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Computation of New Schubert Tables for
Quadries and Projectivities

Corrado De Concini, Patrizia Gianni and Carlo Traverso

In the persent paper we show the details and the results of an imple-
mentation of algorithms described in [3], to compute: a) the number of
quadrics in P* with given tangency conditions, b) the number of projective
transformations of P* with prescribed incidence conditions.

Case a), for n=2, is classical and completely solved by Chasles, [2],
and, for n=3, was computed by Schubert, [6]. In case b), partial results
were due to Schubert and to Giambelli.

The algorithm a) has been run for n=4, 5, and the algorithm b) has
been run for n=3, giving new Schubert numbers.

To our knowledge this is the first systematic extension of Schubert’s
results in enumerative geometry, and the number of quadrics tangent to 20
quadrics in P? is by far the largest known result of this kind.

We recall a few facts: given a semisimple adjoint group G over C, with
Lie algebra g and an order 2 automorphism ¢: G—G, if we let H=G" one
can construct a canonical projective G-equivariant embedding X of G/H
which is defined as follows: let H ©g be the Lie algebra of H; § can be
considered as a point in a suitable Grassman variety of linear subspaces
of g; then X is defined as the closure of the G-orbit of §.

X enjoys some remakable properties: X is smooth, X—G/H=US,,
where S, are G-stable smooth divisors which meet transversally; NS, is
non-empty and is the unique closed orbit of X.

In the classical cases considered in this paper, the construction of X
and its properties were known, (see [5] to [10],) and in the case of quadrics
(resp. projectivities) X is classically called the variety of complete quadrics
(resp. projectivities). We refer to [3] for the general setting and the geo-
metrical interpretation of our algorithm; here we concentrate on the
algebraic part.

The frame of the algorithm is as follows: the conditions are interpreted
as product of “‘simple conditions”, x,- - - x,, which are seen as elements of
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Pic X=H%X, Z). To evaluate the number of elements satisfying the
condition x7- . - x7= where N=m,+ - - . +m,=dim X, one has to evaluate
the corresponding element of H*¥(X) on the class of a point. This can
be reduced to the evaluation of the classes s, - - 5,x. . - x%» where s, - - -, 5,
are the cohomology classes of the divisors S, of X. Since the closed orbit
of X is the transversal intersection of 5;, one has to evaluate x. . .xk»
against a point in the cohomology of the closed orbit. An explicit de-
scription of the closed orbit and of the “simple conditions” on it allows
to compute explicitly the result.

We do not distinguish in the notation a cohomology class in the
highest cochomology group and its evaluation against a point whenever the
situation is clear.

We are considering two cases:

a) We want to compute the number of quadrics in P* satisfying
N=(n+1)(n+2)/2—1 simple tangency conditions, where a simple tangency
condition is either

i) tangency to a given k-dimensional linear subspace,

ii) tangency to a given quadric.

This is obtained taking G=PSL (n+1), ¢ is the involution induced on G
by the involution ¢’ of SL N(n+1), ¢’(A)="4"".

With x,,, we indicate the clement in Pic X corresponding to the
tangency to a k-dimensional subspace. Then the tangency to a given
quadric hypersurface is given by 2(x,+ - --+x,). The problem is thus
solved evaluating all monomials x7. . .x7» with N=3 m,. In this case
the s, are s, =2x,—x,_,—x,,, (Where x,=x,.,,=0), and the closed orbit
is the complete flag variety in P (see [3], [10]); the class xft. . .xt» Sk,
=N—n, on the flag variety corresponds to 2¥-"&fr. . . &%= where &, is the
class corresponding to the fundamental weight w, for SL(n+1), [3], i.e. &,
represents the elementary condition on the flag variety determinated by
the flags whose i-1th dimensional subspace meets a fixed n-i-dimensional
subspace.

b) We want to compute the number of projectivities of P* satisfying
N=n*—1 simple conditions, where the simple condition x, corresponds
to the condition that the transform of a given k— 1-dimensional subspace
meets another given » —k-dimensional subspace.

This is obtained taking G=PSL(n+1) X PSL(n#+1) and the involu-
tion ¢ is defined putting ¢ (4, B)=(B, 4).

Here again s; =2x,—x,_;—Xx,,,(x,=x,=0) but the closed orbit here
is the product of two complete flag varieties in P~. The class x¥...xk»,
k,=N—n, on this product variety, corresponds to (&,®1-+1®&)*- .-
(&, Q1+ 1Q8,) .

The algorithm in both cases follows three steps:
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1) Evaluation of &f*. - - &k for the flag variety;

2) evaluation of xf1. . . xF» for the closed orbit;

3) evaluation of x**- . . x™= for X.

Step 1 is the same for both algorithms, step 2 is different (and quite
elementary), step 3 is formally the same with one difference that we shall
pinpoint when discussing it.

To accomplish step 1, one has to consider the following facts, [1}:
—g&rgn-i. . . & evaluates to 1, — setting &,=y,-+ -+ -+, (hence y, =&, —
&,.,, with &=0), and defining ¥ (T;- - - T,) being the polynomial sum of
all monomials in 7. - - T, of degree n—k 1, we have & (y,, - - -, y,) =0,
Substituting y,=&,—§&,_,, one obtains relations &2~ *=0 (&, - - -, &) and
@, has degree in &, lower than n—k. Using these relations as substitution
rules, one can evaluate all monomials of degree n(n+1)/2 in the £;,. One
may simplify considerably the algorithm, by introducing several conditions
on k,- - -k, that insure that &. . . &&= vanishes.

Step 2 is trivial for algorithm a); for algorithm b), to evaluate
xfre o xke 37k, =n(n-+1), substitute x, =(§,Q1 4+ 1®E,); then

G )= 3 T3 ) - Em@Enm g

and to evaluate just replace ® with multiplication. To simplify the com-
putation one may remark that if m,+ - .- +m, >n (n41)/2 then &*. ..
Enr=0, and if m,+ - - - +m,<n(m+1)/2 then &h-m...&ka-m () hence
the sum is extended to m;+ - - - +m,=n(r-+1)/2. Many other vanishing
conditions on k,, - - -, k, are easy to obtain’ for example if k,<1, then
xf1. .. xk» vanishes.

To accomplish Step 3, one has to evaluate x™- - - x7*», with N=> m,,
and N=(n+41)(n+2)/2, in case a), N=n*—1 in case b).

To do this, one evaluates all s3*- - -si2xf. - . xE» with > e, 4+ >k, =N,
g; € {0, 1}, The evaluation is made through a recursive formula, equal for
both algorithm, and taking in account various vanishing conditions. The
first one, (which is essential, since insures that the recursion can be made,
and is the only necessary one), is equal for both cases and states that if,
for a monomial s;t- . .s:*xF1. . . x%En we have ¢, =0=>k,=0, and not all ¢,
are equal to 1, then the monomial evaluates to 0. The other vanishing
conditions are useful to shorten the algorithm, and are different for the
two algorithms,

Now we define the recursion; take a monomial M =s;*. . - si2xt. . - xTn,

We proceed as follows:

a) if ¢,=1 Vi, then look Step 2,

b) otherwise, check vanishing conditions,
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¢) if these fail, find i such that ¢, =0, m, #0; then define y,, - - -, y,,
putting y,=x, if ¢;=1, y,=s, if ¢;=0. Then express x,=>a,y;. Define
M’ such that x,M’'=M. We call M the “father”, and M;=M"y; the
“jth-child of M” Then all “children” of M are monomials of the consi-
dered type, and, evaluating M=3_ a,M.

Remark that the g, are rational numbers, but M evaluates to an
integer, so it is convenient, to avoid rational arithmetic or floating point
approximations, to find integer multiples a}=da;, and to evaluate M=
(- ajM)/d, (this is, in effect, what the encoded algorithms shown in the
. appendix do).

It is easy to show that the recursion converges in a finite number of
steps. In practice, the recursion may be organized in different ways:

a) one may organize a big recursion machine, incorporating all the
steps of the algorithm,

b) one may tabulate the s, - -s,xF1. . . xEn,

The latter way is quite convenient, since many vanishing conditions reduce
the table of results to a quite manageable size, and otherwise one has to
recompute the same monomials again and again.

So the recursions is broken in two steps. The single step may be
organized:

a) in a purely recursive way, which bounds the storage requirements,
but duplicates many computations,

b) in a recurrent way, by organizing an ‘‘evaluation path” which
ensures that, when one evaluates the “father”, the ““children’ have already
been evaluated. This method is quite convenient from the point of view
of computation, but requires a large amount of storage, and gives a com-
plicate encoding, with needs of storage maps and evaluation path.

¢) a compromise may be the following: use pure recursion, but keep
track of intermediate results to avoid computing duplications. This
method does not avoid storage need and storage maps, but allows to design
a more transparent code, with a lower price in terms of execution speed.

The choice among the methods is essentially a matter of evaluation of
the resources; recursion may be preferred either in low dimension where
the execution time is anyway low, or in high dimension, where the physical
limitations of storage do not allow to keep track of all computations
already done.

We have done the computations in many different ways, also to allow
to check the results.

With these computations we have found that the number of quadrics
in P* tangent to 14 quadrics is 48942189946470400 and the number of
quadrics in P® tangent to 20 quadrics is 641211464734373953791690014720.
In Table 1 and 2 we give the complete results for quadrics in P* with given
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tangency conditions to linear spaces, and for projectivities in P* with given
incidence conditions. The table for quadrics in P* (10626 entries) is avail-
able upon request.

Different versions of the programs were written in PASCAL and
FORTRAN; they were tested on IBM 3033 and VAX 780; the computa-
tion of the table for quadrics in P° lasted two minutes; all other programs
have run in few seconds.
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TABLE 1. (a b c)=number of projectivities sending a points in a planes,
b lines to meet b lines, c planes to pass through ¢ points.

(0 0 15= 1 (3 1 1= 54 (7 1 7)= 286
(0 1 14= 2 (3 2 10)= 108 (7 2 6)=532
(0 2 13)= 4 (3 3 9=216 (7 3 5)=824
(0 3 12)= 8 (3 4 8=432 (7 4 =976
(0 4 1= 16 (3 5 7)=864 (7 5 3)= 864
(0 5 10)= 32 (3 6 6)=1568 (7 6 2)= 576
(0 6 9= 64 (3 7 5)=2416 (7 7 =384
(0 7 8= 128 (3 8 4)=3080 (7 8 0)=256
(0 8 7= 256 (3 9 3)=3220 (8 0 7= 143
(0 9 6)= 492 (3 10 2)=2816 (8 1 6)= 266
(0 10 5)= 864 (3 11 1)=2320 (8 2 5)=412
(0 11 4)=1344 (3 12 0)=1832 (8 3 4)= 488
(0 12 3)=1832 (4 0 ID= 6l (8 4 3)=432
(0 13 2)=2200 (4 1 10= 122 (8 5 2)= 288
(0 14 1)=2384 (4 2 9=24 (8 6 =192
(0 15 0)=2384 (4 3 8= 488 (8 7 0)=128
(1 0 1= 3 (4 4 7= 976 (9 0 6)=133
(1 1 13)= 6 (4. 5 6)=1752 (9 1 5)=206
(1 2 129= 12 (4 6 5)=2624 (9 2 4)=1244
(1 3 1= 24 (4 7 4)=3184 (9 3 3)=216
(1 4 1= 48 (4 8 3)=3080 (9 4 2)= 144
(1 5 9= 9% (4 9 2)=2412 (9 5 D= 96
(1 6 8=192 (4 10 1)=1824 (9 6 0= 64
(L 7 T)=384 (4 11 0)=1344 (10 0 5)= 103
(1 8 6=728 (5 0 10= 103 . (10 1 4= 122
(1 9 35)=1236 (5 1 9= 1206 : (10 2 3)= 108
(1 10 4)=1824 (5 2 8)=412 (10 3 2= 72
(1 11 3)=232 (5 3 7)=824 , (10 4 1= 48
(1 12 2)=2568 (5 4 6)=1488 A 10 5 0= 32
(1 13 1)=2568 (5 5 5)=2216 (11 0 4H= 6t
(1 14 0)=2384 (5 6 4)=2624 (11 1 3)= 54
(2 0 13)= 9 (5 7 3)=2416 (1t 2 2= 36
(2 1 12)= 18 (5 8 2)=1744 (1t 3 D= 24
(2 2 1= 36 (5 9 D=1236 (11 4 0= 16
(2 3 10= 72 (5 10 0)= 864 12 0 3= 27
(2 4 9=.144 (6 0 9= 133 (12 1 2= 18
(2 5 8)=1288 (6 1 8)=266 (12 2 D= 12
(2 6 N=576 (6 2 7= 532 (12 3 0= 8
(2 7 6)=1072 (6 3 6)=984 (13 0 2= 9
(2 8 5)=1744 (6 4 5)=1488 (13 1 D= 6
(2 9 4)=2412 (6 5 4)=1752 (13 2 0= 4
(2 10 3)=2816 (6 6 3)=1568 (14 0 D= 3
(2 11 2)=2816 (6 7 2)=1072 (14 1 0= 2
(2 12 1)=2568 (6 8 D=728 as o o= 1
(2 13 0)=2200 (6 9 0)= 492

(3 0 1= 27 (7 0 8)=143
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(Continued).

TABLE 2.

16

(12, 0, 0, 2)=

(2,0,0.12)

15488
21120

1,4, 6,3)=(3, 6.4, )=
(1.4, 7, 2)=(
1. 8. 4. 1)=24192

(1,4,8,

768
1536
2976

)=

=( 0,6, 1,

(1.1,6,6)

(5,4,3,2)= 6912

4, 5)=

2,3,
(2,3,5,4

4.1

ol

2)=12672

(4,5,3,
3, 6, 3, 2)=19968

64 =

(2.0, 2,100=(10, 2,

=

1, 1,8, 4)=(4, 8,1,

(

3,6, 3)=(
3

2

2
(2,4,0,8

(2.

(
(

902
1804

)=

1, 5,0, 8)=(8, 0.5.

26176

,7,2)=(2,7,3,2)

256

0, 4, 8)=(8, 4,0, 2)

1,5, 1, D=(7.1.5 = (2,

(2,10, 1, )= 8616

(1, 1.10,2)

1156

4,1, NH=(17, 1, 4, 2)= 2312

(8,0,4,2)

(2.0.5,

2312

I, h=( L1, 1, b
2, 0,1h)=(11, 0,2, 1
(1,2, LIO)=10, 1, 2. h=

1
1
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(2,0,6,06=(6,6,0, 2)= 1024

(2,0,7,5)

36

1,

(6,2,4,2)= 4624
(2,4,3,5=(5, 3,4, 2)= 9248

(2.4.2,6)

(5,7.0, 2)= 2048

(2.0.8, 4)=(4, 8.0, 2)= 3952

20416
2611

5.1

1,5,6.2)=(2,6,5.1)

(4, 4,4, 2)=16704

(2,4,4, 4=

(2,

0, 2)= 7016

(2,10, 0, 2)=11088

2

(

288
576

25344
31104

=(3,5,4,2)=
(2,6,4,2)
(2,5,0, 7)=(7,0,5,2)= 20628

4,5, 3)

(2,0,10, 2)=

27264
1= 2216

L Dh=C01,.7,5, D=
(7.0, 6.

7
1,6,0,.7)

(1,5,

(

4, )=(17. 4, 2,

1,2,

2, 4,6, 2)

1. 0.1, )= 48
1,10)=(10, 1, 1, 2)=

o=
0.
(2

(2,
(2,
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192
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(6,5, 1,2)= 1536
2, 1,6, 5=(5,6, 1.

2,1,

I,

(

(9,2, 1,2)=

1.2,.9

5,2.6. 1)= 8864

vy

1,6, 2,

4416

(1,2,7,4)=(4.7,2. 1)

(5,2,'5, 2)=10512
(4,3,5,2)=18976

(2,5,2,5)
(2,5,3,4)
(2,5,4,3)
(2,5,5,2)

(2,6,0,6)

3, 8)=(8,3,1, 2)=
(7.4.1,2)

1,

3.6, 1)=16064

4,
6,4,3)=(3,4.6. 1

4, T=

24320
29568
28416

1,

9, 2. 1)=11888

(2.

(1,2,9,2)
(1, 2,10, 1)=(

28224
33024

(6,0,6,2)= 5024

(2,6, 1, 5=(5, 1, 6, 2)=10048

(3,4,5,2)

2,5,6. 1)

5, 2)=(

1)=16008 (1,6,

1,10, 2,
(10, 0, 3, 1)

2)= 3072

2)= 58

(

(1,6,6, 1

108

0,10)=

(1,3,

&
=]
[=%

vy

(6,07, 1)= 4728 7, 4)=(4,7,1,

1,7,0,6)

8, 3)=( 3, 8, 1, 2)=10080

2,1,

=(38,2,3,

1, 3,2, 8)

C. Traverso
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(3,1, 8,2)=18200
(3,0,9, 2)=13692

(11, 0, 0, 3)
(10, 1, 0, 3)
(9,2,0,3)

(2,8, 1,3

(5,5,2,2)= 4608
(4,6,2, 2)= 8640
(3,7.7,2)=14304

(2.2,5,5

6
2

825

2
(4,0,9, H=1420

=(2,3,8, )=

(1,8,3,2)
(1,90, 4

(1,9,1,3)

=(1,9,3, 1)=20128

(1,3,9. 1

(1,4,0,9

(2,9,0,3)

(2,2,6,4)
(2.2,7, 3

324
648
1266

(9,0, 4, D=

44
88
76

352

(3,0,0.11)

21412
24248

(3,0.10, 1)=1755

(3.1.9.1)

(2,2,.9. 1

1, 4,

1,4, 1, 8)=( 8,

(3,0, 1,10
(3,0,2,9

20240

2,8,2)=(2,8,2,2)

3.0.9

(2,
(2,

(1,9,2,2
(1,10, 0, 3)

(1,10, 1, 2)

(7,2, 4, =

(1,4,2,7)

432

(9,0, 3.2)=

2

6, 3,4, 1)= 2592

(1,4,4,5=(5,4,4, )= 5184

=(

(3,0,3,8=(8,3,0,3)
(3,0,4.7

864
1728

(2, 1,10, 1)=19704
(2.0,11, D=1

= 704

(7,4,0,3)

)=

(7.2.3,2

(2,3,2,7)

5396

(1,1, 0,2)

=(4,5,4, = 9600

(1,4,5, 4




(Continued).

TABLE 2.

(5,0,5, 4)= 4048
(9,0,0,5)
(8,1,0,5)
(7,2,0,5)

(4,5,0,5
(50,0,9
(5,0,1,8

(6, 4,0, 4)= 1376
(5,5, 0, 4)= 2752

(4,6, 0, 4)= 5168

(4,0, 4,6)
(4,0,5,5)
(4,0,6,4)
(4,1,0,9

(4,1, 1,8

(7,1, 3, 3)= 209
(6,2, 3, 3)= 4192
(5, 3,3, 3)= 8384
(4, 4, 3, 3)=15104

(3,3, 1,7

1408
2816

(6,5,0, 3)=
(5,6,0,3)
(4,7,0,3)

(3,0,5,6)
(3,0,.6,5)
(3,0,7,4)
(3,0,8,3)

(3,
(3,

137
274

(3,3,2,6)
(3,3,3,9
(3,3,4, 4
(3,3,5,3)

5360

(3,8,0, 3)= 9184

= 548
(6,3,0, 5= 109

(5,0,2,7
(5,0,3,6)
(5,0,4,5)

258
516

(7,2, 1, 4= 1032
(6,3, 1, 4= 2064

(5,4,1, 4= 4128

(9,0, 1,4

(81,1, 4=

22720

(7,0, 4, 3)= 2304

(3,4,1, 6)=(6, 1, 4, 3)= 4608

(3,4,2,5
(3,43, 4
(3,4,4,3)

(3,5,3, 3=

132
264
528
1056

(6, 4, 1, 3)= 2112

(.5, 5,1, 3)= 4224

(4,6,1,3)

(10, 0, 1, 3)=

1, 0,10)=

1,1,9
(3,1, 2,8
(3,1,3,7
(3,1, 4,6)

= 2192

(5,4,0,5)

(4,1,2,7

(3,4,0,7

(9 1,1, 3)=

376
752

(6, 2, 1, 5)= 1504
(5,3, 1, 5= 3008

(5,1,0,8=(8,0,1, 5)=

(51,

4,1, 3,6)
(4,1,4,95)
(4,1,5,4)
(4,2,0, 8

(

(8,2 1,3)=

(7, 1,1, 5)=

1,7

(5,2, 4, 3)= 9216

(7,3, 1, 3)=

(4,5, 1, 4)= 7584 (5,1,2, 6)=
(5,1,

16640
24576

(6,0, 5, 3)= 4152

(4,3,4,3)

3, 5)=

704

(4,2,1, D=(17,2,1, 4= 1408

(8,0, 2,4

, 5)=

(3,1,

(3,5,0,6)

= 848

(7,0,2,5)

(5,2,0,7)

7904

(3,1, 6, 4):

New Schubert Tables
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