CHAPTER 5

Reduction of Fuchsian differential equations

Additions and middle convolutions introduced in Chapter 1 are transformations within Fuchsian differential operators and in this chapter we examine how their Riemann schemes change under the transformations.

PROPOSITION 5.1. i) Let Pu = 0 be a Fuchsian differential equation. Suppose there exists $c \in \mathbb{C}$ such that $P \in (\partial - c)W[x]$. Then c = 0. ii) For $\phi(x) \in \mathbb{C}(x)$, $\lambda \in \mathbb{C}$, $\mu \in \mathbb{C}$ and $P \in W[x]$, we have

(5.1)
$$P \in \mathbb{C}[x] \operatorname{RAdei}(-\phi(x)) \circ \operatorname{RAdei}(\phi(x)) P,$$

(5.2)
$$P \in \mathbb{C}[\partial] \operatorname{RAd}(\partial^{-\mu}) \circ \operatorname{RAd}(\partial^{\mu}) P.$$

In particular, if the equation Pu = 0 is irreducible and $\operatorname{ord} P > 1$, $\operatorname{RAd}(\partial^{-\mu}) \circ \operatorname{RAd}(\partial^{\mu})P = cP$ with $c \in \mathbb{C}^{\times}$.

PROOF. i) Put $P = (\partial - c)Q$. Then there is a function u(x) satisfying $Qu(x) = e^{cx}$. Since Pu = 0 has at most a regular singularity at $x = \infty$, there exist C > 0 and N > 0 such that $|u(x)| < C|x|^N$ for $|x| \gg 1$ and $0 \le \arg x \le 2\pi$, which implies c = 0.

ii) This follows from the fact

$$\begin{aligned} &\operatorname{Adei}(-\phi(x)) \circ \operatorname{Adei}(\phi(x)) = \operatorname{id}, \\ &\operatorname{Adei}(\phi(x))f(x)P = f(x)\operatorname{Adei}(\phi(x))P \quad (f(x) \in \mathbb{C}(x)) \end{aligned}$$

and the definition of RAdei $(\phi(x))$ and RAd (∂^{μ}) .

The addition and the middle convolution transform the Riemann scheme of the Fuchsian differential equation as follows.

THEOREM 5.2. Let Pu = 0 be a Fuchsian differential equation with the Riemann scheme (4.15). We assume that P has the normal form (4.43).

i) (addition) The operator $\operatorname{Ad}((x-c_j)^{\tau})P$ has the Riemann scheme

ii) (middle convolution) Fix $\mu \in \mathbb{C}$. By allowing the condition $m_{j,1} = 0$, we may assume

(5.3)
$$\mu = \lambda_{0,1} - 1 \text{ and } \lambda_{j,1} = 0 \text{ for } j = 1, \dots, p$$

and $\#\{j ; m_{j,1} < n\} \ge 2$ and P is of the normal form (4.43). Putting

(5.4)
$$d := \sum_{j=0}^{p} m_{j,1} - (p-1)n,$$

we suppose

Then $S := \partial^{-d} \operatorname{Ad}(\partial^{-\mu}) \prod_{j=1}^{p} (x - c_j)^{-m_{j,1}} P \in W[x]$ and the Riemann scheme of S equals

(5.8)
$$\begin{cases} x = c_0 = \infty & c_1 & \cdots & c_p \\ [1 - \mu]_{(m_{0,1} - d)} & [0]_{(m_{1,1} - d)} & \cdots & [0]_{(m_{p,1} - d)} \\ [\lambda_{0,2} - \mu]_{(m_{0,2})} & [\lambda_{1,2} + \mu]_{(m_{1,2})} & \cdots & [\lambda_{p,2} + \mu]_{(m_{p,2})} \\ \vdots & \vdots & \vdots & \vdots \\ [\lambda_{0,n_0} - \mu]_{(m_{0,n_0})} & [\lambda_{1,n_1} + \mu]_{(m_{1,n_1})} & \cdots & [\lambda_{p,n_p} + \mu]_{(m_{p,n_p})} \end{cases} \end{cases}.$$

More precisely, the condition (5.5) and the condition (5.6) for $\nu = 1$ assure $S \in W[x]$. In this case the condition (5.6) (resp. (5.7) for a fixed j) assures that the sets of characteristic exponents of P at $x = \infty$ (resp. c_j) are equal to the sets given in (5.8), respectively.

Here we have $\operatorname{RAd}(\partial^{-\mu})\operatorname{R} P = S$, if

.

(5.9)
$$\begin{cases} \lambda_{j,1} + m_{j,1} & \text{are not characteristic exponents of } P \\ at \ x = c_j \ for \ j = 0, \dots, p, \ respectively, \end{cases}$$

and moreover

(5.10)
$$m_{0,1} = d \text{ or } \lambda_{0,1} \notin \{-d, -d-1, \dots, 1-m_{0,1}\}.$$

Using the notation in Definition 1.3, we have

(5.11)

$$S = \operatorname{Ad}((x-c_1)^{\lambda_{0,1}-2})(x-c_1)^d T^*_{\frac{1}{x-c_1}}(-\partial)^{-d} \operatorname{Ad}(\partial^{-\mu}) T^*_{\frac{1}{x}+c_1}$$

$$\cdot (x-c_1)^d \prod_{j=1}^p (x-c_j)^{-m_{j,1}} \operatorname{Ad}((x-c_1)^{\lambda_{0,1}}) P$$

under the conditions (5.5) and

(5.12)
$$\begin{cases} \lambda_{0,\nu} \notin \{0, -1, -2, \dots, m_{0,1} - m_{0,\nu} - d + 2\} \\ \text{if } m_{0,\nu} + m_{1,1} + \dots + m_{p,1} - (p-1)n \ge 2, \ m_{1,1} \neq 0 \quad and \quad \nu \ge 1 \end{cases}$$

iii) Suppose ord P > 1 and P is irreducible in ii). Then the conditions (5.5), (5.6), (5.7) are valid. The condition (5.10) is also valid if $d \ge 1$.

All these conditions in ii) are valid if $\#\{j; m_{j,1} < n\} \ge 2$ and **m** is realizable and moreover $\lambda_{j,\nu}$ are generic under the Fuchs relation with $\lambda_{j,1} = 0$ for $j = 1, \ldots, p$.

iv) Let $\mathbf{m} = (m_{j,\nu})_{\substack{j=0,\ldots,p\\\nu=1,\ldots,n_j}} \in \mathcal{P}_{p+1}^{(n)}$. Define d by (5.4). Suppose $\lambda_{j,\nu}$ are complex numbers satisfying (5.3). Suppose moreover $m_{j,1} \geq d$ for $j = 1,\ldots,p$.

Defining $\mathbf{m}' \in \mathcal{P}_{p+1}^{(n)}$ and $\lambda'_{j,\nu}$ by $m'_{j,\nu} = m_{j,\nu} - \delta_{\nu,1} d$ $(j = 0, \dots, p, \nu = 1, \dots, n_j),$ (5.13) $\lambda_{j,\nu}' = \begin{cases} 2 - \lambda_{0,1} & (j = 0, \ \nu = 1), \\ \lambda_{j,\nu} - \lambda_{0,1} + 1 & (j = 0, \ \nu > 1), \\ 0 & (j > 0, \ \nu = 1), \\ \lambda_{j,\nu} + \lambda_{0,1} - 1 & (j > 0, \ \nu > 1), \end{cases}$ (5.14)

we have

(5.15)
$$\operatorname{idx} \mathbf{m} = \operatorname{idx} \mathbf{m}', \quad |\{\lambda_{\mathbf{m}}\}| = |\{\lambda'_{\mathbf{m}'}\}|.$$

PROOF. The claim i) is clear from the definition of the Riemann scheme. ii) Suppose (5.5), (5.6) and (5.7). Then

(5.16)
$$P' := \left(\prod_{j=1}^{p} (x - c_j)^{-m_{j,1}}\right) P \in W[x].$$

Note that $\mathbb{R} P = P'$ under the condition (5.9). Put $Q := \partial^{(p-1)n - \sum_{j=1}^{p} m_{j,1}} P'$. Here we note that (5.5) assures $(p-1)n - \sum_{j=1}^{p} m_{j,1} \ge 0$. Fix a positive integer j with $j \le p$. For simplicity suppose j = 1 and $c_j = 0$. Since $P' = \sum_{j=0}^{n} a_j(x) \partial^j$ with deg $a_j(x) \le (p-1)n + j - \sum_{j=1}^{p} m_{j,1}$, we have

$$x^{m_{1,1}}P' = \sum_{\ell=0}^{N} x^{N-\ell} r_{\ell}(\vartheta) \prod_{\substack{1 \le \nu \le n_0 \\ 0 \le i < m_{0,\nu} - \ell}} (\vartheta + \lambda_{0,\nu} + i)$$

and

$$N := (p-1)n - \sum_{j=2}^{p} m_{j,1} = m_{0,1} + m_{1,1} - d$$

with suitable polynomials r_{ℓ} such that $r_0 \in \mathbb{C}^{\times}$. Suppose

(5.17)
$$\prod_{\substack{1 \le \nu \le n_0 \\ 0 \le i < m_{0,\nu} - \ell}} (\vartheta + \lambda_{0,\nu} + i) \notin xW[x] \text{ if } N - m_{1,1} + 1 \le \ell \le N.$$

Since $P' \in W[x]$, we have

$$x^{N-\ell} r_{\ell}(\vartheta) = x^{N-\ell} x^{\ell-N+m_{1,1}} \partial^{\ell-N+m_{1,1}} s_{\ell}(\vartheta) \text{ if } N-m_{1,1}+1 \le \ell \le N$$

for suitable polynomials s_{ℓ} . Putting $s_{\ell} = r_{\ell}$ for $0 \leq \ell \leq N - m_{1,1}$, we have

(5.18)
$$P' = \sum_{\ell=0}^{N-m_{1,1}} x^{N-m_{1,1}-\ell} s_{\ell}(\vartheta) \prod_{\substack{1 \le \nu \le n_0 \\ 0 \le i < m_{0,\nu}-\ell}} (\vartheta + \lambda_{0,\nu} + i) + \sum_{\ell=N-m_{1,1}+1}^{N} \partial^{\ell-N+m_{1,1}} s_{\ell}(\vartheta) \prod_{\substack{1 \le \nu \le n_0 \\ 0 \le i < m_{0,\nu}-\ell}} (\vartheta + \lambda_{0,\nu} + i).$$

Note that $s_0 \in \mathbb{C}^{\times}$ and the condition (5.17) is equivalent to the condition $\lambda_{0,\nu} + i \neq 0$ for any ν and i such that there exists an integer ℓ with $0 \leq i \leq m_{0,\nu} - \ell - 1$ and $N - m_{1,1} + 1 \leq \ell \leq N$. This condition is valid if (5.6) is valid, namely, $m_{1,1} = 0$ or

$$\lambda_{0,\nu} \notin \{0, -1, \dots, m_{0,1} - m_{0,\nu} - d + 2\}$$

for ν satisfying $m_{0,\nu} \ge m_{0,1} - d + 2$. Under this condition we have

$$Q = \sum_{\ell=0}^{N} \partial^{\ell} s_{\ell}(\vartheta) \prod_{\substack{1 \le i \le N - m_{1,1} - \ell}} (\vartheta + i) \cdot \prod_{\substack{1 \le \nu \le n_0 \\ 0 \le i < m_{0,\nu} - \ell}} (\vartheta + \lambda_{0,\nu} + i),$$

$$\operatorname{Ad}(\partial^{-\mu})Q = \sum_{\ell=0}^{N} \partial^{\ell} s_{\ell}(\vartheta - \mu) \prod_{\substack{1 \le i \le N - m_{1,1} - \ell \\ 0 \le i \le m_{0,\nu} - \ell}} (\vartheta - \mu + i) (\vartheta - \mu + i) (\vartheta - \mu + \lambda_{0,\nu} + i)$$

since $\mu = \lambda_{0,1} - 1$. Hence $\partial^{-m_{0,1}} \mathrm{Ad}(\partial^{-\mu})Q$ equals

$$\sum_{\ell=0}^{m_{0,1}-1} x^{m_{0,1}-\ell} s_{\ell}(\vartheta-\mu) \prod_{1 \le i \le N-m_{1,1}-\ell} (\vartheta-\mu+i) \prod_{\substack{2 \le \nu \le n_{0} \\ 0 \le i < m_{0,\nu}-\ell}} (\vartheta-\mu+\lambda_{0,\nu}+i)$$
$$+ \sum_{\ell=m_{0,1}}^{N} \partial^{\ell-m_{0,1}} s_{\ell}(\vartheta-\mu) \prod_{1 \le i \le N-m_{1,1}-\ell} (\vartheta-\mu+i) \prod_{\substack{2 \le \nu \le n_{0} \\ 0 \le i < m_{0,\nu}-\ell}} (\vartheta-\mu+\lambda_{0,\nu}+i)$$

and then the set of characteristic exponents of this operator at ∞ is

$$\{[1-\mu]_{(m_{0,1}-d)}, [\lambda_{0,2}-\mu]_{(m_{0,2})}, \dots, [\lambda_{0,n_0}-\mu]_{(m_{0,n_0})}\}.$$

Moreover $\partial^{-m_{0,1}-1} \operatorname{Ad}(\partial^{-\mu})Q \notin W[x]$ if $\lambda_{0,1} + m_{0,1}$ is not a characteristic exponent of P at ∞ and $-\lambda_{0,1} + 1 + i \neq m_{0,1} + 1$ for $1 \leq i \leq N - m_{1,1} = m_{0,1} - d$, which assures $x^{m_{0,1}}s_0 \prod_{1 \leq i \leq N-m_{1,1}} (\vartheta - \mu + i) \prod_{\substack{2 \leq \nu \leq m_0 \\ 0 \leq i < m_{0,\nu}}} (\vartheta - \mu + \lambda_{1,\nu} + i) \notin \partial W[x].$

Similarly we have

$$\begin{split} P' &= \sum_{\ell=0}^{m_{1,1}} \partial^{m_{1,1}-\ell} q_{\ell}(\vartheta) \prod_{\substack{2 \leq \nu \leq n_{1} \\ 0 \leq i < m_{1,\nu}-\ell}} (\vartheta - \lambda_{1,\nu} - i) \\ &+ \sum_{\ell=m_{1,1}+1}^{N} x^{\ell-m_{1,1}} q_{\ell}(\vartheta) \prod_{\substack{2 \leq \nu \leq n_{1} \\ 0 \leq i < m_{1,\nu}-\ell}} (\vartheta - \lambda_{1,\nu} - i), \\ Q &= \sum_{\ell=0}^{m_{1,1}} \partial^{N-\ell} q_{\ell}(\vartheta) \prod_{\substack{2 \leq \nu \leq n_{1} \\ 0 \leq i < m_{1,\nu}-\ell}} (\vartheta + \lambda_{1,\nu} - i) \\ &+ \sum_{\ell=m_{1,1}+1}^{N} \partial^{N-\ell} q_{\ell}(\vartheta) \prod_{\substack{1 \leq 1 \leq \ell-m_{1,1} \\ 1 \leq i \leq \ell-m_{1,1}}} (\vartheta + i) \prod_{\substack{2 \leq \nu \leq n_{1} \\ 0 \leq i < m_{1,\nu}-\ell}} (\vartheta - \lambda_{1,\nu} - i). \\ \\ \mathrm{Ad}(\partial^{-\mu})Q &= \sum_{\ell=0}^{N} \partial^{N-\ell} q_{\ell}(\vartheta - \mu) \prod_{1 \leq i \leq \ell-m_{1,1}} (\vartheta - \mu + i) \\ &\cdot \prod_{\substack{2 \leq \nu \leq n_{1} \\ 0 \leq i < m_{1,\nu}-\ell}} (\vartheta - \mu - \lambda_{1,\nu} - i) \end{split}$$

with $q_0 \in \mathbb{C}^{\times}$. Then the set of characteristic exponents of $\partial^{-m_{0,1}} \operatorname{Ad}(\partial^{-\mu})Q$ equals $\{[0]_{(m_{1,1}-d)}, [\lambda_{1,2} + \mu]_{(m_{1,2})}, \dots, [\lambda_{1,n_1} + \mu]_{(m_{1,n_1})}\}$ if

$$\prod_{\substack{2 \le \nu \le n_1 \\ 0 \le i < m_{1,\nu} - \ell}} (\vartheta - \mu - \lambda_{1,\nu} - i) \notin \partial W[x]$$

for any integers ℓ satisfying $0 \le \ell \le N$ and $N - \ell < m_{0,1}$. This condition is satisfied if (5.7) is valid, namely, $m_{0,1} = 0$ or

$$\lambda_{0,1} + \lambda_{1,\nu} \notin \{0, -1, \dots, m_{1,1} - m_{1,\nu} - d + 2\}$$

for $\nu \ge 2$ satisfying $m_{1,\nu} \ge m_{1,1} - d + 2$

because $m_{1,\nu} - \ell - 1 \leq m_{1,\nu} + m_{0,1} - N - 2 = m_{1,\nu} - m_{1,1} + d - 2$ and the condition $\vartheta - \mu - \lambda_{1,\nu} - i \in \partial W[x]$ means $-1 = \mu + \lambda_{1,\nu} + i = \lambda_{0,1} - 1 + \lambda_{1,\nu} + i$. Now we will prove (5.11). Under the conditions, it follows from (5.18) that

$$\begin{split} \tilde{P} &:= x^{m_{0,1}-N} \operatorname{Ad}(x^{\lambda_{0,1}}) \prod_{j=2}^{p} (x-c_{j})^{-m_{j,1}} P \\ &= x^{m_{0,1}+m_{1,1}-N} \operatorname{Ad}(x^{\lambda_{0,1}}) P' \\ &= \sum_{\ell=0}^{N} x^{m_{0,1}-\ell} \operatorname{Ad}(x^{\lambda_{0,1}}) s_{\ell}(\vartheta) \prod_{0 \le \nu < \ell-N+m_{1,1}} (\vartheta - \nu) \prod_{\substack{1 \le \nu \le n_{0} \\ 0 \le i < m_{0,\nu}-\ell}} (\vartheta + \lambda_{0,\nu} + i), \\ \tilde{Q} &:= (-\partial)^{N-m_{0,1}} T_{\frac{1}{x}}^{*} \tilde{P} \\ &= (-\partial)^{N-m_{0,1}} \sum_{\ell=0}^{N} x^{\ell-m_{0,1}} s_{\ell} (-\vartheta - \lambda_{0,1}) \prod_{\substack{0 \le \nu < \ell-N+m_{1,1}}} (-\vartheta - \lambda_{0,1} - \nu) \\ &\cdot \prod_{\substack{2 \le \nu \le n_{0} \\ 0 \le i < m_{0,\nu}-\ell}} (-\vartheta + \lambda_{0,\nu} - \lambda_{0,1} + i) \prod_{\substack{0 \le i \le m_{0,1}-\ell}} (-\vartheta + i) \\ &= \sum_{\ell=0}^{N} (-\partial)^{N-\ell} s_{\ell} (-\vartheta - \lambda_{0,1}) \prod_{\substack{1 \le i \le \ell-m_{0,1}}} (-\vartheta - i) \\ &\cdot \prod_{\substack{0 \le \nu < \ell-N+m_{1,1}}} (-\vartheta - \lambda_{0,1} - \nu) \prod_{\substack{2 \le \nu \le n_{0} \\ 0 \le i < m_{0,\nu}-\ell}} (-\vartheta + \lambda_{0,\nu} - \lambda_{0,1} + i) \end{split}$$

and therefore

$$\operatorname{Ad}(\partial^{-\mu})\tilde{Q} = \sum_{\ell=0}^{N} (-\partial)^{N-\ell} s_{\ell}(-\vartheta - 1) \prod_{\substack{1 \le i \le \ell - m_{0,1}}} (-\vartheta + \lambda_{0,1} - 1 - i) \\ \cdot \prod_{\substack{0 \le \nu < \ell - N + m_{1,1}}} (-\vartheta - 1 - \nu) \prod_{\substack{2 \le \nu \le n_0 \\ 0 \le i < m_{0,\nu} - \ell}} (-\vartheta + \lambda_{0,\nu} - 1 + i).$$

Since

$$(-\partial)^{N-\ell-m_{1,1}} \prod_{0 \le \nu < \ell-N+m_{1,1}} (-\vartheta - 1 - \nu) = \begin{cases} x^{\ell-N+m_{1,1}} & (N-\ell < m_{1,1}) \\ (-\partial)^{N-\ell-m_{1,1}} & (N-\ell \ge m_{1,1}) \end{cases}$$
$$= x^{\ell-N+m_{1,1}} \prod_{0 \le \nu < N-\ell-m_{1,1}} (-\vartheta + \nu),$$

we have

$$\tilde{Q}' := (-\partial)^{-m_{1,1}} \operatorname{Ad}(\partial^{-\mu}) \tilde{Q} = \sum_{\ell=0}^{N} x^{\ell-N+m_{1,1}} \prod_{0 \le \nu < N-\ell-m_{1,1}} (-\vartheta + \nu) \cdot s_{\ell}(-\vartheta - 1) \prod_{0 \le \nu < \ell-m_{0,1}} (-\vartheta + \lambda_{0,1} - 2 - \nu) \prod_{\substack{2 \le \nu \le n_0 \\ 0 \le i < m_{0,\nu} - \ell}} (-\vartheta + \lambda_{0,\nu} - 1 + i)$$

and

$$x^{m_{0,1}+m_{1,1}-N} \operatorname{Ad}(x^{\lambda_{0,1}-2}) T_{\frac{1}{x}}^* \tilde{Q}' = \sum_{\ell=0}^N x^{m_{0,1}-\ell} \prod_{0 \le \nu < \ell-m_{0,1}} (\vartheta - \nu) \cdot s_\ell (\vartheta - \lambda_{0,1} + 1)$$
$$\cdot \prod_{0 \le \nu < N-m_{1,1}-\ell} (\vartheta - \lambda_{0,1} + 2 + \nu) \prod_{\substack{2 \le \nu \le n_0\\0 \le i < m_{0,\nu}-\ell}} (\vartheta + \lambda_{0,\nu} - \lambda_{0,1} + 1 + i),$$

which equals $\partial^{-m_{0,1}} \operatorname{Ad}(\partial^{-\mu})Q$ because $\prod_{0 \leq \nu < k} (\vartheta - \nu) = x^k \partial^k$ for $k \in \mathbb{Z}_{\geq 0}$. iv) (Cf. Remark 7.4 ii) for another proof.) Since

$$\operatorname{idx} \mathbf{m} - \operatorname{idx} \mathbf{m}' = \sum_{j=0}^{p} m_{j,1}^{2} - (p-1)n^{2} - \sum_{j=0}^{p} (m_{j,1} - d)^{2} + (p-1)(n-d)^{2}$$
$$= 2d \sum_{j=0}^{p} m_{j,1} - (p+1)d^{2} - 2(p-1)nd + (p-1)d^{2}$$
$$= d\left(2\sum_{j=0}^{p} m_{j,1} - 2d - 2(p-1)n\right) = 0$$

and

$$\begin{split} \sum_{j=0}^{p} \sum_{\nu=1}^{n_{j}} m_{j,\nu} \lambda_{j,\nu} &- \sum_{j=0}^{p} \sum_{\nu=1}^{n_{j}} m_{j,\nu}' \lambda_{j,\nu}' \\ &= m_{0,1}(\mu+1) - (m_{0,1}-d)(1-\mu) + \mu(n-m_{0,1} - \sum_{j=1}^{p} (n-m_{j,1})) \\ &= \Big(\sum_{j=0}^{p} m_{j,1} - d - (p-1)n\Big) \mu - m_{0,1}d - (m_{0,1}-d) = d, \end{split}$$

we have the claim.

The claim iii) follows from the following lemma when P is irreducible.

Suppose $\lambda_{j,\nu}$ are generic in the sense of the claim iii). Put $\mathbf{m} = \gcd(\mathbf{m})\overline{\mathbf{m}}$. Then an irreducible subspace of the solutions of Pu = 0 has the spectral type $\ell'\overline{\mathbf{m}}$ with $1 \leq \ell' \leq \gcd(\mathbf{m})$ and the same argument as in the proof of the following lemma shows iii).

The following lemma is known which follows from Scott's lemma (cf. §9.2).

LEMMA 5.3. Let P be a Fuchsian differential operator with the Riemann scheme (4.15). Suppose P is irreducible. Then

$$(5.19) idx \mathbf{m} \le 2.$$

Fix $\ell = (\ell_0, \dots, \ell_p) \in \mathbb{Z}_{>0}^{p+1}$ and suppose ord P > 1. Then

(5.20)
$$m_{0,\ell_0} + m_{1,\ell_1} + \dots + m_{p,\ell_p} - (p-1) \text{ ord } \mathbf{m} \le m_{k,\ell_k} \text{ for } k = 0,\dots,p.$$

48

Moreover the condition

(5.21)
$$\lambda_{0,\ell_0} + \lambda_{1,\ell_1} + \dots + \lambda_{p,\ell_p} \in \mathbb{Z}$$

implies

(5.22)
$$m_{0,\ell_0} + m_{1,\ell_1} + \dots + m_{p,\ell_p} \le (p-1) \text{ ord } \mathbf{m}.$$

PROOF. Let M_j be the monodromy generators of the solutions of Pu = 0 at c_j , respectively. Then dim $Z(M_j) \ge \sum_{\nu=1}^{n_j} m_{j,\nu}^2$ and therefore $\sum_{j=0}^p \operatorname{codim} Z(M_j) \le (p+1)n^2 - (\operatorname{idx} \mathbf{m} + (p-1)n^2) = 2n^2 - \operatorname{idx} \mathbf{m}$. Hence Corollary 9.12 (cf. (9.47)) proves (5.19).

We may assume $\ell_j = 1$ for $j = 0, \ldots, p$ and k = 0 to prove the lemma. By the map $u(x) \mapsto \prod_{j=1}^{p} (x - c_j)^{-\lambda_{j,1}} u(x)$ we may moreover assume $\lambda_{j,\ell_j} = 0$ for $j = 1, \ldots, p$. Suppose $\lambda_{0,1} \in \mathbb{Z}$. We may assume $M_p \cdots M_1 M_0 = I_n$. Since dim ker $M_j \ge m_{j,1}$, Scott's lemma (Lemma 9.11) assures (5.22).

The condition (5.20) is reduced to (5.22) by putting $m_{0,\ell_0} = 0$ and $\lambda_{0,\ell_0} = -\lambda_{1,\ell_1} - \cdots - \lambda_{p,\ell_p}$ because we may assume k = 0 and $\ell_0 = n_0 + 1$.

REMARK 5.4. i) Retain the notation in Theorem 5.2. The operation in Theorem 5.2 i) corresponds to the *addition* and the operation in Theorem 5.2 ii) corresponds to Katz's *middle convolution* (cf. [Kz]), which are studied by [DR] for the systems of Schlesinger canonical form.

The operation $c(P) := \operatorname{Ad}(\partial^{-\mu})\partial^{(p-1)n}P$ is always well-defined for the Fuchsian differential operator of the normal form which has p+1 singular points including ∞ . This corresponds to the *convolution* defined by Katz. Note that the equation Sv = 0 is a quotient of the equation $c(P)\tilde{u} = 0$.

ii) Retain the notation in the previous theorem. Suppose the equation Pu = 0is irreducible and $\lambda_{j,\nu}$ are generic complex numbers satisfying the assumption in Theorem 5.2. Let u(x) be a local solution of the equation Pu = 0 corresponding to the characteristic exponent $\lambda_{i,\nu}$ at $x = c_i$. Assume $0 \le i \le p$ and $1 < \nu \le n_i$. Then the irreducible equations $(\operatorname{Ad}((x - c_j)^r)P)u_1 = 0$ and $(\operatorname{RAd}(\partial^{-\mu}) \circ \operatorname{R} P)u_2 = 0$ are characterized by the equations satisfied by $u_1(x) = (x - c_j)^r u(x)$ and $u_2(x) =$ $I_{c_i}^{\mu}(u(x))$, respectively.

Moreover for any integers k_0, k_1, \ldots, k_p the irreducible equation $Qu_3 = 0$ satisfied by $u_3(x) = I_{c_i}^{\mu+k_0} \left(\prod_{j=1}^p (x-c_j)^{k_j} u(x) \right)$ is isomorphic to the equation $(\operatorname{RAd}(\partial^{-\mu}) \circ \operatorname{R} P)u_2 = 0$ as W(x)-modules (cf. §1.4 and §3.2).

EXAMPLE 5.5 (Okubo type). Suppose $\bar{P}_{\mathbf{m}}(\lambda) \in W[x]$ is of the form (11.35). Moreover suppose $\bar{P}_{\mathbf{m}}(\lambda)$ has the the Riemann scheme (11.34) satisfying (11.33) and $\lambda_{j,\nu} \notin \mathbb{Z}$. Then for any $\mu \in \mathbb{C}$, the Riemann scheme of $\operatorname{Ad}(\partial^{-\mu})\bar{P}_{\mathbf{m}}(\lambda)$ equals

(5.23)
$$\begin{cases} x = c_0 = \infty & c_1 & \cdots & c_p \\ [\lambda_{0,1} - \mu]_{(m_{0,1})} & [0]_{(m_{1,1})} & \cdots & [0]_{(m_{p,1})} \\ [\lambda_{0,2} - \mu]_{(m_{0,2})} & [\lambda_{1,2} + \mu]_{(m_{1,2})} & \cdots & [\lambda_{p,2} + \mu]_{(m_{p,2})} \\ \vdots & \vdots & \vdots & \vdots \\ [\lambda_{0,n_0} - \mu]_{(m_{0,n_0})} & [\lambda_{1,n_1} + \mu]_{(m_{1,n_1})} & \cdots & [\lambda_{p,n_p} + \mu]_{(m_{p,n_p})} \end{cases} \right\}.$$

In particular we have $\operatorname{Ad}(\partial^{1-\lambda_{0,1}})\bar{P}_{\mathbf{m}}(\lambda) \in \partial^{m_{0,1}}W[x].$

EXAMPLE 5.6 (exceptional parameters). The Fuchsian differential equation with the Riemann scheme

$$\begin{cases} x = \infty & 0 & 1 & c \\ [\delta]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} \\ 2 - \alpha - \beta - \gamma - 2\delta & \alpha & \beta & \gamma \end{cases}$$

is a Jordan-Pochhammer equation (cf. Example 1.8 ii)) if $\delta \neq 0$, which is proved by the reduction using the operation $\operatorname{RAd}(\partial^{1-\delta}) \operatorname{R}$ given in Theorem 5.2 ii).

The Riemann scheme of the operator

$$P_r = x(x-1)(x-c)\partial^3$$

- $((\alpha+\beta+\gamma-6)x^2 - ((\alpha+\beta-4)c + \alpha + \gamma - 4)x + (\alpha-2)c)\partial^2$
- $(2(\alpha+\beta+\gamma-3)x - (\alpha+\beta-2)c - (\alpha+\gamma-2) - r)\partial$

equals

$$\begin{cases} x = \infty & 0 & 1 & c \\ [0]_{(2)} & [0]_{(2)} & [0]_{(2)} & [0]_{(2)} \\ 2 - \alpha - \beta - \gamma & \alpha & \beta & \gamma \end{cases} \},$$

which corresponds to a Jordan-Pochhammer operator when r = 0. If the parameters are generic, $RAd(\partial)P_r$ is Heun's operator (6.19) with the Riemann scheme

$$\begin{cases} x = \infty & 0 & 1 & c \\ 2 & 0 & 0 & 0 \\ 3 - \alpha - \beta - \gamma & \alpha - 1 & \beta - 1 & \gamma - 1 \end{cases},$$

which contains the accessory parameter r. This transformation doesn't satisfy (5.6) for $\nu = 1$.

The operator $\operatorname{RAd}(\partial^{1-\alpha-\beta-\gamma})P_r$ has the Riemann scheme

$$\begin{cases} x = \infty & 0 & 1 & c \\ \alpha + \beta + \gamma - 1 & 0 & 0 & 0 \\ \alpha + \beta + \gamma & 1 - \beta - \gamma & 1 - \gamma - \alpha & 1 - \alpha - \beta \end{cases}$$

and the monodromy generator at ∞ is semisimple if and only if r = 0. This transformation doesn't satisfy (5.6) for $\nu = 2$.

Definition 5.7. Let

$$P = a_n(x)\partial^n + a_{n-1}(x)\partial^{n-1} + \dots + a_0(x)$$

be a Fuchsian differential operator with the Riemann scheme (4.15). Here some $m_{j,\nu}$ may be 0. Fix $\ell = (\ell_0, \ldots, \ell_p) \in \mathbb{Z}_{>0}^{p+1}$ with $1 \leq \ell_j \leq n_j$. Suppose

(5.24)
$$\#\{j : m_{j,\ell_j} \neq n \text{ and } 0 \le j \le p\} \ge 2.$$

Put

(5.25)
$$d_{\ell}(\mathbf{m}) := m_{0,\ell_0} + \dots + m_{p,\ell_p} - (p-1) \operatorname{ord} \mathbf{m}$$

and

(5.26)

$$\partial_{\ell}P := \operatorname{Ad}(\prod_{j=1}^{p} (x - c_{j})^{\lambda_{j,\ell_{j}}}) \prod_{j=1}^{p} (x - c_{j})^{m_{j,\ell_{j}} - d_{\ell}(\mathbf{m})} \partial^{-m_{0,\ell_{0}}} \operatorname{Ad}(\partial^{1 - \lambda_{0,\ell_{0}} - \dots - \lambda_{p,\ell_{p}}}) \\ \cdot \partial^{(p-1)n - m_{1,\ell_{1}} - \dots - m_{p,\ell_{p}}} a_{n}^{-1}(x) \prod_{j=1}^{p} (x - c_{j})^{n - m_{j,\ell_{j}}} \operatorname{Ad}(\prod_{j=1}^{p} (x - c_{j})^{-\lambda_{j,\ell_{j}}}) P_{\ell_{j}}$$

If $\lambda_{j,\nu}$ are generic under the Fuchs relation or P is irreducible, $\partial_{\ell} P$ is well-defined as an element of W[x] and

(5.27)
$$\partial_{\ell}^{2} P = P \text{ with } P \text{ of the form (4.43),}$$

$$\partial_{\ell} P \in W(x) \operatorname{RAd}\left(\prod_{j=1}^{p} (x - c_{j})^{\lambda_{j,\ell_{j}}}\right) \operatorname{RAd}\left(\partial^{1-\lambda_{0,\ell_{0}}-\dots-\lambda_{p,\ell_{p}}}\right)$$

$$(5.28) \cdot \operatorname{RAd}\left(\prod_{j=1}^{p} (x - c_{j})^{-\lambda_{j,\ell_{j}}}\right) P$$

and ∂_{ℓ} gives a correspondence between differential operators of normal form (4.43). Here the spectral type $\partial_{\ell} \mathbf{m}$ of $\partial_{\ell} P$ is given by

(5.29)
$$\partial_{\ell} \mathbf{m} := \left(m'_{j,\nu}\right)_{\substack{0 \le j \le p\\ 1 \le \nu \le n_j}} \text{ and } m'_{j,\nu} = m_{j,\nu} - \delta_{\ell_j,\nu} \cdot d_{\ell}(\mathbf{m})$$

and the Riemann scheme of $\partial_{\ell} P$ equals

(5.30)
$$\partial_{\ell} \{\lambda_{\mathbf{m}}\} := \{\lambda'_{\mathbf{m}'}\} \text{ with } \lambda'_{j,\nu} = \begin{cases} \lambda_{0,\nu} - 2\mu_{\ell} & (j = 0, \nu = \ell_0) \\ \lambda_{0,\nu} - \mu_{\ell} & (j = 0, \nu \neq \ell_0) \\ \lambda_{j,\nu} & (1 \le j \le p, \nu = \ell_j) \\ \lambda_{0,\nu} + \mu_{\ell} & (1 \le j \le p, \nu \neq \ell_j) \end{cases}$$

by putting

(5.31)
$$\mu_{\ell} := \sum_{j=0}^{p} \lambda_{j,\ell_j} - 1.$$

It follows from Theorem 5.2 that the above assumption is satisfied if

(5.32)
$$m_{j,\ell_j} \ge d_\ell(\mathbf{m}) \qquad (j = 0, \dots, p)$$

and

(5.33)
$$\sum_{j=0}^{p} \lambda_{j,\ell_{j}+(\nu-\ell_{j})\delta_{j,k}} \notin \left\{ i \in \mathbb{Z}; (p-1)n - \sum_{j=0}^{p} m_{j,\ell_{j}+(\nu-\ell_{j})\delta_{j,k}} + 2 \le i \le 0 \right\}$$
for $k = 0, \dots, p$ and $\nu = 1, \dots, n_{k}$.

Note that $\partial_{\ell} \mathbf{m} \in \mathcal{P}_{p+1}$ is well-defined for a given $\mathbf{m} \in \mathcal{P}_{p+1}$ if (5.32) is valid. Moreover we define

(5.34)
$$\partial \mathbf{m} := \partial_{(1,1,\ldots)} \mathbf{m},$$

(5.35)
$$\begin{aligned} \partial_{max} \mathbf{m} &:= \partial_{\ell_{max}(\mathbf{m})} \mathbf{m} \quad \text{with} \\ \ell_{max}(\mathbf{m})_j &:= \min \left\{ \nu \,; \, m_{j,\nu} = \max \{ m_{j,1}, m_{j,2}, \ldots \} \right\}, \end{aligned}$$

(5.36)
$$d_{max}(\mathbf{m}) := \sum_{j=0}^{p} \max\{m_{j,1}, m_{j,2}, \dots, m_{j,n_j}\} - (p-1) \operatorname{ord} \mathbf{m}.$$

For a Fuchsian differential operator P with the Riemann scheme (4.15) we define (5.37) $\partial_{max}P := \partial_{\ell_{max}(\mathbf{m})}P$ and $\partial_{max}\{\lambda_{\mathbf{m}}\} = \partial_{\ell_{max}(\mathbf{m})}\{\lambda_{\mathbf{m}}\}.$ A tuple $\mathbf{m} \in \mathcal{P}$ is called *basic* if \mathbf{m} is indivisible and $d_{max}(\mathbf{m}) \leq 0$.

PROPOSITION 5.8 (linear fractional transformation). Let ϕ be a linear fractional transformation of $\mathbb{P}^1(\mathbb{C})$, namely there exists $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in GL(2,\mathbb{C})$ such that $\phi(x) = \frac{\alpha x + \beta}{\gamma x + \delta}$. Let P be a Fuchsian differential operator with the Riemann scheme (4.15). We may assume $-\frac{\delta}{\gamma} = c_j$ with a suitable j by putting $c_{p+1} = -\frac{\delta}{\gamma}$, $\lambda_{p+1,1} = 0$ and

 $m_{p+1,1} = n$ if necessary. Fix $\ell = (\ell_0, \dots, \ell_p) \in \mathbb{Z}_{>0}^{p+1}$. If (5.32) and (5.33) are valid, we have

(5.38)
$$\partial_{\ell} P \in W(x) \operatorname{Ad}((\gamma x + \delta)^{2\mu}) T^{*}_{\phi^{-1}} \partial_{\ell} T^{*}_{\phi} P \\ \mu = \lambda_{0,\ell_0} + \dots + \lambda_{p,\ell_p} - 1.$$

PROOF. The claim is clear if $\gamma = 0$. Hence we may assume $\phi(x) = \frac{1}{x}$ and the claim follows from (5.11).

REMARK 5.9. i) Fix $\lambda_{j,\nu} \in \mathbb{C}$. If P has the Riemann scheme $\{\lambda_{\mathbf{m}}\}$ with $d_{max}(\mathbf{m}) = 1, \ \partial_{\ell} P$ is well-defined and $\partial_{max} P$ has the Riemann scheme $\partial_{max} \{\lambda_{\mathbf{m}}\}$. This follows from the fact that the conditions (5.5), (5.6) and (5.7) are valid when we apply Theorem 5.2 to the operation $\partial_{max} : P \mapsto \partial_{max} P$.

ii) We remark that

(5.39) $\operatorname{idx} \mathbf{m} = \operatorname{idx} \partial_{\ell} \mathbf{m},$ ord $\partial_{max}\mathbf{m} = \operatorname{ord} \mathbf{m} - d_{max}(\mathbf{m}).$ (5.40)

Moreover if $idx \mathbf{m} > 0$, we have

$$(5.41) d_{max}(\mathbf{m}) > 0$$

because of the identity

(5.42)
$$\left(\sum_{j=0}^{p} m_{j,\ell_j} - (p-1) \operatorname{ord} \mathbf{m}\right) \cdot \operatorname{ord} \mathbf{m} = \operatorname{idx} \mathbf{m} + \sum_{j=0}^{p} \sum_{\nu=1}^{n_j} (m_{j,\ell_j} - m_{j,\nu}) \cdot m_{j,\nu}.$$

If idx $\mathbf{m} = 0$, then $d_{max}(\mathbf{m}) \ge 0$ and the condition $d_{max}(\mathbf{m}) = 0$ implies $m_{j,\nu} = m_{j,1}$ for $\nu = 2, ..., n_j$ and j = 0, 1, ..., p (cf. Corollary 6.3).

iii) The set of indices $\ell_{max}(\mathbf{m})$ is defined in (5.35) so that it is uniquely determined. It is sufficient to impose only the condition

(5.43)
$$m_{j,\ell_{max}(\mathbf{m})_j} = \max\{m_{j,1}, m_{j,2}, \ldots\} \quad (j = 0, \ldots, p)$$

on $\ell_{max}(\mathbf{m})$ for the arguments in this paper.

Thus we have the following result.

THEOREM 5.10. A tuple $\mathbf{m} \in \mathcal{P}$ is realizable if and only if $s\mathbf{m}$ is trivial (cf. Definitions 4.10 and 4.11) or $\partial_{max}\mathbf{m}$ is well-defined and realizable.

PROOF. We may assume $\mathbf{m} \in \mathcal{P}_{p+1}^{(n)}$ is monotone. Suppose $\#\{j; m_{j,1} < n\} < 2$. Then $\partial_{max}\mathbf{m}$ is not well-defined. We may assume p = 0 and the corresponding equation Pu = 0 has no singularities in \mathbb{C} by applying a suitable addition to the equation and then $P \in W(x)\partial^n$. Hence **m** is realizable if and only if $\#\{j; m_{j,1} < n\} = 0$, namely, **m** is trivial.

Suppose $\#\{j; m_{j,1} < n\} \ge 2$. Then Theorem 5.2 assures that $\partial_{max}\mathbf{m}$ is realizable if and only if $\partial_{max} \mathbf{m}$ is realizable.

In the next chapter we will prove that **m** is realizable if $d_{max}(\mathbf{m}) \leq 0$. Thus we will have a criterion whether a given $\mathbf{m} \in \mathcal{P}$ is realizable or not by successive applications of ∂_{max} .

EXAMPLE 5.11. There are examples of successive applications of $s \circ \partial$ to monotone elements of \mathcal{P} : <u>411,411,42,33</u> $\xrightarrow{15-2\cdot6=3}$ <u>111,111,21</u> $\xrightarrow{4-3=1}$ <u>11,11,11</u> $\xrightarrow{3-2=1}$ 1,1,1 (rigid) <u>211,211,111</u> $\xrightarrow{5-4=1}$ <u>111,111,111</u> $\xrightarrow{3-3=0}$ 111,111,111 (realizable, not rigid) <u>211,211,211,31</u> $\xrightarrow{9-8=1}$ <u>111,111,111,111,21</u> $\xrightarrow{5-6=-1}$ (realizable, not rigid)

 $\underline{22}, \underline{22}, \underline{1111} \xrightarrow{5-4=1} \underline{21}, \underline{21}, \underline{111} \xrightarrow{5-3=2} \times \text{(not realizable)}$

The numbers on the above arrows are $d_{(1,1,\dots)}(\mathbf{m})$. We sometimes delete the trivial partition as above.

The transformation of the generalized Riemann scheme of the application of ∂_{max}^k is described in the following definition.

DEFINITION 5.12 (Reduction of Riemann schemes). Let $\mathbf{m} = (m_{j,\nu})_{\substack{j=0,\dots,p\\\nu=1,\dots,n_j}} \in \mathcal{P}_{p+1}$ and $\lambda_{j,\nu} \in \mathbb{C}$ for $j = 0,\dots,p$ and $\nu = 1,\dots,n_j$. Suppose \mathbf{m} is realizable. Then there exists a positive integer K such that

(5.44)
$$\operatorname{ord} \mathbf{m} > \operatorname{ord} \partial_{max} \mathbf{m} > \operatorname{ord} \partial_{max}^{2} \mathbf{m} > \cdots > \operatorname{ord} \partial_{max}^{K} \mathbf{m}$$
$$\operatorname{and} s \partial_{\max}^{K} \mathbf{m} \text{ is trivial or } d_{max} (\partial_{max}^{K} \mathbf{m}) \leq 0.$$

Define $\mathbf{m}(k) \in \mathcal{P}_{p+1}, \ \ell(k) \in \mathbb{Z}, \ \mu(k) \in \mathbb{C} \text{ and } \lambda(k)_{j,\nu\in\mathbb{C}} \text{ for } k = 0, \dots, K \text{ by}$

(5.45)
$$\mathbf{m}(0) = \mathbf{m} \text{ and } \mathbf{m}(k) = \partial_{max}\mathbf{m}(k-1) \quad (k = 1, \dots, K),$$

(5.46) $\ell(k) = \ell_{max} (\mathbf{m}(k)) \text{ and } d(k) = d_{max} (\mathbf{m}(k)),$

(5.47) $\{\lambda(k)_{\mathbf{m}(k)}\} = \partial_{max}^k \{\lambda_{\mathbf{m}}\}$ and $\mu(k) = \lambda(k+1)_{1,\nu} - \lambda(k)_{1,\nu}$ $(\nu \neq \ell(k)_1)$. Namely, we have

(5.48)
$$\lambda(0)_{j,\nu} = \lambda_{j,\nu} \quad (j = 0, \dots, p, \ \nu = 1, \dots, n_j),$$

(5.49)
$$\mu(k) = \sum_{j=0}^{r} \lambda(k)_{j,\ell(k)_j} - 1,$$

(5.50)
$$\lambda(k+1)_{j,\nu} = \begin{cases} \lambda(k)_{0,\nu} - 2\mu(k) & (j=0, \nu = \ell(k)_0), \\ \lambda(k)_{0,\nu} - \mu(k) & (j=0, 1 \le \nu \le n_0, \nu \ne \ell(k)_0), \\ \lambda(k)_{j,\nu} & (1 \le j \le p, \nu = \ell(k)_j), \\ \lambda(k)_{j,\nu} + \mu(k) & (1 \le j \le p, 1 \le \nu \le n_j, \nu \ne \ell(k)_j) \end{cases}$$
$$= \lambda(k)_{j,\nu} + \left((-1)^{\delta_{j,0}} - \delta_{\nu,\ell(k)_j}\right)\mu(k),$$
(5.51)
$$\{\lambda_{\mathbf{m}}\} \xrightarrow{\partial_{\ell(0)}} \cdots \longrightarrow \{\lambda(k)_{\mathbf{m}(k)}\} \xrightarrow{\partial_{\ell(k)}} \{\lambda(k+1)_{\mathbf{m}(k+1)}\} \xrightarrow{\partial_{\ell(k+1)}} \cdots .$$