\partial-c) W[x]$. Then $c=0$.
ii) For $\phi(x) \in \mathbb{C}(x), \lambda \in \mathbb{C}, \mu \in \mathbb{C}$ and $P \in W[x]$, we have

$$
\begin{align*}
& P \in \mathbb{C}[x] \operatorname{RAdei}(-\phi(x)) \circ \operatorname{RAdei}(\phi(x)) P \tag{5.1}\\
& P \in \mathbb{C}[\partial] \operatorname{RAd}\left(\partial^{-\mu}\right) \circ \operatorname{RAd}\left(\partial^{\mu}\right) P \tag{5.2}
\end{align*}
$$

In particular, if the equation $P u=0$ is irreducible and $\operatorname{ord} P>1, \operatorname{RAd}\left(\partial^{-\mu}\right) \circ$ $\operatorname{RAd}\left(\partial^{\mu}\right) P=c P$ with $c \in \mathbb{C}^{\times}$.

Proof. i) Put $P=(\partial-c) Q$. Then there is a function $u(x)$ satisfying $Q u(x)=$ $e^{c x}$. Since $P u=0$ has at most a regular singularity at $x=\infty$, there exist $C>0$ and $N>0$ such that $|u(x)|<C|x|^{N}$ for $|x| \gg 1$ and $0 \leq \arg x \leq 2 \pi$, which implies $c=0$.
ii) This follows from the fact

$$
\begin{aligned}
& \operatorname{Adei}(-\phi(x)) \circ \operatorname{Adei}(\phi(x))=\operatorname{id} \\
& \operatorname{Adei}(\phi(x)) f(x) P=f(x) \operatorname{Adei}(\phi(x)) P \quad(f(x) \in \mathbb{C}(x))
\end{aligned}
$$

and the definition of $\operatorname{RAdei}(\phi(x))$ and $\operatorname{RAd}\left(\partial^{\mu}\right)$.
The addition and the middle convolution transform the Riemann scheme of the Fuchsian differential equation as follows.

Theorem 5.2. Let $P u=0$ be a Fuchsian differential equation with the Riemann scheme (4.15). We assume that P has the normal form (4.43).
i) (addition) The operator $\operatorname{Ad}\left(\left(x-c_{j}\right)^{\tau}\right) P$ has the Riemann scheme

$$
\left\{\begin{array}{cccccc}
x=c_{0}=\infty & c_{1} & \cdots & c_{j} & \cdots & c_{p} \\
{\left[\lambda_{0,1}-\tau\right]_{\left(m_{0,1}\right)}} & {\left[\lambda_{1,1}\right]_{\left(m_{1,1}\right)}} & \cdots & {\left[\lambda_{j, 1}+\tau\right]_{\left(m_{j, 1}\right)}} & \cdots & {\left[\lambda_{p, 1}\right]_{\left(m_{p, 1}\right)}} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
{\left[\lambda_{0, n_{0}}-\tau\right]_{\left(m_{0, n_{0}}\right)}} & {\left[\lambda_{1, n_{1}}\right]_{\left(m_{\left.1, n_{1}\right)}\right)}} & \cdots & {\left[\lambda_{j, n_{j}}+\tau\right]_{\left(m_{j, 1}\right)}} & \cdots & {\left[\lambda_{p, n_{p}}\right]_{\left(m_{\left.p, n_{p}\right)}\right.}}
\end{array}\right\}
$$

ii) (middle convolution) Fix $\mu \in \mathbb{C}$. By allowing the condition $m_{j, 1}=0$, we may assume

$$
\begin{equation*}
\mu=\lambda_{0,1}-1 \text { and } \lambda_{j, 1}=0 \text { for } j=1, \ldots, p \tag{5.3}
\end{equation*}
$$

and $\#\left\{j ; m_{j, 1}<n\right\} \geq 2$ and P is of the normal form (4.43). Putting

$$
\begin{equation*}
d:=\sum_{j=0}^{p} m_{j, 1}-(p-1) n, \tag{5.4}
\end{equation*}
$$

we suppose

$$
\begin{align*}
& m_{j, 1} \geq d \text { for } j=0, \ldots, p, \tag{5.5}\\
& \left\{\begin{array}{l}
\lambda_{0, \nu} \notin\left\{0,-1,-2, \ldots, m_{0,1}-m_{0, \nu}-d+2\right\} \\
\text { if } m_{0, \nu}+\cdots+m_{p, 1}-(p-1) n \geq 2, m_{1,1} \cdots m_{p, 1} \neq 0 \quad \text { and } \nu \geq 1,
\end{array}\right. \tag{5.6}\\
& \left\{\begin{array}{l}
\lambda_{0,1}+\lambda_{j, \nu} \notin\left\{0,-1,-2, \ldots, m_{j, 1}-m_{j, \nu}-d+2\right\} \\
\text { if } m_{0,1}+\cdots+m_{j-1,1}+m_{j, \nu}+m_{j+1,1}+\cdots+m_{p, 1}-(p-1) n \geq 2, \\
m_{j, 1} \neq 0,1 \leq j \leq p \text { and } \nu \geq 2
\end{array}\right. \tag{5.7}
\end{align*}
$$

Then $S:=\partial^{-d} \operatorname{Ad}\left(\partial^{-\mu}\right) \prod_{j=1}^{p}\left(x-c_{j}\right)^{-m_{j, 1}} P \in W[x]$ and the Riemann scheme of S equals

$$
\left\{\begin{array}{cccc}
x=c_{0}=\infty & c_{1} & \cdots & c_{p} \tag{5.8}\\
{[1-\mu]_{\left(m_{0,1}-d\right)}} & {[0]_{\left(m_{1,1}-d\right)}} & \cdots & {[0]_{\left(m_{p, 1}-d\right)}} \\
{\left[\lambda_{0,2}-\mu\right]_{\left(m_{0,2}\right)}} & {\left[\lambda_{1,2}+\mu\right]_{\left(m_{1,2}\right)}} & \cdots & {\left[\lambda_{p, 2}+\mu\right]_{\left(m_{p, 2}\right)}} \\
\vdots & \vdots & \vdots & \vdots \\
{\left[\lambda_{0, n_{0}}-\mu\right]_{\left(m_{0, n_{0}}\right)}} & {\left[\lambda_{1, n_{1}}+\mu\right]_{\left(m_{\left.1, n_{1}\right)}\right)}} & \cdots & {\left[\lambda_{p, n_{p}}+\mu\right]_{\left(m_{\left.p, n_{p}\right)}\right)}}
\end{array}\right\}
$$

More precisely, the condition (5.5) and the condition (5.6) for $\nu=1$ assure $S \in$ $W[x]$. In this case the condition (5.6) (resp. (5.7) for a fixed j) assures that the sets of characteristic exponents of P at $x=\infty$ (resp. c_{j}) are equal to the sets given in (5.8), respectively.

Here we have $\operatorname{RAd}\left(\partial^{-\mu}\right) \mathrm{R} P=S$, if

$$
\left\{\begin{array}{c}
\lambda_{j, 1}+m_{j, 1} \text { are not characteristic exponents of } P \tag{5.9}\\
\quad \text { at } x=c_{j} \text { for } j=0, \ldots, p, \text { respectively, }
\end{array}\right.
$$

and moreover

$$
\begin{equation*}
m_{0,1}=d \quad \text { or } \quad \lambda_{0,1} \notin\left\{-d,-d-1, \ldots, 1-m_{0,1}\right\} . \tag{5.10}
\end{equation*}
$$

Using the notation in Definition 1.3, we have

$$
\begin{gather*}
S=\operatorname{Ad}\left(\left(x-c_{1}\right)^{\lambda_{0,1}-2}\right)\left(x-c_{1}\right)^{d} T_{\frac{1}{x-c_{1}}}^{*}(-\partial)^{-d} \operatorname{Ad}\left(\partial^{-\mu}\right) T_{\frac{1}{x}+c_{1}}^{*} \\
\cdot\left(x-c_{1}\right)^{d} \prod_{j=1}^{p}\left(x-c_{j}\right)^{-m_{j, 1}} \operatorname{Ad}\left(\left(x-c_{1}\right)^{\lambda_{0,1}}\right) P \tag{5.11}
\end{gather*}
$$

under the conditions (5.5) and

$$
\left\{\begin{array}{l}
\lambda_{0, \nu} \notin\left\{0,-1,-2, \ldots, m_{0,1}-m_{0, \nu}-d+2\right\} \tag{5.12}\\
\text { if } m_{0, \nu}+m_{1,1}+\cdots+m_{p, 1}-(p-1) n \geq 2, m_{1,1} \neq 0 \quad \text { and } \nu \geq 1
\end{array}\right.
$$

iii) Suppose ord $P>1$ and P is irreducible in ii). Then the conditions (5.5), (5.6), (5.7) are valid. The condition (5.10) is also valid if $d \geq 1$.

All these conditions in ii) are valid if $\#\left\{j ; m_{j, 1}<n\right\} \geq 2$ and \mathbf{m} is realizable and moreover $\lambda_{j, \nu}$ are generic under the Fuchs relation with $\lambda_{j, 1}=0$ for $j=$ $1, \ldots, p$.
iv) Let $\mathbf{m}=\left(m_{j, \nu}\right)_{\substack{j=0, \ldots, p \\ \nu=1, \ldots, n_{j}}} \in \mathcal{P}_{p+1}^{(n)}$. Define d by (5.4). Suppose $\lambda_{j, \nu}$ are complex numbers satisfying (5.3). Suppose moreover $m_{j, 1} \geq d$ for $j=1, \ldots, p$.

Defining $\mathbf{m}^{\prime} \in \mathcal{P}_{p+1}^{(n)}$ and $\lambda_{j, \nu}^{\prime}$ by

$$
\begin{align*}
m_{j, \nu}^{\prime} & =m_{j, \nu}-\delta_{\nu, 1} d \quad\left(j=0, \ldots, p, \nu=1, \ldots, n_{j}\right) \tag{5.13}\\
\lambda_{j, \nu}^{\prime} & = \begin{cases}2-\lambda_{0,1} & (j=0, \nu=1) \\
\lambda_{j, \nu}-\lambda_{0,1}+1 & (j=0, \nu>1) \\
0 & (j>0, \nu=1) \\
\lambda_{j, \nu}+\lambda_{0,1}-1 & (j>0, \nu>1)\end{cases} \tag{5.14}
\end{align*}
$$

we have

$$
\begin{equation*}
\operatorname{idx} \mathbf{m}=\operatorname{idx} \mathbf{m}^{\prime}, \quad\left|\left\{\lambda_{\mathbf{m}}\right\}\right|=\left|\left\{\lambda_{\mathbf{m}^{\prime}}^{\prime}\right\}\right| \tag{5.15}
\end{equation*}
$$

Proof. The claim i) is clear from the definition of the Riemann scheme.
ii) Suppose (5.5), (5.6) and (5.7). Then

$$
\begin{equation*}
P^{\prime}:=\left(\prod_{j=1}^{p}\left(x-c_{j}\right)^{-m_{j, 1}}\right) P \in W[x] . \tag{5.16}
\end{equation*}
$$

Note that R $P=P^{\prime}$ under the condition (5.9). Put $Q:=\partial^{(p-1) n-\sum_{j=1}^{p} m_{j, 1}} P^{\prime}$. Here we note that (5.5) assures $(p-1) n-\sum_{j=1}^{p} m_{j, 1} \geq 0$.

Fix a positive integer j with $j \leq p$. For simplicity suppose $j=1$ and $c_{j}=0$. Since $P^{\prime}=\sum_{j=0}^{n} a_{j}(x) \partial^{j}$ with $\operatorname{deg} a_{j}(x) \leq(p-1) n+j-\sum_{j=1}^{p} m_{j, 1}$, we have

$$
x^{m_{1,1}} P^{\prime}=\sum_{\ell=0}^{N} x^{N-\ell} r_{\ell}(\vartheta) \prod_{\substack{1 \leq \nu \leq n_{0} \\ 0 \leq i<m_{0, \nu}-\ell}}\left(\vartheta+\lambda_{0, \nu}+i\right)
$$

and

$$
N:=(p-1) n-\sum_{j=2}^{p} m_{j, 1}=m_{0,1}+m_{1,1}-d
$$

with suitable polynomials r_{ℓ} such that $r_{0} \in \mathbb{C}^{\times}$. Suppose

$$
\begin{equation*}
\prod_{\substack{1 \leq \nu \leq n_{0} \\ 0 \leq i<m_{0}, \nu-\ell}}\left(\vartheta+\lambda_{0, \nu}+i\right) \notin x W[x] \text { if } N-m_{1,1}+1 \leq \ell \leq N \tag{5.17}
\end{equation*}
$$

Since $P^{\prime} \in W[x]$, we have

$$
x^{N-\ell} r_{\ell}(\vartheta)=x^{N-\ell} x^{\ell-N+m_{1,1}} \partial^{\ell-N+m_{1,1}} s_{\ell}(\vartheta) \text { if } N-m_{1,1}+1 \leq \ell \leq N
$$

for suitable polynomials s_{ℓ}. Putting $s_{\ell}=r_{\ell}$ for $0 \leq \ell \leq N-m_{1,1}$, we have

$$
\begin{align*}
P^{\prime}= & \sum_{\ell=0}^{N-m_{1,1}} x^{N-m_{1,1}-\ell} s_{\ell}(\vartheta) \prod_{\substack{1 \leq \nu \leq n_{0} \\
0 \leq i<m_{0, \nu}-\ell}}\left(\vartheta+\lambda_{0, \nu}+i\right) \\
& +\sum_{\ell=N-m_{1,1}+1}^{N} \partial^{\ell-N+m_{1,1}} s_{\ell}(\vartheta) \prod_{\substack{1 \leq \nu \leq n_{0} \\
0 \leq i<m_{0}, \nu-\ell}}\left(\vartheta+\lambda_{0, \nu}+i\right) . \tag{5.18}
\end{align*}
$$

Note that $s_{0} \in \mathbb{C}^{\times}$and the condition (5.17) is equivalent to the condition $\lambda_{0, \nu}+i \neq 0$ for any ν and i such that there exists an integer ℓ with $0 \leq i \leq m_{0, \nu}-\ell-1$ and $N-m_{1,1}+1 \leq \ell \leq N$. This condition is valid if (5.6) is valid, namely, $m_{1,1}=0$ or

$$
\lambda_{0, \nu} \notin\left\{0,-1, \ldots, m_{0,1}-m_{0, \nu}-d+2\right\}
$$

for ν satisfying $m_{0, \nu} \geq m_{0,1}-d+2$. Under this condition we have

$$
\begin{aligned}
Q= & \sum_{\ell=0}^{N} \partial^{\ell} s_{\ell}(\vartheta) \prod_{1 \leq i \leq N-m_{1,1}-\ell}(\vartheta+i) \cdot \prod_{\substack{1 \leq \nu \leq n_{0} \\
0 \leq i<m_{0, \nu}-\ell}}\left(\vartheta+\lambda_{0, \nu}+i\right), \\
\operatorname{Ad}\left(\partial^{-\mu}\right) Q= & \sum_{\ell=0}^{N} \partial^{\ell} s_{\ell}(\vartheta-\mu) \prod_{1 \leq i \leq N-m_{1,1}-\ell}(\vartheta-\mu+i) \\
& \cdot \prod_{1 \leq i \leq m_{0,1}-\ell}(\vartheta+i) \cdot \prod_{\substack{2 \leq \nu \leq n_{0} \\
0 \leq i<m_{0, \nu}-\ell}}\left(\vartheta-\mu+\lambda_{0, \nu}+i\right)
\end{aligned}
$$

since $\mu=\lambda_{0,1}-1$. Hence $\partial^{-m_{0,1}} \operatorname{Ad}\left(\partial^{-\mu}\right) Q$ equals

$$
\begin{aligned}
& \sum_{\ell=0}^{m_{0,1}-1} x^{m_{0,1}-\ell} s_{\ell}(\vartheta-\mu) \prod_{1 \leq i \leq N-m_{1,1}-\ell}(\vartheta-\mu+i) \prod_{\substack{2 \leq \nu \leq n_{0} \\
0 \leq i<m_{0, \nu}-\ell}}\left(\vartheta-\mu+\lambda_{0, \nu}+i\right) \\
& +\sum_{\ell=m_{0,1}}^{N} \partial^{\ell-m_{0,1}} s_{\ell}(\vartheta-\mu) \prod_{1 \leq i \leq N-m_{1,1}-\ell}(\vartheta-\mu+i) \prod_{\substack{2 \leq \nu \leq n_{0} \\
0 \leq i<m_{0, \nu}-\ell}}\left(\vartheta-\mu+\lambda_{0, \nu}+i\right)
\end{aligned}
$$

and then the set of characteristic exponents of this operator at ∞ is

$$
\left\{[1-\mu]_{\left(m_{0,1}-d\right)},\left[\lambda_{0,2}-\mu\right]_{\left(m_{0,2}\right)}, \ldots,\left[\lambda_{0, n_{0}}-\mu\right]_{\left(m_{0, n_{0}}\right)}\right\} .
$$

Moreover $\partial^{-m_{0,1}-1} \operatorname{Ad}\left(\partial^{-\mu}\right) Q \notin W[x]$ if $\lambda_{0,1}+m_{0,1}$ is not a characteristic exponent of P at ∞ and $-\lambda_{0,1}+1+i \neq m_{0,1}+1$ for $1 \leq i \leq N-m_{1,1}=m_{0,1}-d$, which assures $x^{m_{0,1}} s_{0} \prod_{1 \leq i \leq N-m_{1,1}}(\vartheta-\mu+i) \prod_{\substack{2 \leq \nu \leq n_{0} \\ 0 \leq i<m_{0, \nu}}}\left(\vartheta-\mu+\lambda_{1, \nu}+i\right) \notin \partial W[x]$.

Similarly we have

$$
\begin{aligned}
& P^{\prime}=\sum_{\ell=0}^{m_{1,1}} \partial^{m_{1,1}-\ell} q_{\ell}(\vartheta) \prod_{\substack{2 \leq \nu \leq n_{1} \\
0 \leq i<m_{1}, \nu}}\left(\vartheta-\lambda_{1, \nu}-i\right) \\
& +\sum_{\ell=m_{1,1}+1}^{N} x^{\ell-m_{1,1}} q_{\ell}(\vartheta) \prod_{\substack{2 \leq \nu \leq n_{1} \\
0 \leq i<m_{1, \nu}-\ell}}\left(\vartheta-\lambda_{1, \nu}-i\right), \\
& Q=\sum_{\ell=0}^{m_{1,1}} \partial^{N-\ell} q_{\ell}(\vartheta) \prod_{\substack{2 \leq \nu \leq n_{1} \\
0 \leq i<m_{1}, \nu}}\left(\vartheta+\lambda_{1, \nu}-i\right) \\
& +\sum_{\ell=m_{1,1}+1}^{N} \partial^{N-\ell} q_{\ell}(\vartheta) \prod_{i=1}^{\ell-m_{1,1}}(\vartheta+i) \prod_{\substack{2 \leq \nu \leq n_{1} \\
0 \leq i<m_{1}, \nu}}\left(\vartheta-\lambda_{1, \nu}-i\right) . \\
& \operatorname{Ad}\left(\partial^{-\mu}\right) Q=\sum_{\ell=0}^{N} \partial^{N-\ell} q_{\ell}(\vartheta-\mu) \prod_{1 \leq i \leq \ell-m_{1,1}}(\vartheta-\mu+i) \\
& \prod_{\substack{2 \leq \nu \leq n_{1} \\
0 \leq i<m_{1}, \nu}}\left(\vartheta-\mu-\lambda_{1, \nu}-i\right)
\end{aligned}
$$

with $q_{0} \in \mathbb{C}^{\times}$. Then the set of characteristic exponents of $\partial^{-m_{0,1}} \operatorname{Ad}\left(\partial^{-\mu}\right) Q$ equals

$$
\left\{[0]_{\left(m_{1,1}-d\right)},\left[\lambda_{1,2}+\mu\right]_{\left(m_{1,2}\right)}, \ldots,\left[\lambda_{1, n_{1}}+\mu\right]_{\left(m_{1, n_{1}}\right)}\right\}
$$

if

$$
\prod_{\substack{2 \leq \nu \leq n_{1} \\ 0 \leq i<m_{1}, \nu}}\left(\vartheta-\mu-\lambda_{1, \nu}-i\right) \notin \partial W[x]
$$

for any integers ℓ satisfying $0 \leq \ell \leq N$ and $N-\ell<m_{0,1}$. This condition is satisfied if (5.7) is valid, namely, $m_{0,1}=0$ or

$$
\begin{aligned}
& \lambda_{0,1}+\lambda_{1, \nu} \notin\left\{0,-1, \ldots, m_{1,1}-m_{1, \nu}-d+2\right\} \\
& \quad \text { for } \nu \geq 2 \text { satisfying } m_{1, \nu} \geq m_{1,1}-d+2
\end{aligned}
$$

because $m_{1, \nu}-\ell-1 \leq m_{1, \nu}+m_{0,1}-N-2=m_{1, \nu}-m_{1,1}+d-2$ and the condition $\vartheta-\mu-\lambda_{1, \nu}-i \in \partial W[x]$ means $-1=\mu+\lambda_{1, \nu}+i=\lambda_{0,1}-1+\lambda_{1, \nu}+i$.

Now we will prove (5.11). Under the conditions, it follows from (5.18) that

$$
\begin{aligned}
& \tilde{P}:=x^{m_{0,1}-N} \operatorname{Ad}\left(x^{\lambda_{0,1}}\right) \prod_{j=2}^{p}\left(x-c_{j}\right)^{-m_{j, 1}} P \\
& =x^{m_{0,1}+m_{1,1}-N} \operatorname{Ad}\left(x^{\lambda_{0,1}}\right) P^{\prime} \\
& =\sum_{\ell=0}^{N} x^{m_{0,1}-\ell} \operatorname{Ad}\left(x^{\lambda_{0,1}}\right) s_{\ell}(\vartheta) \prod_{0 \leq \nu<\ell-N+m_{1,1}}(\vartheta-\nu) \prod_{\substack{1 \leq \nu \leq n_{0} \\
0 \leq i<m_{0}, \nu-\ell}}\left(\vartheta+\lambda_{0, \nu}+i\right), \\
& \tilde{Q}:=(-\partial)^{N-m_{0,1}} T_{\frac{1}{x}}^{*} \tilde{P} \\
& =(-\partial)^{N-m_{0,1}} \sum_{\ell=0}^{N} x^{\ell-m_{0,1}} s_{\ell}\left(-\vartheta-\lambda_{0,1}\right) \prod_{0 \leq \nu<\ell-N+m_{1,1}}\left(-\vartheta-\lambda_{0,1}-\nu\right) \\
& \prod_{\substack{2 \leq \nu \leq n_{0} \\
0 \leq i<m_{0, \nu}-\ell}}\left(-\vartheta+\lambda_{0, \nu}-\lambda_{0,1}+i\right) \prod_{0 \leq i \leq m_{0,1}-\ell}(-\vartheta+i) \\
& =\sum_{\ell=0}^{N}(-\partial)^{N-\ell} s_{\ell}\left(-\vartheta-\lambda_{0,1}\right) \prod_{1 \leq i \leq \ell-m_{0,1}}(-\vartheta-i) \\
& \prod_{0 \leq \nu<\ell-N+m_{1,1}}\left(-\vartheta-\lambda_{0,1}-\nu\right) \prod_{\substack{2 \leq \nu \leq n_{0} \\
0 \leq i<m_{0}, \nu}}\left(-\vartheta+\lambda_{0, \nu}-\lambda_{0,1}+i\right)
\end{aligned}
$$

and therefore

$$
\begin{aligned}
\operatorname{Ad}\left(\partial^{-\mu}\right) \tilde{Q} & =\sum_{\ell=0}^{N}(-\partial)^{N-\ell} s_{\ell}(-\vartheta-1) \prod_{1 \leq i \leq \ell-m_{0,1}}\left(-\vartheta+\lambda_{0,1}-1-i\right) \\
& \cdot \prod_{0 \leq \nu<\ell-N+m_{1,1}}(-\vartheta-1-\nu) \prod_{\substack{2 \leq \nu \leq n_{0} \\
0 \leq i<m_{0}, \nu-\ell}}\left(-\vartheta+\lambda_{0, \nu}-1+i\right)
\end{aligned}
$$

Since

$$
\begin{aligned}
(-\partial)^{N-\ell-m_{1,1}} \prod_{0 \leq \nu<\ell-N+m_{1,1}}(-\vartheta-1-\nu) & = \begin{cases}x^{\ell-N+m_{1,1}} & \left(N-\ell<m_{1,1}\right) \\
(-\partial)^{N-\ell-m_{1,1}} & \left(N-\ell \geq m_{1,1}\right)\end{cases} \\
& =x^{\ell-N+m_{1,1}} \prod_{0 \leq \nu<N-\ell-m_{1,1}}(-\vartheta+\nu)
\end{aligned}
$$

we have

$$
\begin{aligned}
& \tilde{Q}^{\prime}:=(-\partial)^{-m_{1,1}} \operatorname{Ad}\left(\partial^{-\mu}\right) \tilde{Q}=\sum_{\ell=0}^{N} x^{\ell-N+m_{1,1}} \prod_{0 \leq \nu<N-\ell-m_{1,1}}(-\vartheta+\nu) \\
& \cdot s_{\ell}(-\vartheta-1) \prod_{0 \leq \nu<\ell-m_{0,1}}\left(-\vartheta+\lambda_{0,1}-2-\nu\right) \prod_{\substack{2 \leq \nu \leq n_{0} \\
0 \leq i<m_{0}, \nu-\ell}}\left(-\vartheta+\lambda_{0, \nu}-1+i\right)
\end{aligned}
$$

and

$$
\begin{gathered}
x^{m_{0,1}+m_{1,1}-N} \operatorname{Ad}\left(x^{\lambda_{0,1}-2}\right) T_{\frac{1}{x}}^{*} \tilde{Q}^{\prime}=\sum_{\ell=0}^{N} x^{m_{0,1}-\ell} \prod_{0 \leq \nu<\ell-m_{0,1}}(\vartheta-\nu) \cdot s_{\ell}\left(\vartheta-\lambda_{0,1}+1\right) \\
\cdot \prod_{0 \leq \nu<N-m_{1,1}-\ell}\left(\vartheta-\lambda_{0,1}+2+\nu\right) \prod_{\substack{2 \leq \nu \leq n_{0} \\
0 \leq i<m_{0, \nu}-\ell}}\left(\vartheta+\lambda_{0, \nu}-\lambda_{0,1}+1+i\right)
\end{gathered}
$$

which equals $\partial^{-m_{0,1}} \operatorname{Ad}\left(\partial^{-\mu}\right) Q$ because $\prod_{0 \leq \nu<k}(\vartheta-\nu)=x^{k} \partial^{k}$ for $k \in \mathbb{Z}_{\geq 0}$.
iv) (Cf. Remark 7.4 ii) for another proof.) Since

$$
\begin{aligned}
\operatorname{idx} \mathbf{m}-\operatorname{idx} \mathbf{m}^{\prime} & =\sum_{j=0}^{p} m_{j, 1}^{2}-(p-1) n^{2}-\sum_{j=0}^{p}\left(m_{j, 1}-d\right)^{2}+(p-1)(n-d)^{2} \\
& =2 d \sum_{j=0}^{p} m_{j, 1}-(p+1) d^{2}-2(p-1) n d+(p-1) d^{2} \\
& =d\left(2 \sum_{j=0}^{p} m_{j, 1}-2 d-2(p-1) n\right)=0
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{j=0}^{p} \sum_{\nu=1}^{n_{j}} m_{j, \nu} \lambda_{j, \nu} & -\sum_{j=0}^{p} \sum_{\nu=1}^{n_{j}} m_{j, \nu}^{\prime} \lambda_{j, \nu}^{\prime} \\
& =m_{0,1}(\mu+1)-\left(m_{0,1}-d\right)(1-\mu)+\mu\left(n-m_{0,1}-\sum_{j=1}^{p}\left(n-m_{j, 1}\right)\right) \\
& =\left(\sum_{j=0}^{p} m_{j, 1}-d-(p-1) n\right) \mu-m_{0,1} d-\left(m_{0,1}-d\right)=d
\end{aligned}
$$

we have the claim.
The claim iii) follows from the following lemma when P is irreducible.
Suppose $\lambda_{j, \nu}$ are generic in the sense of the claim iii). Put $\mathbf{m}=\operatorname{gcd}(\mathbf{m}) \overline{\mathbf{m}}$. Then an irreducible subspace of the solutions of $P u=0$ has the spectral type $\ell^{\prime} \overline{\mathbf{m}}$ with $1 \leq \ell^{\prime} \leq \operatorname{gcd}(\mathbf{m})$ and the same argument as in the proof of the following lemma shows iii).

The following lemma is known which follows from Scott's lemma (cf. §9.2).
Lemma 5.3. Let P be a Fuchsian differential operator with the Riemann scheme (4.15). Suppose P is irreducible. Then

$$
\begin{equation*}
\operatorname{idx} \mathbf{m} \leq 2 \tag{5.19}
\end{equation*}
$$

Fix $\ell=\left(\ell_{0}, \ldots, \ell_{p}\right) \in \mathbb{Z}_{>0}^{p+1}$ and suppose ord $P>1$. Then

$$
\begin{equation*}
m_{0, \ell_{0}}+m_{1, \ell_{1}}+\cdots+m_{p, \ell_{p}}-(p-1) \text { ord } \mathbf{m} \leq m_{k, \ell_{k}} \text { for } k=0, \ldots, p \tag{5.20}
\end{equation*}
$$

Moreover the condition

$$
\begin{equation*}
\lambda_{0, \ell_{0}}+\lambda_{1, \ell_{1}}+\cdots+\lambda_{p, \ell_{p}} \in \mathbb{Z} \tag{5.21}
\end{equation*}
$$

implies

$$
\begin{equation*}
m_{0, \ell_{0}}+m_{1, \ell_{1}}+\cdots+m_{p, \ell_{p}} \leq(p-1) \text { ord } \mathbf{m} . \tag{5.22}
\end{equation*}
$$

Proof. Let M_{j} be the monodromy generators of the solutions of $P u=0$ at c_{j}, respectively. Then $\operatorname{dim} Z\left(M_{j}\right) \geq \sum_{\nu=1}^{n_{j}} m_{j, \nu}^{2}$ and therefore $\sum_{j=0}^{p} \operatorname{codim} Z\left(M_{j}\right) \leq$ $(p+1) n^{2}-\left(\operatorname{idx} \mathbf{m}+(p-1) n^{2}\right)=2 n^{2}-\operatorname{idx} \mathbf{m}$. Hence Corollary 9.12 (cf. (9.47)) proves (5.19).

We may assume $\ell_{j}=1$ for $j=0, \ldots, p$ and $k=0$ to prove the lemma. By the map $u(x) \mapsto \prod_{j=1}^{p}\left(x-c_{j}\right)^{-\lambda_{j, 1}} u(x)$ we may moreover assume $\lambda_{j, \ell_{j}}=0$ for $j=1, \ldots, p$. Suppose $\lambda_{0,1} \in \mathbb{Z}$. We may assume $M_{p} \cdots M_{1} M_{0}=I_{n}$. Since $\operatorname{dim} \operatorname{ker} M_{j} \geq m_{j, 1}$, Scott's lemma (Lemma 9.11) assures (5.22).

The condition (5.20) is reduced to (5.22) by putting $m_{0, \ell_{0}}=0$ and $\lambda_{0, \ell_{0}}=$ $-\lambda_{1, \ell_{1}}-\cdots-\lambda_{p, \ell_{p}}$ because we may assume $k=0$ and $\ell_{0}=n_{0}+1$.

Remark 5.4. i) Retain the notation in Theorem 5.2. The operation in Theorem 5.2 i) corresponds to the addition and the operation in Theorem 5.2 ii) corresponds to Katz's middle convolution (cf. $[\mathbf{K z}]$), which are studied by $[\mathbf{D R}]$ for the systems of Schlesinger canonical form.

The operation $c(P):=\operatorname{Ad}\left(\partial^{-\mu}\right) \partial^{(p-1) n} P$ is always well-defined for the Fuchsian differential operator of the normal form which has $p+1$ singular points including ∞. This corresponds to the convolution defined by Katz. Note that the equation $S v=0$ is a quotient of the equation $c(P) \tilde{u}=0$.
ii) Retain the notation in the previous theorem. Suppose the equation $P u=0$ is irreducible and $\lambda_{j, \nu}$ are generic complex numbers satisfying the assumption in Theorem 5.2. Let $u(x)$ be a local solution of the equation $P u=0$ corresponding to the characteristic exponent $\lambda_{i, \nu}$ at $x=c_{i}$. Assume $0 \leq i \leq p$ and $1<\nu \leq n_{i}$. Then the irreducible equations $\left(\operatorname{Ad}\left(\left(x-c_{j}\right)^{r}\right) P\right) u_{1}=0$ and $\left(\operatorname{RAd}\left(\partial^{-\mu}\right) \circ \mathrm{R} P\right) u_{2}=0$ are characterized by the equations satisfied by $u_{1}(x)=\left(x-c_{j}\right)^{r} u(x)$ and $u_{2}(x)=$ $I_{c_{i}}^{\mu}(u(x))$, respectively.

Moreover for any integers $k_{0}, k_{1}, \ldots, k_{p}$ the irreducible equation $Q u_{3}=0$ satisfied by $u_{3}(x)=I_{c_{i}}^{\mu+k_{0}}\left(\prod_{j=1}^{p}\left(x-c_{j}\right)^{k_{j}} u(x)\right)$ is isomorphic to the equation $\left(\operatorname{RAd}\left(\partial^{-\mu}\right) \circ \mathrm{R} P\right) u_{2}=0$ as $W(x)$-modules (cf. $\S 1.4$ and $\left.\S 3.2\right)$.

Example 5.5 (Okubo type). Suppose $\bar{P}_{\mathbf{m}}(\lambda) \in W[x]$ is of the form (11.35). Moreover suppose $\bar{P}_{\mathbf{m}}(\lambda)$ has the the Riemann scheme (11.34) satisfying (11.33) and $\lambda_{j, \nu} \notin \mathbb{Z}$. Then for any $\mu \in \mathbb{C}$, the Riemann scheme of $\operatorname{Ad}\left(\partial^{-\mu}\right) \bar{P}_{\mathbf{m}}(\lambda)$ equals

$$
\left\{\begin{array}{cccc}
x=c_{0}=\infty & c_{1} & \cdots & c_{p} \tag{5.23}\\
{\left[\lambda_{0,1}-\mu\right]_{\left(m_{0,1}\right)}} & {[0]_{\left(m_{1,1}\right)}} & \cdots & {[0]_{\left(m_{p, 1}\right)}} \\
{\left[\lambda_{0,2}-\mu\right]_{\left(m_{0,2}\right)}} & {\left[\lambda_{1,2}+\mu\right]_{\left(m_{1,2}\right)}} & \cdots & {\left[\lambda_{p, 2}+\mu\right]_{\left(m_{p, 2}\right)}} \\
\vdots & \vdots & \vdots & \vdots \\
{\left[\lambda_{0, n_{0}}-\mu\right]_{\left(m_{0, n_{0}}\right)}} & {\left[\lambda_{1, n_{1}}+\mu\right]_{\left(m_{\left.1, n_{1}\right)}\right)}} & \cdots & {\left[\lambda_{p, n_{p}}+\mu\right]_{\left(m_{\left.p, n_{p}\right)}\right)}}
\end{array}\right\}
$$

In particular we have $\operatorname{Ad}\left(\partial^{1-\lambda_{0,1}}\right) \bar{P}_{\mathbf{m}}(\lambda) \in \partial^{m_{0,1}} W[x]$.
Example 5.6 (exceptional parameters). The Fuchsian differential equation with the Riemann scheme

$$
\left\{\begin{array}{cccc}
x=\infty & 0 & 1 & c \\
{[\delta]_{(2)}} & {[0]_{(2)}} & {[0]_{(2)}} & {[0]_{(2)}} \\
2-\alpha-\beta-\gamma-2 \delta & \alpha & \beta & \gamma
\end{array}\right\}
$$

is a Jordan-Pochhammer equation (cf. Example 1.8 ii)) if $\delta \neq 0$, which is proved by the reduction using the operation $\operatorname{RAd}\left(\partial^{1-\delta}\right) \mathrm{R}$ given in Theorem 5.2 ii).

The Riemann scheme of the operator

$$
\begin{aligned}
P_{r}= & x(x-1)(x-c) \partial^{3} \\
& -\left((\alpha+\beta+\gamma-6) x^{2}-((\alpha+\beta-4) c+\alpha+\gamma-4) x+(\alpha-2) c\right) \partial^{2} \\
& -(2(\alpha+\beta+\gamma-3) x-(\alpha+\beta-2) c-(\alpha+\gamma-2)-r) \partial
\end{aligned}
$$

equals

$$
\left\{\begin{array}{cccc}
x=\infty & 0 & 1 & c \\
{[0]_{(2)}} & {[0]_{(2)}} & {[0]_{(2)}} & {[0]_{(2)}} \\
2-\alpha-\beta-\gamma & \alpha & \beta & \gamma
\end{array}\right\}
$$

which corresponds to a Jordan-Pochhammer operator when $r=0$. If the parameters are generic, $\operatorname{RAd}(\partial) P_{r}$ is Heun's operator (6.19) with the Riemann scheme

$$
\left\{\begin{array}{cccc}
x=\infty & 0 & 1 & c \\
2 & 0 & 0 & 0 \\
3-\alpha-\beta-\gamma & \alpha-1 & \beta-1 & \gamma-1
\end{array}\right\}
$$

which contains the accessory parameter r. This transformation doesn't satisfy (5.6) for $\nu=1$.

The operator $\operatorname{RAd}\left(\partial^{1-\alpha-\beta-\gamma}\right) P_{r}$ has the Riemann scheme

$$
\left\{\begin{array}{cccc}
x=\infty & 0 & 1 & c \\
\alpha+\beta+\gamma-1 & 0 & 0 & 0 \\
\alpha+\beta+\gamma & 1-\beta-\gamma & 1-\gamma-\alpha & 1-\alpha-\beta
\end{array}\right\}
$$

and the monodromy generator at ∞ is semisimple if and only if $r=0$. This transformation doesn't satisfy (5.6) for $\nu=2$.

Definition 5.7. Let

$$
P=a_{n}(x) \partial^{n}+a_{n-1}(x) \partial^{n-1}+\cdots+a_{0}(x)
$$

be a Fuchsian differential operator with the Riemann scheme (4.15). Here some $m_{j, \nu}$ may be 0 . Fix $\ell=\left(\ell_{0}, \ldots, \ell_{p}\right) \in \mathbb{Z}_{>0}^{p+1}$ with $1 \leq \ell_{j} \leq n_{j}$. Suppose

$$
\begin{equation*}
\#\left\{j ; m_{j, \ell_{j}} \neq n \text { and } 0 \leq j \leq p\right\} \geq 2 \tag{5.24}
\end{equation*}
$$

Put

$$
\begin{equation*}
d_{\ell}(\mathbf{m}):=m_{0, \ell_{0}}+\cdots+m_{p, \ell_{p}}-(p-1) \text { ord } \mathbf{m} \tag{5.25}
\end{equation*}
$$

and

$$
\begin{align*}
\partial_{\ell} P:= & \operatorname{Ad}\left(\prod_{j=1}^{p}\left(x-c_{j}\right)^{\lambda_{j}, \ell_{j}}\right) \prod_{j=1}^{p}\left(x-c_{j}\right)^{m_{j, \ell_{j}}-d_{\ell}(\mathbf{m})} \partial^{-m_{0, \ell_{0}}} \operatorname{Ad}\left(\partial^{1-\lambda_{0, \ell_{0}}-\cdots-\lambda_{p, \ell_{p}}}\right) \tag{5.26}\\
& \cdot \partial^{(p-1) n-m_{1, \ell_{1}}-\cdots-m_{p, \ell_{p}}} a_{n}^{-1}(x) \prod_{j=1}^{p}\left(x-c_{j}\right)^{n-m_{j, \ell_{j}}} \operatorname{Ad}\left(\prod_{j=1}^{p}\left(x-c_{j}\right)^{-\lambda_{j, \ell_{j}}}\right) P .
\end{align*}
$$

If $\lambda_{j, \nu}$ are generic under the Fuchs relation or P is irreducible, $\partial_{\ell} P$ is well-defined as an element of $W[x]$ and

$$
\begin{align*}
& \partial_{\ell}^{2} P= P \text { with } P \text { of the form (4.43) } \tag{5.27}\\
& \partial_{\ell} P \in W(x) \operatorname{RAd}\left(\prod_{j=1}^{p}\left(x-c_{j}\right)^{\lambda_{j, \ell_{j}}}\right) \operatorname{RAd}\left(\partial^{1-\lambda_{0, \ell_{0}}-\cdots-\lambda_{p, \ell_{p}}}\right) \tag{5.28}\\
& \cdot \operatorname{RAd}\left(\prod_{j=1}^{p}\left(x-c_{j}\right)^{-\lambda_{j, \ell_{j}}}\right) P
\end{align*}
$$

and ∂_{ℓ} gives a correspondence between differential operators of normal form (4.43). Here the spectral type $\partial_{\ell} \mathbf{m}$ of $\partial_{\ell} P$ is given by

$$
\begin{equation*}
\partial_{\ell} \mathbf{m}:=\left(m_{j, \nu}^{\prime}\right)_{\substack{0 \leq j \leq p \\ 1 \leq \nu \leq n_{j}}} \quad \text { and } \quad m_{j, \nu}^{\prime}=m_{j, \nu}-\delta_{\ell_{j}, \nu} \cdot d_{\ell}(\mathbf{m}) \tag{5.29}
\end{equation*}
$$

and the Riemann scheme of $\partial_{\ell} P$ equals

$$
\partial_{\ell}\left\{\lambda_{\mathbf{m}}\right\}:=\left\{\lambda_{\mathbf{m}^{\prime}}^{\prime}\right\} \quad \text { with } \lambda_{j, \nu}^{\prime}= \begin{cases}\lambda_{0, \nu}-2 \mu_{\ell} & \left(j=0, \nu=\ell_{0}\right) \tag{5.30}\\ \lambda_{0, \nu}-\mu_{\ell} & \left(j=0, \nu \neq \ell_{0}\right) \\ \lambda_{j, \nu} & \left(1 \leq j \leq p, \nu=\ell_{j}\right) \\ \lambda_{0, \nu}+\mu_{\ell} & \left(1 \leq j \leq p, \nu \neq \ell_{j}\right)\end{cases}
$$

by putting

$$
\begin{equation*}
\mu_{\ell}:=\sum_{j=0}^{p} \lambda_{j, \ell_{j}}-1 . \tag{5.31}
\end{equation*}
$$

It follows from Theorem 5.2 that the above assumption is satisfied if

$$
\begin{equation*}
m_{j, \ell_{j}} \geq d_{\ell}(\mathbf{m}) \quad(j=0, \ldots, p) \tag{5.32}
\end{equation*}
$$

and

$$
\begin{align*}
& \sum_{j=0}^{p} \lambda_{j, \ell_{j}+\left(\nu-\ell_{j}\right) \delta_{j, k}} \notin\left\{i \in \mathbb{Z} ;(p-1) n-\sum_{j=0}^{p} m_{j, \ell_{j}+\left(\nu-\ell_{j}\right) \delta_{j, k}}+2 \leq i \leq 0\right\} \tag{5.33}\\
& \quad \text { for } k=0, \ldots, p \text { and } \nu=1, \ldots, n_{k}
\end{align*}
$$

Note that $\partial_{\ell} \mathbf{m} \in \mathcal{P}_{p+1}$ is well-defined for a given $\mathbf{m} \in \mathcal{P}_{p+1}$ if (5.32) is valid. Moreover we define

$$
\begin{align*}
\partial \mathbf{m} & :=\partial_{(1,1, \ldots)} \mathbf{m}, \tag{5.34}\\
\partial_{\max } \mathbf{m} & :=\partial_{\ell_{\max }(\mathbf{m})} \mathbf{m} \text { with } \\
\ell_{\max }(\mathbf{m})_{j} & :=\min \left\{\nu ; m_{j, \nu}=\max \left\{m_{j, 1}, m_{j, 2}, \ldots\right\}\right\}, \tag{5.35}\\
d_{\max }(\mathbf{m}) & :=\sum_{j=0}^{p} \max \left\{m_{j, 1}, m_{j, 2}, \ldots, m_{j, n_{j}}\right\}-(p-1) \text { ord } \mathbf{m} . \tag{5.36}
\end{align*}
$$

For a Fuchsian differential operator P with the Riemann scheme (4.15) we define

$$
\begin{equation*}
\partial_{\max } P:=\partial_{\ell_{\max }(\mathbf{m})} P \text { and } \partial_{\max }\left\{\lambda_{\mathbf{m}}\right\}=\partial_{\ell_{\max }(\mathbf{m})}\left\{\lambda_{\mathbf{m}}\right\} \tag{5.37}
\end{equation*}
$$

A tuple $\mathbf{m} \in \mathcal{P}$ is called basic if \mathbf{m} is indivisible and $d_{\max }(\mathbf{m}) \leq 0$.
Proposition 5.8 (linear fractional transformation). Let ϕ be a linear fractional transformation of $\mathbb{P}^{1}(\mathbb{C})$, namely there exists $\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in G L(2, \mathbb{C})$ such that $\phi(x)=$ $\frac{\alpha x+\beta}{\gamma x+\delta}$. Let P be a Fuchsian differential operator with the Riemann scheme (4.15). We may assume $-\frac{\delta}{\gamma}=c_{j}$ with a suitable j by putting $c_{p+1}=-\frac{\delta}{\gamma}, \lambda_{p+1,1}=0$ and
$m_{p+1,1}=n$ if necessary. Fix $\ell=\left(\ell_{0}, \cdots \ell_{p}\right) \in \mathbb{Z}_{>0}^{p+1}$. If (5.32) and (5.33) are valid, we have

$$
\begin{align*}
\partial_{\ell} P & \in W(x) \operatorname{Ad}\left((\gamma x+\delta)^{2 \mu}\right) T_{\phi^{-1}}^{*} \partial_{\ell} T_{\phi}^{*} P, \\
\mu & =\lambda_{0, \ell_{0}}+\cdots+\lambda_{p, \ell_{p}}-1 . \tag{5.38}
\end{align*}
$$

Proof. The claim is clear if $\gamma=0$. Hence we may assume $\phi(x)=\frac{1}{x}$ and the claim follows from (5.11).

Remark 5.9. i) Fix $\lambda_{j, \nu} \in \mathbb{C}$. If P has the Riemann scheme $\left\{\lambda_{\mathbf{m}}\right\}$ with $d_{\max }(\mathbf{m})=1, \partial_{\ell} P$ is well-defined and $\partial_{\max } P$ has the Riemann scheme $\partial_{\max }\left\{\lambda_{\mathbf{m}}\right\}$. This follows from the fact that the conditions (5.5), (5.6) and (5.7) are valid when we apply Theorem 5.2 to the operation $\partial_{\max }: P \mapsto \partial_{\max } P$.
ii) We remark that

$$
\begin{align*}
\operatorname{idx} \mathbf{m} & =\operatorname{idx} \partial_{\ell} \mathbf{m} \tag{5.39}\\
\operatorname{ord} \partial_{\max } \mathbf{m} & =\operatorname{ord} \mathbf{m}-d_{\max }(\mathbf{m}) . \tag{5.40}
\end{align*}
$$

Moreover if idx $\mathbf{m}>0$, we have

$$
\begin{equation*}
d_{\max }(\mathbf{m})>0 \tag{5.41}
\end{equation*}
$$

because of the identity

$$
\begin{equation*}
\left(\sum_{j=0}^{p} m_{j, \ell_{j}}-(p-1) \operatorname{ord} \mathbf{m}\right) \cdot \operatorname{ord} \mathbf{m}=\operatorname{idx} \mathbf{m}+\sum_{j=0}^{p} \sum_{\nu=1}^{n_{j}}\left(m_{j, \ell_{j}}-m_{j, \nu}\right) \cdot m_{j, \nu} \tag{5.42}
\end{equation*}
$$

If idx $\mathbf{m}=0$, then $d_{\max }(\mathbf{m}) \geq 0$ and the condition $d_{\max }(\mathbf{m})=0$ implies $m_{j, \nu}=m_{j, 1}$ for $\nu=2, \ldots, n_{j}$ and $j=0,1, \ldots, p$ (cf. Corollary 6.3).
iii) The set of indices $\ell_{\max }(\mathbf{m})$ is defined in (5.35) so that it is uniquely determined. It is sufficient to impose only the condition

$$
\begin{equation*}
m_{j, \ell_{\max }(\mathbf{m})_{j}}=\max \left\{m_{j, 1}, m_{j, 2}, \ldots\right\} \quad(j=0, \ldots, p) \tag{5.43}
\end{equation*}
$$

on $\ell_{\max }(\mathbf{m})$ for the arguments in this paper.
Thus we have the following result.
Theorem 5.10. A tuple $\mathbf{m} \in \mathcal{P}$ is realizable if and only if $\mathbf{s m}$ is trivial (cf. Definitions 4.10 and 4.11) or $\partial_{\max } \mathbf{m}$ is well-defined and realizable.

Proof. We may assume $\mathbf{m} \in \mathcal{P}_{p+1}^{(n)}$ is monotone.
Suppose $\#\left\{j ; m_{j, 1}<n\right\}<2$. Then $\partial_{\max } \mathbf{m}$ is not well-defined. We may assume $p=0$ and the corresponding equation $P u=0$ has no singularities in \mathbb{C} by applying a suitable addition to the equation and then $P \in W(x) \partial^{n}$. Hence \mathbf{m} is realizable if and only if $\#\left\{j ; m_{j, 1}<n\right\}=0$, namely, \mathbf{m} is trivial.

Suppose $\#\left\{j ; m_{j, 1}<n\right\} \geq 2$. Then Theorem 5.2 assures that $\partial_{\max } \mathbf{m}$ is realizable if and only if $\partial_{\max } \mathbf{m}$ is realizable.

In the next chapter we will prove that \mathbf{m} is realizable if $d_{\max }(\mathbf{m}) \leq 0$. Thus we will have a criterion whether a given $\mathbf{m} \in \mathcal{P}$ is realizable or not by successive applications of $\partial_{\max }$.

Example 5.11. There are examples of successive applications of $s \circ \partial$ to monotone elements of \mathcal{P} :
$\underline{4} 11, \underline{4} 11, \underline{4} 2, \underline{3} 3 \xrightarrow{15-2 \cdot 6=3} \underline{1} 11, \underline{1} 11, \underline{2} 1 \xrightarrow{4-3=1} \underline{11}, \underline{1} 1, \underline{1} 1 \xrightarrow{3-2=1} 1,1,1$ (rigid)
$\underline{2} 11, \underline{2} 11, \underline{1} 111 \xrightarrow{5-4=1} 111, \underline{1} 11, \underline{1} 11 \xrightarrow{3-3=0} 111,111,111$ (realizable, not rigid)
$\underline{2} 11, \underline{2} 11, \underline{2} 11, \underline{3} 1 \xrightarrow{9-8=1} \underline{1} 11, \underline{1} 11, \underline{1} 11, \underline{2} 1 \xrightarrow{5-6=-1}$ (realizable, not rigid)
$\underline{2} 2, \underline{2} 2, \underline{1} 111 \xrightarrow{5-4=1} 21, \underline{2} 1, \underline{1} 11 \xrightarrow{5-3=2} \times($ not realizable $)$
The numbers on the above arrows are $d_{(1,1, \ldots)}(\mathbf{m})$. We sometimes delete the trivial partition as above.

The transformation of the generalized Riemann scheme of the application of $\partial_{\text {max }}^{k}$ is described in the following definition.

Definition 5.12 (Reduction of Riemann schemes). Let $\mathbf{m}=\left(m_{j, \nu}\right)_{\substack{j=0, \ldots, p_{j} \\ \nu=1, \ldots, n_{j}}} \in$ \mathcal{P}_{p+1} and $\lambda_{j, \nu} \in \mathbb{C}$ for $j=0, \ldots, p$ and $\nu=1, \ldots, n_{j}$. Suppose \mathbf{m} is realizable. Then there exists a positive integer K such that

$$
\begin{gather*}
\operatorname{ord} \mathbf{m}>\operatorname{ord} \partial_{\max } \mathbf{m}>\text { ord } \partial_{\max }^{2} \mathbf{m}>\cdots>\text { ord } \partial_{\max }^{K} \mathbf{m} \\
\text { and } s \partial_{\max }^{K} \mathbf{m} \text { is trivial or } d_{\max }\left(\partial_{\max }^{K} \mathbf{m}\right) \leq 0 . \tag{5.44}
\end{gather*}
$$

Define $\mathbf{m}(k) \in \mathcal{P}_{p+1}, \ell(k) \in \mathbb{Z}, \mu(k) \in \mathbb{C}$ and $\lambda(k)_{j, \nu \in \mathbb{C}}$ for $k=0, \ldots, K$ by

Namely, we have

$$
\begin{align*}
\lambda(0)_{j, \nu} & =\lambda_{j, \nu} \quad\left(j=0, \ldots, p, \nu=1, \ldots, n_{j}\right), \tag{5.48}\\
\mu(k) & =\sum_{j=0}^{p} \lambda(k)_{j, \ell(k)_{j}}-1, \tag{5.49}\\
\lambda(k+1)_{j, \nu} & = \begin{cases}\lambda(k)_{0, \nu}-2 \mu(k) & \left(j=0, \nu=\ell(k)_{0}\right), \\
\lambda(k)_{0, \nu}-\mu(k) & \left(j=0,1 \leq \nu \leq n_{0}, \nu \neq \ell(k)_{0}\right), \\
\lambda(k)_{j, \nu} & \left(1 \leq j \leq p, \nu=\ell(k)_{j}\right), \\
\lambda(k)_{j, \nu}+\mu(k) & \left(1 \leq j \leq p, 1 \leq \nu \leq n_{j}, \nu \neq \ell(k)_{j}\right) \\
& =\lambda(k)_{j, \nu}+\left((-1)^{\delta_{j, 0}}-\delta_{\nu, \ell(k)_{j}}\right) \mu(k),\end{cases} \tag{5.50}
\end{align*}
$$

$$
\begin{equation*}
\left\{\lambda_{\mathbf{m}}\right\} \xrightarrow{\partial_{\ell(0)}} \cdots \longrightarrow\left\{\lambda(k)_{\mathbf{m}(k)}\right\} \xrightarrow{\partial_{\ell(k)}}\left\{\lambda(k+1)_{\mathbf{m}(k+1)}\right\} \xrightarrow{\partial_{\ell(k+1)}} \cdots \tag{5.51}
\end{equation*}
$$

$$
\begin{align*}
& \mathbf{m}(0)=\mathbf{m} \text { and } \mathbf{m}(k)=\partial_{\max } \mathbf{m}(k-1) \quad(k=1, \ldots, K), \tag{5.45}\\
& \ell(k)=\ell_{\max }(\mathbf{m}(k)) \text { and } d(k)=d_{\max }(\mathbf{m}(k)), \\
& \text { (5.47) }\left\{\lambda(k)_{\mathbf{m}(k)}\right\}=\partial_{\max }^{k}\left\{\lambda_{\mathbf{m}}\right\} \quad \text { and } \mu(k)=\lambda(k+1)_{1, \nu}-\lambda(k)_{1, \nu} \quad\left(\nu \neq \ell(k)_{1}\right) \text {. }
\end{align*}
$$

