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Abstract. 

Let R and R' be p-sheeted unlimited covering surfaces of the 
once punctured Riemann sphere C \ {0} of Heins type which are 
quasiconformal equivalent to each other. Then the cardinal numbers 
of minimal Martin boundaries of R and R' are same. 

Let R be a 2-sheeted unlimited covering surface of the once punc­
tured Riemann sphere C \ {0} of Heins type and R' be an open Rie­
mann surface. If R and R' are quasiconformal equivalent to each 
other and the set of branch points of R satisfies a condition, then 
the cardinal numbers of minimal Martin boundaries of R and R' are 
same. 

§1. Introduction. 

Let W be an open Riemann surface. We denote by ~f the minimal 
Martin boundary of W. In [8], it was showed that there exist open Rie­
mann surfaces F and F' quasiconformally equivalent to each other such 
that F' possesses nonconstant positive harmonic functions although F 
does not possess nonconstant positive harmonic functions. This means 
that ~~f' ;::: 2 although ~~f = 1, where ~A stands for the cardinal 
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number of a set A. Needless to say, the above F and F' are of posi­
tive boundary, i.e. F and F' admit the Green function (cf. e.g. [16]). 
However, in case open Riemann surfaces F and F' are of null bound­
ary (i.e. not positive boundary), it does not seem to be known whether 
~~f = ~~[' or not if F and F' are quasiconformally equivalent to each 
other. 

Consider two positive decreasing sequences {an} and {bn} satisfying 
bn+l <an < bn < 1 and limn_, 00 an = 0. Set G = rC \ ( {0} U I), where 
rC is the extended complex plane, I = U~=1 In and In = [an, bn]· We 
take p copies G1 , · · · , GP of G and join the upper edge of In on G1 with 
the lower edge of In on GJ+1 (j mod p) for every n. Then we obtain 
a p-sheeted covering surface R of the once punctured Riemann sphere 
rC \ {0} and say that R is of Heins type(cf. [4]). 

In this paper, we are concerned with p-sheeted unlimited covering 
surfaces of the once punctured Riemann sphere rC \ {0} of Heins type. 
Consider p-sheeted unlimited covering surfaces R and R' of rC \ {0} of 
Heins type which are quasiconformally equivalent to each other. Then 
it seems to be valid that ~~f = ~~f' (cf. [12], [10], [18]). The first 
purpose of this paper is to give an answer to this conjecture. Namely, 

Theorem 1. Let R and R' be p-sheeted unlimited covering surfaces 
of the once punctured Riemann sphere rC \ {0} of Heins type which are 
quasiconformally equivalent to each other. Then it holds that ~~f = 
~~f'. 

Let R be a 2-sheeted unlimited covering surface of rC \ {0} of Heins 
type with the projection 1r from R onto rC \ {0}. We have the following. 

Theorem 2. Suppose that bn - bn+l ;:::j 2-n, that is, there exists a 
constant a(> 1) with o:- 12-n < bn- bn+l < a2-n (n EN). Let R' be an 
open Riemann surface and f a quasiconformal mapping with R' = f(R). 
Then it holds that ~~f = ~~f'. 

The author would like to express his sincere thanks to the referee 
for his valuable comments. 

§2. Preliminaries. 

In this section we consider as R a general p-sheeted unlimited cov­
ering surfaces of the once punctured Riemann sphere rC \ { 0}. Let ~ R 

and ~f be as in §1, and 1r the projection map from R onto rC \ {0}. Set 
]JJ) = { x E C llxl < 1 }, ]JJ)o = ]JJ) \ {0} and Ro = 1r-1 (]JJ)o). It is well-known 
that ~Ro and ~f" are identified with ~Ru7r- 1 (8]JJ)) and ~fu7r- 1 (8]JJ)), 
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respectively, where 81DJ = {x E C I lxl = 1}. From now on we consider 
IDJo (resp. R0 ) in place of C \ {0} (resp. R) since C \ {0} (resp. R) does 
not admit the Green function. Let g0 be the Green function on IDJ with 
pole at 0. 

Definition 2.1 (cf. [2]). We say that a subset E of IDJ0 is thin at 0 
if llllR:C, =I g0 , where llllR:C, is the balayage of g0 relative to E on IDJ • 

If E is a closed subset of IDJ, it is well-known that E is thin at 0 if 
and only if 0 is an irregular boundary point of IDJ \ E in the sense of the 
Dirichlet problem. 

The following lemma gives the quasiconformal invariance for thin­
ness. 

Lemma 2.1 (cf. [10],[18]). Let M be a subdomain ofC and c.p a qua­
siconformal mapping from C onto C. If ( is an irregular boundary point 
of M in the sense of Dirichlet problem, c.p( () is an irregular boundary 
point of c.p(M) in the sense of Dirichlet problem. 

Definition 2.2. A subset U in IDJ which contains 0 is said to be a 
fine neighborhood of 0 if IDJ \ U is thin at 0. 

Let kc, be the Martin function on R 0 with pole at ( E f:.R. If we 
take a sequence { Xn} in Ro such that limn-.ao Xn = (, we can give a 
definition of kc, by the following. 

k ( ) 1. gxn(x) 
1:, Z = Ill ( ) , 

n-+ao gxn Xo 

where x 0 is a fixed point in R0 . For details we refer to [3] and [5]. 

Definition 2.3. Let (be a point in b.f and E a subset of R0 . We 
say that E is minimally thin at (if RoRf, =I kc,. 

Definition 2.4. Let ( be a point in b.f and U a subset of R0 . We 
say that UU { (} is a minimal fine neighborhood of (if R 0 \ U is minimally 
thin at (. 

The following proposition gives the characterization of ~b.f in terms 
of minimal fine topology. 

Proposition 2.1 ([11]). Let M be the class of subdomains M of 
IDJ0 such that M U {0} is a fine neighborhood of x = 0. Then it holds that 

~b.f = max nR(M), 
MEM 

where nR(M) is the number of connected components of Jr- 1 (M) and 1r 

is the projection map from R onto C \ {0}. 
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§3. Proof of Theorem 1. 

In this section we first consider as R a general p-sheeted unlimited 
covering surfaces of the once punctured Riemann sphere C \ { 0}. Let ~ R 

and ~f be as in §1, and 1r the projection map from R onto C \ {0}. Let 
IDl, 1Dl0, and R0 be as in §2. The next proposition will play an important 
role for the proof of Theorem 1. 

Proposition 3.1. Let R' be an open Riemann surface and f a 
quasiconformal mapping with R' = f(R). If ~~f = p, then ~~f = ~~f'. 

Proof. By Proposition 2.1 we find a subdomain M of IDlo such that 
1Dl0 \ M is thin at 0, 8M \ {0} may consist of infinitely many Jordan 
curves and 

~~f = nR(M), 

where nR(M) is the number of connected components of 1r-1 (M). By the 
assumption of this proposition nR(M) = p. Let M1 (j = 1, 2, ... ,p) be 
components of 1r-1 (M). Since each M1 is a 1-sheeted unlimited covering 
surface of M, it is easily seen that each M 1 is considered as a replica 

of M. Let g{(MJ) (j = 1, 2 ... ,p) be the Green function on f(M1) with 
pole at x and 7/Jj the inverse of 1riM from M ----) MJ. Denote by /-lfo1/JJ 
the complex dilatation off o 7/Jj on M. Set 

{ 
/-lfo1/J; 

/-lj = 
0 

onM 

on C\M. 

It is well-known that there exists a quasiconformal mapping fJ from C 
onto C with the complex dilatation /-lj (cf. e.g. [6]). Set Vj = fJ(M). 
By Lemma 2.1 we find that fJ(O) is an irregular boundary point of 
Vj in the sense of the usual Dirichlet problem since 0 is an irregular 
boundary point of M in the sense of the usual Dirichlet problem. On 

the other hand, the function x' f---7 g~~::lf;-'(x') of o 'ljJ1 o f1- 1(y') (y' E 

Vj) is a positive harmonic function on Vj \ {y'} since f o 'ljJ1 o f1- 1 is 
conformal. Hence, by [5, Theorem 10.16], there exists a positive fine 
I. "t T I" f(Mj) f .!. f- 1 D b V; h" Iml .r - Imx'---+/;(0) gfo'lj;,ofJ_,(x') o o 'f/j o j . enote y g0 · t IS 

limit function on Vj and set gl(MJ) = g(;'J o fJ o 7/Jj 1 o f- 1 . We see that 

each gl(M;) is a positive harmonic function on f(MJ) since each g(/ is 
a positive harmonic function on Vj and fJ o 7/Jj 1 o f- 1 is conformal. For 
j = 1,2, ... ,p set 
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where s runs over the space of positive superharmonic functions s on 

f(Ro) satisfying s :::: gt(MJ) on f(M1 ). By Perron-Wiener-Brelot method 

we find that each S1(gt(MJ)) is a positive harmonic function on f(R0 ). 

Then the following inequality 

(*) S(/(M;)) _ f(Ro)f{f(Ro)\f(Mj) > /(MJ) 
J 0 Sj(g~(MJ)) - 0 

holds on f(M1). In fact, to prove the inequality(*) note that 

f(Ro)f{f(Ro)\f(M;) = Hf(!VI;) 
S;(g~(Mj)) S;(g~(M;)) 

on f(M1), where Hf(M;)M J is the Dirichlet solution for S1(gt(M,)) on 
S;(9o 1 ) 

f(Mj) (cf. e.g. [3], [5]). By definition Sj(gt(M;)) :::: gt(M;) on f(Mj)· 

Hence, by the definition of the Dirichlet solution in the sense of Penon­
Wiener-Brelot, 

on f(M1 ), Thus ( *) is proved. 
We shall proceed the proof of this proposition. By [17, Theorem 3] 

it is known that 1 :::; ~.6.f :::; p. By the Martin representation theorem, 
there exist at most p minimal functions h1,1 , h1,2, ... , h1,p on f(Ro) with 

S1(gt(M1 )) = h1,1 + h1,2 + ... + hj,p on f(Ro). Hence, by the above 
inequality ( *), we have 

hj,l + hj,2 + ... + hj,p 

Sj(gt(Mj)) 

> f(Ro)f{f(Ro)\f(M;) . + gf(M;) 
hJ, 1 +h,;,2+ ... +h],p 0 

> f(Ro)f{f(Ro)\f(M;) + J(Ro)f{f(Ro)\f(M;) + ... + f(Ro)f{f(Ro)\f(M;) 
hj,l hj,2 hj,p 

on f(M1). Therefore we find that there exists a minimal function h1 

on f(R0 ) such that hj f f(Rolf{~(Ro)\f(M;). Hence, by the definition 
J 

of minimal thinness, f(Ro) \ f(M1) is minimally thin at the minimal 
boundary point corresponding to h1. Since f(Mi) n f(Mj) = 0 (if j), 
we find that ~.6.f = p. 0 

Now we give the following result which Proposition 2.1 yields. 

Theorem 3.1 (cf. [11]). Let R be a p-sheeted unlimited covering 

surfaces of the once punctured Riemann sphere C \ {0} of Heins type. 
Then ~.6.f = 1 or p. 
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Proof of Theorem 1. By Theorem 3.1 we have only to prove that 
~tl{l' = p if and only if ~llf = p. Since f- 1 is a quasiconformal mapping 
from R' onto R, it is sufficient to prove that if ~llf = p, then ~tl{l' = p. 

Suppose that ~llf = p. By Proposition 3.1 ~tl{l' = p. We have the 
desired result. D 

§4. Proof of Theorem 2. 

By Proposition 3.1 we find that if ~llf = 2, ~tl{l' = 2. By [17, 
Theorem 3] it is known that ~tl{l' = 1 or 2. Hence, by Theorem 3.1, it 
is sufficient to prove that if ~llf' = 2, ~llf = 2. Suppose that ~tl{l' = 2. 
Set tl{l' = { (f, (n. Let g[/Ro) be the Green function with pole at e on 

f(R0 ). It is known that there exists limy'--+(; gC,(Ro)(x')(=: g(_;(x')) (j = 
1, 2) and g(; (j = 1, 2) is the minimal harmonic function with pole at 

(j (j = 1, 2). 
For x E R0 set 

I:7.k=1 ak(JJ(x)(f'(x)-1 f'(x)-h)k,i8i), 
· (if there exist f'(x) and f'(x)- 1 ), 

2::7=1 a;, 
(else wise) , 

where lt(x) (resp. f'(x)) is the Jacobian (resp. Jacobi matrix) of the 
mapping (u(x), v(x)) (f = u + iv), f'(x)- 1 is the inverse of f'(x) and 
f'(x)-h is the transpose of f'(x)- 1 . Lis a elliptic second order partial 
differential operator of divergence type on R. Set gf ( x) := g(, of ( x) ( x E 

.J 

R0 ). We see that gf (j = 1, 2) is a positive harmonic function on R0 

with respect to L. We recall the assumption that bn- bn+l :::::: 2-n, that 
is, there exists a constant a(> 1) with 

a-12-n < bn- bn+l < a2-n (n EN). 

For r(> 0), set Cr = {lxl = r}, Br = {lxl < r}, Cr = 7r- 1 (Cr), and 
Br = 71"- 1 (Br \ {0} ). 

Suppose that there exist a constant a' ( > 1) and a subsequence { nz} 
of N = {n} with bn1 - an1 > (a')- 12-nz. Set Rz = !3(an1+3bn1 )/4 \ 

Cl(!3(3anz+bn 1 )j4), where, for a set E C Ro, Cl(E) stands for the closure 
of E with respect to the usual topology on R0 . By the assumption that 
bn1 - an1 > (a')- 12-n1 , Mod(Rz):::::: 1, where Mod(Rz) stands for the 
logarithmic module of Rz (cf. [1]), and hence, by the quasiconformal 
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invariance of logarithmic module (cf. [6], [15]), Mod(f(R1))::::: 1. Since 
the cardinal number of connected components of R 1 is equal to 1, that 
of f(Rl) is so. By [17, Theorem 3], we find that ~b.f' = 1. This is a 
contradiction. Hence we may suppose that there exists a constant a"(> 
1) , for every integer l, al- bl+l > (a")- 12-1. Set A= U~1 A1 (Al = 

B(3az+bz+,)/4 \ Cl(B(az+3bz+,)j4)), where Cl(B(az+3bz+l)/4) is the closure 
of B(az+3bz+dl4 with respect to the usual topology on R. 

Lemma 4.1. On A, 

gf(x) + gf(L(x))::::: log l1r(~)l (j = 1, 2), 

where L is the sheet exchange on R. 

Proof. Let Al,k (k = 1, 2) be connected components of A1. Then 
we have 

( ~) J(Rolfil(Az) < J(Ro)Rf(Az,d + f(Ro)Rf(Az,2) < 2f(Ro)Rf(Az). 
~ 1- 1 1- 1 

Since f(RolR{(Az) is a Green potential on f(Ro) (cf. [3]), we can find the 
Radon measure f.Ll,j (j = 1, 2) with 

(~~) f(Ro)R{(Az,;)(x') = { g!,(Ro)df.ll,j· 
Jcl(f(Az,;)) 

By the fact that f(RolR{(Az) (x') = 1 for x' E f(B(3az+bz+,)j4), letting x' 
be to (j in (~), we have 

1:::: r g(.df.ll,1 + r g(.df.Ll,2:::: 2 (j = 1, 2), 
Jcl(f(Az,,J) 1 Jcl(f(Az,2)) 1 

and hence 

1:::: r gfd(f-1 )*(J.Ll,l) + r gfd(f-1 )*(f.ll,2):::: 2 u = 1,2), 
Jcl(Az,d Jcl(Az,2) 

where (f- 1 )* (J.Ll,2) is the image measure of f.ll, 2 by f- 1 . On the other 
hand, by the definition of capacitary potential, quasiconformal invari­
ance of capacity(cf. [15, Theorem 10.10]), [9, Lemma 2.3], [1, Theorems 
13C and 13D in Chap. IV] and [3, Satz 5.2 and Satz 7.2], we have 

(f-1 )*J.Lu(Cl(Al,J)) J.Lu(f(Cl(Al,J))) = cap(f(Cl(Au)), f(Ro)) 

::::: cap(Cl(Au), Ro)::::: cap(1r(Cl(Al)), lDlo) 

cap(Cl(B(3az+bz+,)j4), lDlo) 

27r/ log[4/(3al + blH)]::::: 1/l, 
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where, for a subset E of an open Riemann surface F of positive boundary 
cap(E, F) stands for the greenian capacity of E on F. Therefore, by 
Harnack's inequality with respect to L (cf. [13]), we have the desired 
result. D 

Set D I = ][])o \ I. 

Lemma 4.2. There exist components VI,j (j = 1, 2) of n-1(DI) 
such that 

gf(x)::::; log lntx)l (x E An V 1 ,j, j = 1, 2), 

gf(x) = o(log lntx)l) (n(x)-> O,x E AnVJ,j+(-l)i-1, j = 1,2). 

Proof Denote by V 1 ,j (j = 1,2) components of n-1 (D1 ). Set 
Al,j = A1 n VI,j· By Lemma 4.1 we may suppose that there exist sub­
sequences {nl} and {n2} of N = {n} such that 

(i) {nl} U {n2} =Nand {n1} n {n2} = 0; 

(ii) gf(x)::::; log lntx)l (x E (Un1 An 1 ,1) U (Un2 An2 ,2) ); 

(iii) gf(x) = o(log lntx)l) (n(x)-> O,x E (Un 1 An1 ,2)U(Un2 An2 ,1) ). 

In fact, suppose the above does not hold. Then there exists a sub-
sequence { n3 } of N = { n} with 

L 1 
gl (x)::::; log ln(x)l (x E Un 3 An3 ). 

On the other hand, for any (J(> 0), {x' E f(Ro)lg(~ (x') > fJg(; (x')} U 

{ (2} is a minimal fine neighborhood of (~, because, on {g(~ > fJg(;}, 
J(Ro)R~{g' ~2 :S,Bg~i} < g~2,, by the fact that, on f(R0 ), 

9<2 ' 

Hence, by Lemma 4.1 and by the fact that gf = g(, o J, there exists a 
.I 

positive fJo with {x' E f(Ro)lg(~ (x') > fJog(; (x')} C f(Ro) \ f(Un 3 An3 ). 

It is well-known that we can take a connected component G 1 of { x' E 

f ( Ro) lg(~ ( x') > (Jog(; ( x')} such that G1 U { (~} is a minimal fine neigh­
borhood of(~ (cf. [14, Corollaire 2 in p.206]). This is a contradiction. 
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Suppose that both { n1} and { n2} are infinite sets. Let { m1} be a 
subsequence of {nt} with m1 + 1 E {n2}. By (ii) we can find a positive 
constant ~1 ( > 1) with 

-1 1 L 1 
~1 log l1r(x)l ::::: 91 (x)::::: ~1log l1r(x)l (x E (Un1 An1 ,1) U (Un2 An2 ,2)). 

By Harnack's inequality with respect to L, we can find a positive con­
stant ~2 (> 1) with 

-1 1 L 1 
(~1~2) log l1r(x)l :::::91 (x)::::: (~1~2)log l1r(x)l (x E Um1 Am1 +1,1)· 

On the other hand, by (iii), there exists an integer N0 such that, 

L -1 1 
91 (x) < (~1~2) log l1r(x)l (x E Um1 >No-1Am1 +1,1)· 

This is a contradiction. Here, if necessary , by substituting D1,1 (resp. 
D1,2) for D1,2 (resp. D1,1), we have 

L 1 
(~1) 91 (x) ~log l1r(x)l (x E UnA.t,1 ) 

L 1 
(~2) 91 (x) = a(log l1r(x)l) (1r(x) __... 0, x E UnAn,2 ). 

Repeating the same process for 9f as in obtaining (~1) and (~2), we 
have 

(~'1) 9r(x) ~log l1rtx)l (x E UnAn,2) 

L 1 
(~'2) 92 (x) = a(log l1r(x)l) (1r(x) __... 0, x E UnAn,l ) 

or 

(~" 1) 9r(x) ~log i1rtx)i (x E UnAn,1 ) 

(D''2) 9r(x) = a(log i1rtx)i) (1r(x) --. 0, x E UnAn,2 ). 

Suppose that the estimates (D''1) and (D''2) hold. By (~1) and (D''1), 
we find that f(UnAn,1) is minimally thin at (f. In fact, there exists a 

positive constant /30 such that f3o9aRo) ::::: 9{to) on f(UnA.t,1), that is, 

f(UnAn,d C {x' E f(Ro)if3o9{~(Ro) ::::: 9{~(Ro)}. Using the same argument 
as that in the former part of the proof of this lemma, we find that { x' E 
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f(Ro)lfJog{;(Ro) ::; g{to)} is minimally thin at (f. Hence f(UnAn,I) is 

minimally thin at (f. 
By (o2) we can prove that there exists a subsequence { nt} of N = {n} 
such that f(UtAn 1,2) is minimally thin at (f. This fact will be proved 
afterwards. Hence f(UtAn 1 ) is minimally thin at (f because f(UnAn,I) 
is minimally thin at (f. Since [f(Ro) \ f(UtAnJ] U { (i} is a minimal fine 
neighborhood of (i, we can take a connected component G2 of [f(Ro) \ 
f(UtAn 1 )] U {(i} such that G2 U {(i} is a minimal fine neighborhood of 
(f (cf. [14, Corollaire 2 in p.206]). This is a contradiction. Hence we 
have the estimates (o11) and (o12). 

We still remain to prove that there exists a subsequence { nt} of 
N = {n} such that f(UtAn1 ,2) is minimally thin at (f. By (o2) we can 
take a subsequence { nt} of N = { n} with 

f(Ro)( 1) nl ( 1 f( A ) ) g(; X ::; [2 X E Ut n1,2 · 

From this estimate it follows that f(UtAn 1,2) is minimally thin at (f. In 
fact, we take a point x~ be a point of f(Ro) \ Cl(f(UtAn1,2)). Then, by 
(~~) in Lemma 4.1, the definition of capacitary potential, and the same 
estimate for capacity as in the latter part of the proof of Lemma 4.1, we 
have 

< 

00 

< 2: nt J(Ro)Jif(Anz,2) ( 1) 
[2 1 Xo 

l=m 
00 

< 2: nt 1 J(Ro)d 2 gx' J-lnz,2 
l=m [ Cl(f(An1,2)) 0 

00 

< aoL 
l=m 

nt 
[2 /-ln1,2(Cl(f(An1,2))) 

00 

~ L nt [2 cap(Cl(f(An1 ,2)), f(Ro)) 
l=m 

00 00 1 
~ L nt2 ~ L 2 ~ 0 (m ~ +oo), 

ntl l l=m l=m 

where, o:o = sup{g;yo)(x1)lx1 E Cl(f(UtAn1,2))}. Hence we have 

limm->+oo f(Ro)Jif;~~~mAnz,2 )(x~) = 0. If m is sufficiently large, 
9<1 
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f(Ul~mAn1 ,2) is minimally thin at (i. Since f(Ul:s;mAn 1,2) is relatively 
compact, it is minimally thin at (i. Hence f(UlAn 1 ,2) is minimally thin 
at (i. 

The proof is herewith complete. D 

For an integer l, take the bounded simply connected domain Q1 
whose boundary in the closed polygonal line without self-intersections 
and which has four vertexes ((3al + bl+l)/4, (3al + bl+l)/32), ((3al + 
bl+l)/4, -(3al + bl+l)/32), ((al-l + 3bl)/4, -(al-l+ 3b1)/32), ((a1-1 + 
3bl)/4, (al-l + 3b1)/32) in positive cyclic order. Set Q = U~1 Q1 and 
VQ,j = VI,j\11"- 1(Q) (j = 1,2). ByLemma4.2andHarnack'sinequality 
with respect to L, we find that 

(1) there exists a positive constant Ko such that 
1 1 L 1 . 

Ko log l1r(x)l :::; 9j (x) :::; Ko log l1r(x)l (x E VQ,j) (J = 1, 2); 

(2) gf(x) = o(log l1rtx)l) (1r(x) ---+ 0, x E VQ,H{-l)i-1) (j = 1, 2). 

Set E1 = {x' E f(Ro)lg(~ (x') > g(~ (x')}, E2 = {x' E f(Ro)lg(~ (x') < 
g(~ (x')}, and E3 = {x' E f(Ro)lg(~ (x') = g(~ (x')}. Set E3 =/-1(E3) = 
{x E Rolgf(x) = gf(x)} and')'j = 1r-1(8Q) n VI,j· By (1) and (2), we 
may suppose that there exists an integer N1 such that, for any integer 
n(~ N1), E3 n B(an+bn+d/2 c 7r-1(Q), gf > gr on 1'1 n B(an+bn+d/2 
and gf < gr on 1'2 n B(an+bn+t)/2· Hence, by the implicit function 
theorem, E3 n f(B(aN 1 +bN1+1)12) consists of infinitely many connected 
components E3,1(c j(1r-1(Q1)), l ~ N1 + 1) which are piecewise ana­
lytic closed curves because each g(~ is harmonic on f(Ro). Hence each 

1 

Ejnf(B(aN1 +bN1 +ll;2) is a planar region, that is, each EjnB(aN1 +bN1 +d/2 
is planar region. Set Kj = EjnB(aN1 +bN1 +1)/2 and E3,1 = /-1(E3,1). By 
Koebe's theorem and R. de Possel's theorem (cf. [20, Theorems IX.32 
and IX.22], [19, Theorem 9-1]) there exist plane regions [j (j = 1, 2) of 
C and conformal mappings ¢i (j = 1, 2) from Kj onto [i (j = 1, 2) such 
that C \ [j (j = 1, 2) consist of infinitely many parallel segments fj,l to 
the real axis with 

n {cz(¢·(M)) I M is a subdomain of Ej with } 
1 Cl(M) :J E3,1 ' 

for l > N1, 

n { Cl(,~..1_(M)) I CMl(iMs a) subcdomain of EinwVith } . 
'+' :::_) (aN 1 +bN1 +t)/2 I,j 

for l = N1. 
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Lemma 4.3. Each £1 is a singleton. 

Proof. Suppose that ~£1 2': 2 (j = 1, 2). We remark that each £1 is 
connected. In fact, suppose that £1 is disconnected. Let A1,1 be a. com­
ponent of £1. Set A1,2 = £1 \A1,1 . We can take two Jordan curves C1,1 and 
C1,2 in £1 such that, fork= 1, 2, each bounded region G1,k,1 determined 
by C1,k inC contains A1,k, and that Cl(G1,1,I) n Cl(G1,2,I) = 0. By the 
definition of A1,k, each G1,k,l contains infinitely many Cj,l· Since 1r o ¢j1 

is continuous on £1 and CJ,k is a compact subset of £1, 1r o ¢j1(C1,k) 
is a compact subset of 1r(K1 ), and hence there exists uniquely a com­
ponent M1,k,1 of 1r(K1) \ 1r o ¢j1(C1,k) such that Cl(MJ,k, 1) is a neigh­
borhood of the origin. Denote by M1,k,2 the union of component of 
[1r(K1) \ 1r o ¢j1(C1,k)] U M1,k,1. It is easily seen that Cl(Mj,k,I) (resp. 
Cl(Mj,k,2)) contains infinitely (resp. at most finitely) many components 
1r(E3,1) of 1r(E3 nB(aN1 +bN1+1)/2) because 1r(E3,1) C Ql (l 2': N1 + 1). Let 
G1,k,2 be unbounded regions determined by Cj,k in C. We can prove that 
(q) ¢1(7r- 1(MJ,k,I) n KJ) c GJ,k,l n EJ or (q') ¢J(7r- 1(MJ,k,I) n KJ) c 
Gj,k,2 n £1. Suppose this fact does not hold, that is, ¢1(1r- 1(M1,k,I) n 
K1)nG1,k,1nE1 -=J 0 and ¢J(7r-1(MJ,k,I)nKJ)nGJ,k, 2n£1 -=J 0. Then we 
can find points ~J,k,i E ¢1(1r- 1(M1,k,I) nK1 )nG1,k,i nEJ (i = 1, 2). Since 
7r(¢j 1 (~j,k,i)) E Mj,k, 1 and M1,k,1 is connected, we can find a curve C 

in Mj,k, 1 which joins 7r(¢j 1 (~j,k,I)) to 7r(¢j 1 (~j,k, 2 )). From the defini­
tion of component it is easily seen that the lift of C in Kj by 1r meets 
¢j1(C1,k) since K1 \ ¢j1(Cj,k) has just two components ¢j1 (Gj,k, 1 n£1) 

and ¢j1 ( GJ,k,2 n £1 ). Hence M1,k,1 n 1r o ¢j1 (C1,k) -=J 0. This is a contra­
diction. 
We may assume that (q) holds. For, if (q') holds, repeating the same 
argument as in case that (q) holds, we arrive at a contradiction. By 
(q) ¢1(1r- 1(Mj,k, 2) n K1) :::J G1,k,2 n £1. Hence Gj,k,1 (resp. G1,k,2) con­
tains infinitely (resp. at most finitely) many £1,1 because Cl(MJ,k,I) 
(resp. Cl(Mj,k,2)) contains infinitely (resp. at most finitely) many com­
ponents 7r(E3,l) of 7r(E3 nB(aN1 +bN1+1)/2)· Since Gj,k,2 :) Gj,k+(-1)k-1,1, 

GJ,k+(- 1)k-1, 1 contains at most finitely many components of CJ,l· This is 
a contradiction. Thus we conclude that each Cj is connected. 

Since each CJ is connected, by [5, Theorem 8.26], all points of £1 (j = 
1, 2) are regular boundary points of Ej (j = 1, 2). Ej (j = 1, 2) is mini­
mally thin at c;+(- 1);-1, and hence E~ is minimally thin at (j (j = 1, 2). 
By [14, Theoreme 1 and Theoreme 5], it is known that there exists a 
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Green potential gl-'i (x') = J g~,(Ro) dpj such that 

gl-'i ((j) < +oo, 

li~ gi-'J (x') = +oo, 
x'___,~R. 1x'EE~ 

223 

because limx'---+(j g{(Ro)(x') = g£(Ra)((j) < +oo. Since there exists an in­

teger N2(?. NI) such that gl-'i (y') > 2gl-'i ((j) (y' E E~nf(B(aN2 +bN2 +i)f2)), 
for every x' E f(B(aN2+bN2+i)f2), 

Hence 

< 

because each Ej n f(B(aN2+bN2+,Jf2)) is not minimally thin at (j. Hence 
there exists a sequence { xf.J }( C Ej n f(B(aN2 +bN2 +,Jf2), j = 1, 2) such 
that, for j = 1, 2, 

lim xf. = (' l---+oo ,J J' 

Set 
B~; = lnt[Cl(¢J(EJ n B(aN2 +bN2 +,Jf2))] (j = 1, 2), 

where Int[Cl(¢j(Ej n B(aN2+bN2+,)j2))] stands for the interior of the 

closure of ¢J(Ej n B(aN2+bN2+,)f2) in <C. For ¢J 0 f- 1 we define Lq,;oJ-1 

as L f in the first part of this section. The above inequality implies that 

there exist points z1 E fl1 (j = 1, 2) and sequences { Zl,j} ( C £J nB~;, j = 
1, 2) such that, for j = 1, 2, 

lim Zt,j = Zj (j = 1, 2), 
l---+oo 
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B(j) ~Ut>N2 it ; ,Lq, ·of-1 
where N2 R1 · 1 stands for . the balayage of 1 relative to 

Ul>N2 £l,j on B~; with respect to L</>ioJ-1· Hence each Zj is an irreg­
ular boundary point of cPj(Ej nB(aN2 +bN2 +t)f2) with respect to L<I>JoJ-1. 
By [7, Theorem 9.1] and [5, Theorem 10.3], each Zj is an irregular bound­
ary points of t:j in the usual sense. This is a contradiction. Therefore 
we have the desired result. D 

Let N1 be an integer as in the definition of £j. Let g:i be the Green 
function with pole at e (resp. x) on t:j. By Lemma 4.3, for j = 1, 2, 
there exists a sequence {ej,n} in [,j SUCh that limn->oo ej,n = Zj and 
th . t 1" Gj C' D • 1 2 t Gj 1" Gj ere ex1s s lmn->oo 9t;i,n on '-'j· ror J = , , se 9zi = lmn->oo 9t;J,n 

and gj = g;f o cPj· Each gj is a positive harmonic function on Kj· For 
j = 1, 2, set 

where s runs over the space of positive super harmonic functions s on R0 

satisfying s 2::: gj on Kj· By Perron-Wiener-Brelot method each Sj(9j) 
is a positive harmonic function on R0 . Using the same argument as that 
in the proof of Theorem 1, we find that the following inequality 

( ) S ( ) RoftRo\Ki > ** j 9j - S.;(gj) - 9j 

holds on Kj (j = 1, 2). Since ~~f = 1 or 2 by means of [17, Theorem 3], 
by the Martin representation theorem, we find that there exist at most 
two minimal functions hj,k (k = 1, 2) on R0 with Sj(9j) = hj,l + hj,2 on 
Ro. Hence, by the above inequality(**), we have 

> 

> 

on Kj. Therefore we find that there exists a minimal function hj (j = 
1, 2) on Ro such that hj -:/= Roft~o\KJ. Hence, by the definition of mini-

1 

mal thinness, Ro \ Kj is minimally thin at the minimal boundary point 
corresponding to hj. Since K1 n K2 = 0, we find that ~~f = 2. 
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