CHAPTER 5

Reduction of Fuchsian differential equations

Additions and middle convolutions introduced in Chapter 1 are transformations
within Fuchsian differential operators and in this chapter we examine how their
Riemann schemes change under the transformations.

PROPOSITION 5.1. i) Let Pu = 0 be a Fuchsian differential equation. Suppose
there exists ¢ € C such that P € (0 — ¢)W{z|. Then ¢ =0.

ii) For ¢(z) € C(z), A€ C, p € C and P € Wix], we have
(5.1) P € C[z] RAdei(—¢(x)) o RAdei(¢(z)) P,
(5.2) P e C[0] RAd(a_“) o RAd((‘?“)P.
In particular, if the equation Pu = 0 is irreducible and ord P > 1, RAd(a_“) o
RAd(9")P = cP with c € C*.

PROOF. i) Put P = (0—¢)Q. Then there is a function u(x) satisfying Qu(z) =
e“”. Since Pu = 0 has at most a regular singularity at x = oo, there exist C > 0
and N > 0 such that |u(z)| < Clz|Y for |z| > 1 and 0 < argx < 27, which implies
c=0.

ii) This follows from the fact

Adei(—¢(x)) o Adei(p(z)) = id,
Adei (6(2) ()P = (z) Adei(6(@)) P (£(z) € C(a))
and the definition of RAdei(¢(x)) and RAd(9"). O

The addition and the middle convolution transform the Riemann scheme of the
Fuchsian differential equation as follows.

THEOREM 5.2. Let Pu = 0 be a Fuchsian differential equation with the Rie-
mann scheme (4.15). We assume that P has the normal form (4.43).
i) (addition) The operator Ad((x — ¢;)7) P has the Riemann scheme

x:cozoo Cl e Cj oo Cp
P‘O,l - T](mo,l) [)\171]('”’7«1,1) T [)‘Jﬂl + T](m]‘,l) T [)‘1071](771@1)
Moo = Tlmomg)  Anloniny) o iy + 7m0 Poimplimpn,)

ii) (middle convolution) Fiz u € C. By allowing the condition m;; = 0, we
may assume

(5.3) w=Xx,—1 and N1 =0forj=1,...,p
and #{j; m;1 <n} > 2 and P is of the normal form (4.43). Putting

(5.4) d:= Zmﬂ —(p—1)n,
3=0
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44 5. REDUCTION OF FUCHSIAN DIFFERENTIAL EQUATIONS

we suppose
(5.5) mj1>d for j=0,...,p,

(5 6) >\O,V ¢ {07—1, —2,. . .,moy]_ — mo,,, — d—|— 2}
’ if moy,+--+mp1—(p—1n>2, myq---mp1#0 and v>1,
)\071 + )‘jW ¢ {0, —-1,-2,... y M1 — My — d+ 2}
(57) Zf m071 + -4 mj_l’l +mj7,, -+ mj+111 + 4 mp71 — (p — ].)TL Z 2,
mij1#0, 1<j<p and v>2.

Then S := 0~1Ad(0~H) ?:1(33 —¢j) " P € Wlz] and the Riemann scheme of
S equals

r=C—= C1 Cp
[1 - M](moﬂlfd) [O](m1717d) T [0](mp,17d)
(5.8) Moz = tmesy Pzt pemiy o o2t afom,.,
[)\07'”0 - 'LL](mO,nD) [>\17"1 + u}(ml,nl) T [Apﬂlp + H’](mp,np)

More precisely, the condition (5.5) and the condition (5.6) for v = 1 assure S €
Wz]. In this case the condition (5.6) (resp. (5.7) for a fixed j) assures that the sets
of characteristic exponents of P at x = oo (resp. ¢;) are equal to the sets given in
(5.8), respectively.

Here we have RAA(0~*)RP =S, if

(5.9) {)\m +mj1 are not characteristic exponents of P

atx =c;j for j=0,...,p, respectively,
and moreover
(5.10) mo1=d or Mg ¢{-d,—d—1,...,1—mg1}.
Using the notation in Definition 1.3, we have

S =Ad((x — 1) 7?)(z — )T (—=0)""Ad(d)TE,

xT—cy

5.11 P
(510 : (J;—cl)dH(x—cj)_mjvl Ad((z —c1)™1)P

j=1

under the conditions (5.5) and

(512) )\071,¢{0,71,72,...,7’)’10717m0’y*d+2}
' if moy+mia+-+mpr—P—1n>2, my1#0 and v>1

ili) Suppose ord P > 1 and P is irreducible in ii). Then the conditions (5.5),
(5.6), (5.7) are valid. The condition (5.10) is also valid if d > 1.

All these conditions in ii) are valid if #{j; m;1 < n} > 2 and m is realizable
and moreover X\;, are generic under the Fuchs relation with A\j1 = 0 for j =
1,....p.

iv) Let m = (mj,) j=0,..p € 73151)1. Define d by (5.4). Suppose \;, are

v=1 i

.......

complex numbers satisfying (5.3). Suppose moreover mj, > d for j = 1,...,p.
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Defining m’ € Pg(;il and \; , by

(5.13) my, =mj, —0,1d (j=0,...,p, v=1,...,n5),
2= Qo (j=0, v=1),
)\',,,—)\0,14-1 (‘]'ZO,I/>1)7

(5.14) X, / ,
0 (>0, v=1),
)\],V+>\01_]- (]'>071/>].)7

we have

(5.15) idxm =idxm’, [{Am}| = [{ A\ }H-

PRrROOF. The claim i) is clear from the definition of the Riemann scheme.
ii) Suppose (5.5), (5.6) and (5.7). Then

(5.16) P = (ﬁ(x - cj)-mm)p € Wlal.
j=1

Note that R P = P’ under the condition (5.9). Put Q := 9~ )"~ Xi=1"i1 P’ Here
we note that (5.5) assures (p — 1)n — Z’;:l mj1 > 0.

Fix a positive integer j with j < p. For simplicity suppose j = 1 and ¢; = 0.
Since P’ = Z;L:O aj(x)d? with degaj(z) < (p—1)n+j— Z§:1 mj1, we have

N
xmlle’ = Z xNiZTZ(”lg) H (19 —+ )\O,y —+ Z)
£=0 1<v<no
O§i<mo,y—l
and
14
N = (p — 1)n — ij,l = mo’l +m1’1 — d
j=2

with suitable polynomials 7, such that rq € C*. Suppose

(5.17) [T @+X.+i)¢aWa] if N—my1+1<l<N.
1<v<ng
0<i<mo,, —¢
Since P’ € Wz], we have
I'N_eTe(ﬁ) _ $N_€1'€_N+m1’1aé—]v+ml‘lSg(ﬁ) if N — mia +1 S / S N

for suitable polynomials s,. Putting sy =7, for 0 < ¢ < N —my ;, we have

N—?’)’L1‘1
Pr= > 2N matew) T 0+ dow +1)
=0 1<v<ng
0<i<mg,, —4
(5.18) N
+ Y Vg I 0+ dew +i).
Z:melyl%*l 1<v<ng
0<i<mo,, —¥

Note that sg € C* and the condition (5.17) is equivalent to the condition g, +i # 0
for any v and ¢ such that there exists an integer £ with 0 < ¢ < mg, — ¢ —1 and
N —my1+1</¢<N. This condition is valid if (5.6) is valid, namely, ms 1 = 0 or

)\O,u ¢ {0,—1,...,77’),0,1 — Mo,y — d—|—2}
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for v satisfying mg,, > mg1 —d + 2. Under this condition we have

N
Q=> 0"s,(V) 11 @+i)- I 0+ +1),
£=0 1<i<N—my 1 —£ 1<v<ng
0<i<mo,,—£
N
Ad@™MQ = d"ssW—p) [ @—n+i)
£=0 1<i<N—my1—£
II o+ J] @-p+rw+i)
1<i<mg,1—4 2<v<ng
0<i<mg,, —4
since gt = Ao,1 — 1. Hence 9701 Ad(07")@Q equals
mo,1—1
> amor sy (9 — ) 11 @—p+i)  J[ @—n+ron+i)
£=0 1<i<N—my £ 2<v<no
0§i<m0,u—€
N
+ > 0Tms(9 - ) 11 @—p+i)  J[ @—p+ron+i)
Z:mml 1§i§N—m1,1—Z QSVSTLU
0<i<mo,, —£

and then the set of characteristic exponents of this operator at oo is

{[1 - lu](m()’l*d)7 [)\0,2 - M](mmz)? ) [)\071’7,0 - M](mgyno)}'

Moreover 9~ ™0t =1 Ad(07")Q ¢ W x] if Ao,1 +mo,1 is not a characteristic exponent
of Pat oo and —Ag1 +1+i#mg1+1forl <i< N —my; =mp1—d, which

assures 201 $o [ [y cion—m, , (0 = 1+ ) [T 2<0<n (0 = w4 A1 +14) & OW[z].
== ‘ 0<i<mo,
Similarly we have

mi 1

Pr=>om ) [ 0= —i)
£=0 2<v<ng
0<i<my,,—¢
N
+ Y g [ @),
L=mq,1+1 2<v<ni
0<i<my,, —4
mi,1
Q=> 0" a0 J[ @+r.-9
£=0 2<v<ny
O§i<m1,,,—€
N £—my,1
+ 3 V) [ 0+ [ @ Mw—i)
l=mq 1+1 i=1 2<v<ns
0<i<m . y—1
N
Ad@™MQ =Y " "qw-p J[ @-n+i)
/=0 1§i§e—le
[T @-n=x.-9)
2<v<n,
0<i<my,,—4

with go € C*. Then the set of characteristic exponents of 9™t Ad(0~#)Q equals

0]y 1 —ays (M2 + Bl mao)s -+ - [Mna + Bl ma )
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if
[T @ n—Au—i)¢ oWl

2<v<ng
0<i<my,,—4

for any integers £ satisfying 0 < ¢ < N and N —¢ < myg,;. This condition is satisfied
if (5.7) is valid, namely, mg, = 0 or

)\071 =+ )\1,u §é {0, —1,... ,M11 — M1,y — d+ 2}
for v > 2 satisfying m;, >mi 1 —d+2

because my , —¢—1 < mqy, +mo1 —N —2 =my, —my 1 +d—2 and the condition
V—p—Ay—i€0W[z]means —1=p+ A\, +i=X1— 1+, +i.
Now we will prove (5.11). Under the conditions, it follows from (5.18) that

P = gmoa~ NAd ’\01 Hac—c “milp

— xmo,1+m1,1 NAd(m)\O'l)P
N

— meo,lff Ad(x)\(),l)sg(ﬁ) H (19 — l/) H (’19 —+ AOW + Z),
=0 0<v<t—N+mq 1 1<v<no
0<i<mo,, —¢

Q:=(-0)N "o TP

N
= ()N Tmer Yy "t Tmotgy (=) = Ao 1) I =X1-v
=

0<v<l—N+my

o

H (=0 4+ Xop — Xo,1 + 1) H (=0 +1)

2<v<ng 0<i<mg,1—¢
0<i<my, v—L
N
Z =9 = Xo,1) H (=9 —1)
=0 1<i<l—mo,1
H (—19 - /\0’1 - V) H (—19 + )\07,, — )\071 + Z)
0<v<f—N+mq 1 2<v<ng
0<i<mo,, —¢
and therefore
B N
Ad(0™M)Q=> (-0 —0—1) J[ (-=9+Xoa—1-14)
£=0 1<i<l=mo 1
I o-1-v) J[ 9+ —1+i).
0<v<f—N+mq 1 2<v<ng
0<i<mo,,—t

Since

IZ—N-le,l
SN || (—ﬁ—l—u)z{ N

N—¢
0<v<l—N+my 3 (=9) T

(
(
gt Nrmaa II o+v),
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we have

N
Q = (-0) ™ Ad(@ Q=Y Nt T (-9 +v)
£=0

OSI/<N—€—m111

so(=9=1)  J] (9+xa-2-v) [] (—0+Xw—1+14)

0<v<€—mo1 2<v<ngo
0§i<m07,,—€
and
N
gt TN AQ(pAo TR =Y Tamer ™t [ (9= v) - se(@ — Ao + 1)
‘ =0 0<v<b—mo
[T @-roa+2+v) J[ @+row—doa+1+1),
0<v<N-—myi1—4 2<v<ng
0<i<mo,, —¢

which equals 971 Ad(07#)Q because [, (0 —v) = zk ok for k € Z>y.
iv) (Cf. Remark 7.4 ii) for another proof.) Since

P P
idxm — idxm’ = Zm?’l —(p—1)n*— Z(mj’l —d)?+(p—1)(n—d)?
=0 =0

—Qdijl (p+1)d* —2(p — 1)nd + (p — 1)d?

- d(2jz::0mj,1 —2d=2(p—1)n) =0

and
szw v szw/ jw
j=0v=1 j=0v=1
p
=mo1(p+1) = (mo1 —d)(1—p) + pln—mos — Y (n—mj1))
j=1

P
= (Z mj1—d—(p— l)n)u —mo1d — (mo,1 —d) =d,
j=0

we have the claim.
The claim iii) follows from the following lemma when P is irreducible.
Suppose Aj, are generic in the sense of the claim iii). Put m = ged(m)m
Then an irreducible subspace of the solutions of Pu = 0 has the spectral type £'m
with 1 < ¢ < ged(m) and the same argument as in the proof of the following
lemma shows iii). O

The following lemma is known which follows from Scott’s lemma (cf. §9.2).

LEMMA 5.3. Let P be a Fuchsian differential operator with the Riemann scheme
(4.15). Suppose P is irreducible. Then

(5.19) idxm < 2.
Fiz 0 = (Lo, ..., L) € Z’;El and suppose ord P > 1. Then
(5.20) Mo, +mie, + - Fmpy, — (p—1)ordm <my,, for k=0,...,p
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Moreover the condition

(5.21) Aoto AL+ Apg, €Z
implies
(5.22) moe, +mie, + - Fmpe, < (p—1)ordm.

Proor. Let M; be the monodromy generators of the solutions of Pu = 0 at ¢;,
respectively. Then dim Z(M;) > Y777, m?, and therefore > i_gcodim Z(M;) <
(p+1)n? — (idxm + (p — 1)n?) = 2n* — idxm. Hence Corollary 9.12 (cf. (9.47))
proves (5.19).

We may assume ¢; = 1 for j = 0,...,p and k = 0 to prove the lemma. By
the map u(x) — Hle(x — ¢;)" M u(x) we may moreover assume \jo, = 0 for
j =1,...,p. Suppose A\o1 € Z. We may assume M, --- MMy = I,. Since
dimker M; > m; 1, Scott’s lemma (Lemma 9.11) assures (5.22).

The condition (5.20) is reduced to (5.22) by putting mge, = 0 and gy, =
—A1,e; =+ — Apy, because we may assume k = 0 and bo =ng + 1. O

REMARK 5.4. i) Retain the notation in Theorem 5.2. The operation in Theo-
rem 5.2 i) corresponds to the addition and the operation in Theorem 5.2 ii) corre-
sponds to Katz’s middle convolution (cf. [Kz]), which are studied by [DR] for the
systems of Schlesinger canonical form.

The operation ¢(P) := Ad(0~#*)0®~ 1" P is always well-defined for the Fuchsian
differential operator of the normal form which has p 4+ 1 singular points including
oo. This corresponds to the convolution defined by Katz. Note that the equation
Sv =0 is a quotient of the equation ¢(P)a = 0.

ii) Retain the notation in the previous theorem. Suppose the equation Pu = 0
is irreducible and J;, are generic complex numbers satisfying the assumption in
Theorem 5.2. Let u(z) be a local solution of the equation Pu = 0 corresponding to
the characteristic exponent \; , at z = ¢;. Assume 0 <¢ <pand 1 < v <n;. Then
the irreducible equations (Ad((z — ¢;)")P)us = 0 and (RAd(0#) o RP)uz =0
are characterized by the equations satisfied by uq(z) = (x — ¢;)"u(z) and ua(z) =
I} (u(x)), respectively.

Moreover for any integers ko,ki1,...,k, the irreducible equation Qusz = 0
satisfied by ug(z) = Itk ( Z;Zl(x — ¢;)%u(z)) is isomorphic to the equation

(RAA(07*) o R P)ug = 0 as W (x)-modules (cf. §1.4 and §3.2).

ExAMPLE 5.5 (Okubo type). Suppose Pm(X) € Wz] is of the form (11.35).
Moreover suppose Ppy(A) has the the Riemann scheme (11.34) satisfying (11.33)
and \;, ¢ Z. Then for any ;1 € C, the Riemann scheme of Ad(97*)Pn(\) equals

T =Co =00 Cc1 N Cp
[)‘0,1 - M](mo,l) [O](ml,l) e [0](mp,1)
(5.23) Po2 = tlmosy Pzt iloms o Dot ton,.e
[>\07n0 - .u“](mﬂ,no) [Alvnl + ,LL] (ml,nl) e [)\pvnp =+ iu’] (mp.np)

In particular we have Ad(9'=201) Py (X) € 0™ Wa].

EXAMPLE 5.6 (exceptional parameters). The Fuchsian differential equation
with the Riemann scheme

T =00 0 1 c
[0](2) 02y [0](2) [0]2)
2—a—-fB—-v-20 « Ié] 0
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is a Jordan-Pochhammer equation (cf. Example 1.8 ii)) if § # 0, which is proved
by the reduction using the operation RAd(9'~%) R given in Theorem 5.2 ii).
The Riemann scheme of the operator

P, =x(x —1)(z — ¢)8?

—((a+B+7v—-6)2>— ((a+B—4)c+a+y—4)z+ (o —2)c)d?
—(2a+B+7y=3)z—(a+B8-2)c—(a+7y—2)—7)0

equals

T =00 0 1 c

[0](2) 0]y [0]2) [O](2) ¢ »
2—a—f-7 «a B Y

which corresponds to a Jordan-Pochhammer operator when » = 0. If the param-
eters are generic, RAd(0)P, is Heun’s operator (6.19) with the Riemann scheme

T =00 0 1 c
2 0 0 0 ;
3—a—-fB—-—v a-1 -1 ~v-1

which contains the accessory parameter r. This transformation doesn’t satisfy (5.6)
for v =1.
The operator RAd(9'~*~#~7) P, has the Riemann scheme

T = 00 0 1 c
a+B+v—1 0 0 0
a+p+y 1-f—-v l—=-y—a 1—a-p

and the monodromy generator at oo is semisimple if and only if = 0. This
transformation doesn’t satisfy (5.6) for v = 2.

DEFINITION 5.7. Let
P =a,(2)0™ + an_1(2)0" " + - + ap()

be a Fuchsian differential operator with the Riemann scheme (4.15). Here some
m;,, may be 0. Fix £ = ({y,...,£,) € ZZ5" with 1 < ¢; < n;. Suppose

(5.24) #{j; mje; #nand 0 < j < p}p > 2.
Put

(5.25) de(m) :=mge, +---+mypy, — (p—1)ordm
and

(5.26)

p p

0P = Ad(JJ (& = ¢))9) (@ = ¢) s =™ gmoto AQ(§'Porto ™" Anin)

j=1 j=1
P p \

QW =m0 () T (2 = ¢)" 0% Ad([ [ (@ = )™ P,

j=1 j=1
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If A;,, are generic under the Fuchs relation or P is irreducible, 9y P is well-defined
as an element of W{z] and

(5.27) J7P = P with P of the form (4.43),

0P eW(x RAd H T —c RAd(E)‘1 Ao, eg = *p,ep)
(5.28) ) =t
. RAd H (x—c¢j Aivt; )P

and Oy gives a Correspondence between differential operators of normal form (4.43).
Here the spectral type dym of 9, P is given by

(5.29) Oym :=(mj; ) o<j<p and m)

G =My = 00,0 - de(m)
<v<n;

and the Riemann scheme of 9, P equals

Moy =210 (j=0, v=14)
. Ao, — He (j:O V7££0)
5.30 O dm )} = (N, th N, = ’ ’
( ) @{ m} { m} W1 3,V )\j,y (1§]§p, 1/76])
Mo+ (1<j<p v#L)
by putting
p
(5.31) e = Z /\j,gj —1
j=0
It follows from Theorem 5.2 that the above assumption is satisfied if
(5.32) my e, > de(m) (j=0,...,p)
and
p
Z 3,5+ —25)85,k ¢ {Z €Z;(p—1)n— ijlfr(l’*@f)f;j,k +2<i< O}
(5.33) = =

for k=0,....,pand v=1,... ny.

Note that dym € Ppyq is well-defined for a given m € P, if (5.32) is valid.
Moreover we define
(5.34) om : =0, ym
OmazM 1= 8gma1(m)m with

5.35 .
( ) Uz (m); 1= mln{y; mj, = max{m;,m;z2,.. }},

P
(5.36) dmaz(m) := Zmax{ij, Mjoy. .., Mjn, t— (p—1)ordm.
§=0

For a Fuchsian differential operator P with the Riemann scheme (4.15) we define
(5.37) 6ma$P = 8‘€maz(m)P and 8ma${/\m} = 8Zmaa:(m){>\m}'
A tuple m € P is called basic if m is indivisible and d;;q,(m) < 0.

PROPOSITION 5.8 (linear fractional transformation). Let ¢ be a linear fractional

transformation of P1(C), namely there exists (3 g) € GL(2,C) such that ¢(z) =

az+f3
yr+96 °

We may assume —% = ¢; with a suitable j by putting cp41 = —%, Apt1,1 = 0 and

Let P be a Fuchsian differential operator with the Riemann scheme (4.15).
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Mp1,1 = n if necessary. Fiz € = (Lo, ---£,) € ZVE'. If (5.32) and (5.33) are valid,
we have

0P € W(x) Ad((yz + 0)* )T 0, T} P,

5.38
( ) H:)‘O,Zo+"'+)\p7ép_1~

PROOF. The claim is clear if v = 0. Hence we may assume ¢(x) = % and the
claim follows from (5.11). O

REMARK 5.9. i) Fix A;, € C. If P has the Riemann scheme {An} with
dmaz(m) =1, 9, P is well-defined and Oy, P has the Riemann scheme Oy00{Am}-
This follows from the fact that the conditions (5.5), (5.6) and (5.7) are valid when
we apply Theorem 5.2 to the operation Op,qz : P+ Omaz P-

ii) We remark that

(5.39) idx m = idx 9pm,

(5.40) ord Opam = ord m — dypq. (m).
Moreover if idx m > 0, we have

(5.41) dmaz(m) > 0

because of the identity

P Py
(5.42) (Z mj, — (p—1)ord m) -ordm = idxm + Z Z(mﬂj — M) M.
j=0 j=0v=1
Ifidxm = 0, then d,,4;(m) > 0 and the condition d,,q,(m) = 0 implies m; , = m;1
forv=2,...,n; and j =0,1,...,p (cf. Corollary 6.3).
iii) The set of indices £y,q,(m) is defined in (5.35) so that it is uniquely deter-
mined. It is sufficient to impose only the condition

(5'43) mjyemam(m)j = ma’X{mj»:l? mj727 M '} (] = 07 ce 7p)
on £y qz(m) for the arguments in this paper.
Thus we have the following result.

THEOREM 5.10. A tuple m € P is realizable if and only if sm is trivial (cf. Def-
initions 4.10 and 4.11) or Opma.m is well-defined and realizable.

Proor. We may assume m € P;i)l is monotone.

Suppose #{j; mj1 < n} < 2. Then Opq;m is not well-defined. We may
assume p = 0 and the corresponding equation Pu = 0 has no singularities in C by
applying a suitable addition to the equation and then P € W(z)0". Hence m is
realizable if and only if #{j; m;1 < n} = 0, namely, m is trivial.

Suppose #{j; mj1 < n} > 2. Then Theorem 5.2 assures that Opq,m is
realizable if and only if 0,,,, m is realizable. O

In the next chapter we will prove that m is realizable if d;;,q,(m) < 0. Thus
we will have a criterion whether a given m € P is realizable or not by successive
applications of Jy,qz.

EXAMPLE 5.11. There are examples of successive applications of sod to mono-
tone elements of P:
411,411,42,33 =287 111, 111,21 *=251 11,11, 11 P 2251 1,1, 1 (vigid)
211,211,111 °=5" 111,111, 111 *°=25° 111, 111, 111 (realizable, not rigid)
211,211,211,31 =231 111,111,111, 21 5" (realizable, not rigid)
22,22,1111 °=5" 21, 21,111 °=35% x (not realizable)
The numbers on the above arrows are d(y1,...) (m). We sometimes delete the trivial

partition as above.



The transformation of the generalized Riemann scheme of the application of
is described in the following definition.

8k

max

DEFINITION 5.12 (Reduction of Riemann schemes). Let m = (mj,y) j=0,..0 €

Pp+1 and A, € Cfor j =0,...,pand v = 1,...,n;.

5. REDUCTION OF FUCHSIAN DIFFERENTIAL EQUATIONS

v=1,...,n;

Then there exists a positive integer K such that

(5.44)

ordm > ord 8,4, m > ord 82

max

m> - >orddE, m

and s0X, m is trivial or da. ((‘ﬁgaxm) <0.

max

Define m(k) € Ppyq, (k) € Z, p(k) € C and A(k);pec for k=0,..., K by

(5.45)
(5.46)

(5.48)

(5.49)

(5.51)

m(0) =m and m(k) = Opeem(k —1)

(k=1,...,K),

k) = bmax (m(k)) and d(k) = dmax (m(k)),
(547) {ME)anitr} = O Am} and (k) = M+ Dy — MR} (v £ £(R)).

Namely, we have

/\(O)j,u = /\j,u (j =0,...
M(k) = Z)‘(k)j,é(k)j -1,
=0
)\(k)o,u - 2M(k)
Ak +1);, = iggo” — (k)
A(k)jw + n(k)
)i,

0 A (k
{)\m} &) > {)‘(k)m(k)} L {)‘(k + 1)m(k+1)}

’p7 V:1""7nj)7

(=0, v=1_(k)o),

(1 =0, 1 <v<ng, v#Lk)o),
(1 <j<p, v=1LFk)),
(1<j<p, 1<v<ny v#IUk);)

Or(k+1)

Suppose m is realizable.



