CHAPTER 2

ASYMPTOTIC PROPERTIES OF
WEIGHTED EMPIRICALS

2.1. INTRODUCTION.

Let, foreach n> 1, #ny, ...., 7nn be independent r.v.’s taking values in R()), 1]
with respective d.f.’s Gy, ....,Gon and dpy, ..., don be real numbers.
Define

(1) Wa(t) =i§:31dni{l(nni <t)—Gui(t)}, 0<¢t<l.

Observe that both V; of (1.4.1) and W4 belong to D[0, 1] for each n and
for any triangular arrays {hpj, 1 {i<n}and {dni, 1<i<n}.

In this chapter we first prove certain weak convergence results about
suitably standardized W4 and Vi processes. This is done in Sections 2.2a
and 2.2b, respectively. Sections 2.3.1 uses the asymptotic continuity of a
certain Wq-process to obtain the asymptotic uniform linearity result about
V(-, u) of (1.1.2) in w. Analogous result for T(-, u) of (1.4.3) uses the
asymptotic continuity of a certain Vy-process and is proved in Section 7.2.

A proof of an exponential inequality for a stopped martingale with
bounded differences due to Johnson, Schechtman and Zinn (1985) and
Levental (1989) is included in Section 2.2b. This inequality is of general
interest and an important tool needed to carry out a chaining argument
pertaining to the weak convergence of V.

Section 2.4 treats laws of iterated logarithm pertaining to Wy, the

weak convergence of Wy when {n;} arein [0, 1]®, the weak convergence of
W4 w.r.t. some other metrics when {7;} arein [0, 1], an embedding result
for Wgq when {7} are ii.d. uniform [0, 1] r.v.’s, and a proof of its
martingale property. It also includes an exponential inequality for the tail
probabilities of w.e.p.’s of independent r.v.’s. This inequality is an extension
of the well celebrated Dvoretzky, Kiefer and Wolfowitz (1956) inequality for
the ordinary empirical process. These results are stated for the sake of
completeness, without proofs. They are not used in the subsequent sections.

2.2. WEAK CONVERGENCE
2.2a. W4 — Processes.

In this section we give two proofs of the weak convergence of suitably
standardized {Wq} to alimitin ([0, 1]. Accordingly, let
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Vq-Processes

(1) Ga(t) := 2 dFi Gui(t), 0¢t<,
and
(2) Cals, t) := iijil d2; [Gui(sAt) — Gni(s) Gui(t)], 0 <s t< L.

Let & denote the supremum metric.

Theorem 2.2a.1. Let {7ni}, {dni} and {Gni} be as in Section 2.1.
In addition assume that the following hold:

(N1) 1% :=i§-31 d,21i =1, forall n>1.
2
() lim, o lim sup, SUP) (15 [Ga(t + 6) — Gq(t)] = 0.

Then, for every € > 0,

(i) lim, o lim supy P(I suf JIWd(t) —Wy(s)|] >¢€)=0.
t-s| <

(i) Moreover, Wq 3 some W on (D[0, 1], &) if and only if for every
0<s,t<1, Cq(s,t) converges to some covariance function C(s, t).

In this case W 1is necessarily a continuous Gaussian process with
covariance function C and W(0) =0 = W(1).

Remark 2.2a.1. Perhaps a remark about the labeling of the conditions
is in order. The letter N in (N1) and (N2) stands for Noether who was the
first person to use these conditions to obtain the asymptotic normality of
certain weighted sums of r.v.’s. See Noether (1949).

The letter C in the condition (C) stands for the specified continuity
of the sequence {G4q}. Observe that the d.f.’s {Gi} need not be continuous
for each i and n; only {Ggq} needs to be equicontinuous in the sense of
(C). Of course if {7;Gi} are i.i.d. G then, because of (N1), (C) is equivalent
to the continuity of G. o

The proof of the theorem will follow from the following {wo lemmas.
Lemma 2.2a.1. Forany 0<s<t<u<l andeach n>1
E|Wa(t) — Wa(s) | *| Wa(u) - Wa(t)
(3a) < 3 [Ga(u)-Ga(t)l[Ga(t)— Ga(s)]-
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(3b) < 3[Ga(u) — Ga(s)]*
Proof. Fix 0<s,t,u<1 andlet
pi = Gi(t) — Gi(s), ai = Gi(u) — Gs(t),
ai=Is<7ni<t)—p;, Bi=It<n<u)—qi; 1<i<n

Observe that Ea;=0=E f; forall 1<i, j<n, {a;} areindependent as
are {f;} and that a; is independent of f; for i# j. Moreover,

Wq(t) — Wq(s) = Bidiai, Wg(u) — Wq(t) = Z; difs.
Now expand and multiply the quadratics and use the above facts to obtain

(4)  E|Wa(t) — Wa(s)|*| Wa(u) — Wq(t) |2

=3 diEdA + 53 dt d} Bl EA} + 23 2 d? d? E(asps) E(g5 B;)-

1

But
Eo? = pi(L — py), Ef} = qj(1 - qj),
Eaif = (1-p:) piat + (1 - 05)” @i} + pias(1 — a1 — p3)
<{(1-ps) + (1 —qi) + (1 —qi —pi)} piai
< 3pidi,
E(aif:) = — (1 —ps) pigi — (1 — qi) qiPi + Piqi (1 — Qi — p3)
= —pigi , 1<i<mn, 1<j<n.
Therefore,
(5) LES (4) < 3{5: d1 pias + 3,8 dld] pigs} = 3[%: dipd [5; df qi]

This completes the proof of (3a), in view of the definition of {p;, q;}. That
of (3b) follows from (3a), (1) and the monotonicity of the G;, 1<i<{n. o

Lemma 2.22.2. For every ¢ > 0 and s< u,
(6) P[sup, ¢y, |Walt) — Wa(s)| > o
<k € [Ga(u) — Ga(s)]® + P[|Wa(u) — Was)| > ¢/2]
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where K does not depend on €, n or on any underlying quantity.
Proof. Let 6 =u—s, m > 1 be an integer,
(7) ¢ = Wa((i/m)6 + s) - Wa(((j—1)/m)6 +5), 1<j<m,

k
Sk =j§l§j , M, = ma.xISkSm | Sk|.

The right continuity of Wq4 implies that for each n and each sample path,
Mp — sup{|Waq(t) — Wa(s)|; s<t<u} asm — o, w.p.1. In view of Lemma
2.2a.1, Lemma A.1 in the Appendix is applicable to the above r.v.’s {¢;}
with y=2, a=1 and

uj = 32{Ga((/m)8 + 5) — Ga(((i—1)/m)s +5)}, 1¢j<m.
Hence (6) follows from that lemma and the right continuity of Wg. o

Proof of Theorem 2.2a.1. Fora § > 0,let 1 = [5_1], the greatest
integer less than or equal to 1/6. Define t; =j§, 1< j<r and to=0. Let
I'j = Wq(tj) — Wa(tj-), 1<¢j<r. Then

P(suplt_s|<6 |[Wa(s) —Wa(s)| > ¢€)
I
< B Plsupy. coce; | Wals) = Walti-)| 2 ¢/3]
I 92 r
< Ke j§l [Ga(t;) — Ga(tj-)]” + j{311’[|I‘j| > ¢/6]
<re 2 sup [Galt + 8) — Ga(t)] + 5 P[|T;| 2 ¢/6]
0<t<1-§ 1=1

(8) = In(6) + IIa(6), (say).
In the above the first inequality follows from Lemma A.2 of the Appendix,

the second inequality follows from Lemma 2.2a.2 above and the last
inequality follows because, by (N1),

T
(9) 2, [Ga(ti) = Ga(tj-1)] € Ga(1) = 1.
Next, observe that
(10) o} := Var(Ty) = % dHGi(t;) — Gi(tj-)} {1 - Gi(t;) + Gi(tj0)},
< Ga(tj) — Ga(tj-1), 1<jgr,
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and, by (9), that
(11) 2 aJ <UD ey 5 [Ga(t + 8) —Ga(t)], all r andall n.

Furthermore, (N1) and (N2) enable one to apply the Lindeberg—Feller
Central Limit Theorem (L—-F CLT) to conclude that ;T —2Z,ZaN(0, 1)
r.v. Therefore, for every 6> 0 (or r < o)

(12) |0a(8) =B (12 2 (¢/6)07")] —0 a5 n—a.

By the Markov Inequality applied to the summands in the second term of
(12) and by (11),

(13) lim supy TIa(8) ¢ 3 lim supn 3 (60;/¢)* (Ez* = 3)
J =
ke * lim supy SUP ¢4¢1-5 [Ga(t + 6) — Ga(t)]-
The result (i) now follows from (13), (8) and the assumption (C).

Proof of (ii). Suppose Cq — C. Let m be a positive integer,
0<ty..,tn<1 and ay, ..., ap be arbitrary but fixed numbers. Consider

(14) Th :=_§l aj Wa(t;) ='§1 d; Vi
J: 1=
where
Vi :=El ai{I(m < t5) — Gi(t;)}, 1<i<n.
j=
Note that
(15) |vi|g_§ laj| < o, 1<i<n.

Also, Var(T,) — o = E E  3iar C(tj, tr). In view of (N1) and (N2), the
L-F CLT yields that Tn —3 N(0, 1). Hence all finite dimensional

distributions of Wgq converge weakly to those of a Gaussian process W
with the covariance function C and W(0) =0 = W((B In view of (i), this
implies that Wq 3 W in (D[0, 1], ) with W denoting a continuous
Gaussian process tied down at 0 and 1.

Conversely, suppose Wg 3 W. By (i), Wisin ([0, 1]. In
particular the T, of (14) converges in distribution to T :=,|§n5l aj W(t;).
J:
Moreover, (15) and (N1) imply that, foralln > 1,
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ETS =BG d)t = 5 dt B+ 33 b i3 Bt e ¢ 3(j5'_51| ai|)?,
Therefore {T,2,, n > 1} is uniformly integrable and hence
2 m m m m
ET;, =j2-:1 kgl aj ax Cq(tj, tx) — jgl k2-:1 aj ax Cov[W(t;), W(ty)]

for any set of numbers 0 < {t;} < 1 and any finite real numbers aj, ..., ap.
Hence

Ca(s, t) — Cov[W(s), W(t)] = C(s, t) forall 0<s,t < 1.

Now repeat the above argument of the "only if" part to conclude that W
must be a tied down Gaussian process in C[0, 1]. o

Another set of sufficient conditions for the weak convergence of {Wgy}
is given in the following

Theorem 2.2a.2. Under the notation of Theorem 2.2a.1, suppose that
(N1) holds. In addition, assume that the following hold:

(B) nmax, ;. a2 = 0(1).
and
(D) n 1y Gni(t) —t is nonincreasingint, 0<t <1, n> 1.

Then also (i) and (ii) of Theorem 2.2a.1 hold.
Remark 2.2a.1. Clearly (B) implies (N2). Moreover

[Ga(t + &) — Ga(t)] ¢ n max; df [n7'%; {Gi(t + 6) — Gi(t)}]
= n max; d2 [n72%; {Gi(t + 6) — (t + 8)}
-n71%; {Gi(t) — t} + 4]

<nmax;d36 0<t<1—4, by (D).
Thus (B) and (D) together imply (N2) and (C). Hence Theorem 2.2a.2
follows from Theorem 2.2a.1. However, we can also give a different proof of
Theorem 2.2a.2 which is direct and quite interesting (see (19) below). This
proof will be based on the following three lemmas.

Lemma 2.22.3. Under (D), for all n > 1,
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(16) E|Wq(t)—Wa(s)|* <k3 {3t —s)2 + (t —s)n™!}, 0¢s,t¢1

2 _ 2,
where k4 :=n maxlﬁign dni.

Proof. Suppose 0 < s<t<1. Let a; and p; be as in the proof of
Lemma 2.2a.1. Using the independence of {a;} and the fact that Ea; =0
for all 1 <i<n, one obtains

E|Wq(t) — Wa(s)|* = B(3d; as)*

=% d} Eof + 33,3 d? d? Ea? Ed?
it] ] .
=3 d} {Ea} — 3 E(o?)} + 3(%; d? Ea?)?
= %;df pi(1—ps) (1 —6pi(1 —py)) +
+3 (8 dd pi (1 - pa)?
2 (.2 -1 2
(17) <kd {n “Tipi+3(n “Tipi)}
But s <t and (D) imply
0« n—lzi pi= n_lzi [Gi(t) — Gi(s)] < (t —s).

Hence,
Lhs. (16) < k3 {n }(t —s ) +3(t —5)%}, 0<s<t<l

The proof is completed by interchanging the role of s and t in the above
argument in the case t <s. o

Next, define, for (i-1)/n<t<i/n, 1<i<n,
(18) Zq(t) = W4((i-1)/n) + {nt - (i-1)} [Wq(i/n - Wq(i-1)/n].
Lemma 2.2a.4. The assumption (D) implies that

(19) E|Za(t) — Za(s)|* < k3 144|t —s |2, 0¢s,t<1, n> 1.

If, in addition, (N1) and (B) hold, then,
(20) supy | Wa(t) — Zq(t)]| = op(1).

Proof. Let n>1 and 0<s, t <1 be arbitrary but fixed. Choose
integers 1 <1i, j<n such that
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(21) (i-1)/n<s<i/n and (j-1)/n <t < j/n.
For the sake of convenience, let
bion = |Za(m/n) — Za(k/n)| = [Wq(m/n) — Wa(k/n)|,
by, n := 4k3 [(m—k)/n]2, m, k integers;
Au,v = |Za(u) — Za(v)], 0<u, vl
From (16),

(22)  Eéc,n < k3 {3(m-k)?/n? + 072 |m-k|} < 4k3 [(m-k)/n]? = bi,n.

The proof of (19) will be completed by considering the following three
cases.

Case 1. i < j-1. Then because of (18) and (21),
As,t < ma.X{&i,j-l, 6i’j) 6i-1aj-1) 5i-lsj}

which entails that

(23) E Af, ¢ B{6hia+ oLy + g + 61
< biyj-1 + biyj + bi-pj-1 + biogyj (by (21))
<4 biyj = 16 13 [(-(-1)/a]?
where the last inequality follows from 0 < j-i-1 < j-i < j-(i-1).
Note that (21),i < j-1 and i, j integers imply that
(24) 3(t-5) > [-(-1)]/n.
From (23) and (24) one obtains
(25) EA%,: <144 %3 (t - 5)%
Case 2. i = j. In this case (i-1)/n <s, t <i/n. From (18) one has
Ag,t =n|t - 8| 6i-1,1
so that from (22)
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(26) EAY, < nf(t - s)takdn 2 <4k (4 - 5)2
The last inequality follows because n(t -s) < 1.
Case 3. i = j-1. By the triangle inequality
Ag,t € 2 max(As,im, Aimt )-

Thus by Case 2, applied once with s and i/n and once with i/n and t,
one obtains

E Agat S 24{EA§H/II + EA%/Il)t }

(27) <2k {(i/n-8)?+ (t-i/n)?} <27 K3 (t -5)
In view of (27), (26) and (25), the proof of (19) is complete.

To prove (20), let d;. = max(0, d;), di- = max(0, -d;). Then one has
d; = dj» — dj- Decompose Wq and Zq accordingly. Note that max(d?-l ,,
d2)=d% + d%.=d% 1¢i<n. Thisand (N1)imply that 7q,<1, 7a_< 1.

It also implies that if (N2) is satisfied by the {d;} then it is also satisfied by
{dis, di-}. By the triangle inequality,

(28) IWa — Zall | < [Was —Zaull | + IWa-—Za ]| -

Moreover dj.Adj- > 0, for all i. Therefore, it is enough to prove (20) for
d; 20,1 <i<n. Accordingly suppose that is the case. Then

(29) [Wa—Zal_ < Ui+ U,
where
(30) U= max sup  |Wa(t) - Wa((i - 1)/n)],

1< i<n (i-1)/n<t<i/n

U; = max sup |Wa(t) — Wq(i/n)|.
1< i<n (i-1)/n<t<i/n

For (i-1)/n<t<i/n, and di>0,1<i<n,
|Wa(t) = Wa(i/n)| < |2 dj I(t < nj <i/n)] +; d; [Gj(i/n) — Gj(t)]

< |Wa(i/n) — Wq((i-1)/n)| +
+ 2% d; [Gj(i/n) — Gj((i-1)/n)]

(31) < bi-1,1 + 2 max; dj, by (D).
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Therefore, by (22), (30), (31) and the Markov inequality, for every
€ > 0 and for n sufficiently large such that 2 max; dj < ¢, the existence of
which is guarenteed by (B),

P(U; > €) < P(max; 6i-1,i 2 € — 2 max; d;)
-4 n
< (€ - 2 max; dj) 'El Eé‘%_l,i
i=
(32) <(e-2max;dy) ™ -4kint—0.
Exactly similar calculations show that #; = op(1). o

Proof of Theorem 2.2a.2. Observe that Z4(0) = 0 = Zg4(1) and that
Zq € C[0, 1] for every n > 1 and each sequence {d;}. Hence by (19) and
Theorem A.2 of the Appendix, {Zq} is tight in C[0, 1]. Thus claim (i)

follows from (20). To prove (ii) just argue as in the proof of (ii) of Theorem
2.2a.1 above. o

The following corollary will be useful later on. To state it we need

some more notation. Let Fpy, ..., Fon be df’son R and X,; bear.v.
with d.f. Fpi, 1<i< n. Define

(33)  H(x) :=n 1% Fu(x), xeR  H 1(t):=inf{x; H(x) > t}, 0<t<1;
Loi(t) := Fos(H1(t)), 1Ci<n;  Lg(t) := % d2; Lag(t),
Wat) := i dni{I(Xai < H1(t)) = Las(t)}, 0<t<l

Corollary 2.2a.1. Assume that

(34) Xy, ..., Xnn ore independent r.v.’s with respective d.f.’s Fuy, ..., Fon
on R

In addition, suppose that {dni}, {Fni} satisfy (N1), (N2) and

(c*) lim,  lim sup, sup [La(t + 6) — Lqg(t)] = 0.
0<t<1-6

Then, for every € > 0,
* *
(35) lim,  lim supy P( SUP|4 41 ¢s |[Wa(t) — Wgy(s)| 2 ¢€) =0.

Proof. Follows from Theorem 2.2a.1(i) applied to 7; = H(Xj),
Gj=L; 1<i<n. o

Remark 2.2a.3. Note that if H is continuous then n ! ¥ Lai(t) = t.
Therefore,
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(36) sup [La(t + 6) — La(t)] < n max; d; 6.
0<t<1-§

Thus, if we strengthen §N2) to require (B) then (C*) is a prior: satisfied.
That is, the conditions of Theorem 2.2a.2(i) are satisfied.

If Foi=F, F acontinuous d.f. then Lyi(t) =t. Therefore, in view

of (N1), (C*) is & priori satisfied. Moreover Cq(s, t) := Cov(Wa(s), Wa(t))
=8§(1—1t), 0<s<t<1. Therefore we obtain

Corollary 2.2a.2. Suppose that Xpy, . .. ,Xon are i.i.d. F, F a

continuous d.f.. Suppose that {dni} satisfy (N1) and (N2). Then Wi s B
in (D[0, 1], &) with B a Brownian bridge in ([0, 1]. o

Observe that dg; = n /2 satisfy (N1) and (N2). In other words the
above corollary includes the well celebrated result, v.i.z., the weak
convergence of the sequence of the ordinary empirical processes.

Note. A variant of Theorem 2.2a.1 was first proved in Koul (1970). The above
formulation and proof is based on this work and that of Withers (1975). Theorem 2.2a.2
is motivated by the work of Shorack (1973) which deals only with the weak convergence

of the W _process, the process Wq with dpj = n-l/ 2. The sufficiency of condition (D)
for (16) was observed by Eyster (1977). o

2.2b. Vp-processes

In this subsection we shall investigate the weak convergence of the r.w.e.p.’s
{Vu(x), x €R} of (1.4.1). To state the general result we need some more
structure on the underlying r.v.’s.

Accordingly, let (2, 4, P) be a probability space and G be a d.f. on
R. For each integer n > 1, let ((ni, hni, 6ni), 1 <i < n, be an array of
trivariate r.v.’s defined on (2, A) such that {(nj, 1 <i< n} are iid. G
r.v.’s and (p; is independent of (hyj, 6ni) for each 1 < i< n. Furthermore,
let {4ni} be an array of sub o—fields such that An;j C An,is1, Ani C Anstsi, 1
<i<mn, nl; (hny, bn1) is An-measurable; the r.v.’s {(ng,-.,Cnsj-1; (Bai,
bni), 1 <1< j} are Apj-measurable, 2 < j<n; and (nj is independent of
Anj, 1 < j < n. Define

1) Vi(x):= n‘lélhni I(Coi € x+bni),  Va(x) := n-lii:)lhni 1(¢ai € X),
-4 D 4 D
Ju(x) :=n li{JIE[{hni I(Cai € x+601)} | 4ni] = 0 1i§1 ha; G(x+6ni),

* -1 n
Ju(x) :=n i§1 hni G(x),
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Un(x) == n'/[Va(x) - A(x)], Un(x) = o"/*[Va(x) — Ji(x)], xe€R.
We are now ready to state the following

Theorem 2.2b.1. In addition to the above, assume that the following
conditions hold:

(A1) sup y, max; |hai| < ¢, as., for some constant ¢ < w.
(A2) max; | 6ni| = op(1).

(A3) 1 Y23 |hyi 6ui| = Op(1).

(A4) G has a uniformly continuous density g w.r.t. A, and g > 0, a.e.
Then

(2) |03 ~ Uil ;= op(1).

If, in addition,

(A5) n 1% |hai|2 — o in probability, o ar.uv.,

then .

(3) Uh » a-B(G), Un32a-B(G)

where B is a Brownian Bridge in C[0, 1], independent of a.

The proof of (2) uses a restricted chaining argument and an
exponential inequality for martingales with bounded differences. It will be a
consequence of the following {wo lemmas.

Lemma 2.2b.1. Under (A1) —(A4), Ve >0 and for r=1, 2,
. -1/2 & r . Ty _
lim, P( sup iI_Jl|hni| | G(y + 6ni) — G(x + bni)| < 2¢7€) =1,
where the supremum is taken over the set {x,y € R; n!/ 2| G(x) — G(y)]| < €}
Proof. Let € >0, q(u) := g(G_l(u)), 0<u<l;  on:=max; ||,

wn = sup{|q(u) - q(v); [u - v| ¢ @™ V/%}

= sup{|g(x) - &)|; |G(x) - G(y)|¢ en” 2},
Ap :=sup {|g(x) - g(¥)|; |y -x| < m}
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By (A4), q is uniformly continuous on [0, 1]. Hence, by (A2),
(4) An=o0p(1), wn=o0(1).
But
supn /23 |hi| |G(y + &) - Glx + 6)]
<supn /23 hsl” |G(y) - G| +
#0728 ||| & [wn + 28]
<c e+ Op(1) - op(1), by (A3) and (4).
This completes the proof of the Lemma. 0
Lemma 2.2b.2. Let {F;, 1> 0} be an increasing sequence of o— fields,
m be a positive integer, T { m be a stopping time relative to {F;} and {¢&;,

1<i<m} be a sequence of real valued martingale differences w.r.t. {Fi}. In
addition, suppose that

(i) |éi| <M < w, forsome constantM < w, 1<i<m,
and

,
(ii) i2=71 E(§2i|}'i-1) <L, fora constant L < .

Then, for every a > 0,
T
(5) P(] '21 &i| > a) < 2 exp{—(a/2M) arcsinh(Ma/2L)}.
1=
Proof. Write 0% = E(§2i|}'i-1), i > 1. First, consider the

Case 7 =m:

Recall the following elementary facts: For all x € R,

(6a) exp(x) —x —1 < 2(cosh x — 1) < x sinh x,
(6b) (sinh x)/x is increasing in |x],
(6¢c) x < exp(x —1).

Because E(&;|Fi-1) =0 and by (i),fora § >0 andforall 1<i<m,
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E{[exp(ﬁfi) - 1] I?i-l} < E{8¢; sinh (5&) Ifi-l}, by (63.)

(7) < 0% §sinh(6M)/M, by (6b).

Use a conditioning argument to obtain
Eexp{ﬁii‘?1 ¢}
= Blexp(8 3, €) E{exp(6 £a)|Fa-]
< Blexp(4 3, &) exp(E{exp(6 &) |Fa-1} — 1) by (6¢)
< Blexp(5 |3, £1) exp( ok 6/M-sinh(sM))), by (7
< Bexp(s 3, &) exp{(L —Z, ) -6/M-sinh(BD}),

it
Observe that L —_El o3 is 7;-2 measurable, for all j > 2. Hence, iterating
i=

the above argument m — 1 times will give
Bexp{d 3 ¢} ¢ exp{L - 6/M-sinh(6M)}.
Now, by the Markov inequality, V a > 0,
P(é1 €12 2) < Bexp{d( 3 & )} < exp{4 [L/M-sinh(6M) —a]}.
The choice of § = (1/M) arcsinh(Ma/2L) in this leads to the inequality
p(ii'__i1 ¢1> a) < exp{(-a/2M) arcsinh(Ma/2L)}.

An application of this inequality to {-¢;} will yield the same bound for

P(,lini1 £; < -a), thereby completing the proof of (5) in the case 7= m. Now
1=
consider the
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general case 7 < m:

Let xj = &I(j € 7). Because the event [j < 7] € Fj., it follows that
{x;, F;} satisfy the conditions of the previous case. Hence,

p(| iz::1 & 22) = P(| & x| 2 2) € exp{(-a/2M) arcsinh(Ma/2L)}. ©

Proof of Theorem 2.2b.1. For the clarity of the proof it is important
to emphasize the dependence of various underlying processes on  n.
Accordingly, we shall write Vy, Uy etc. for V4, Un etc. in the proof.

On R define the metric d(x,y) := |G(x) — G(y)|1/ 2 This metric
makes R totally bounded. Thus, to prove the theorem, it suffices to prove

(a) V¥ yeR, | Un(y) = Ua(y)| = op(1),
() VYe>036>007

(i) lim supn P( sup | Un(y) — Un(x)| > €) <¢,
d(x,y)<é

(ii) limsupn, P( sup | U;(y) - U;(x)l >¢€) <e
d(x,y)<é

Proof of (a?. The fact that Up-Up is a sum of conditionally centered
bounded r.v.’s yields that

Var (Un(y)-Ua(y)) < En7' 5: 03 [G(y + &) = G(y)| = o(1),
by (A1), (A2), (A4) and the Dominated Convergence Theorem.
Proof of (b)(i). The following proof of (b)(i) uses a restricted chaining

argument as discussed in Pollard (1984: p. 160—162), and the exponential
inequality of Lemma 2.2b.2 above.

Fixan € > 0. Let ap:= [nl/ 2/ €], the greatest integer less than or
equal to Y/ 2/ ¢, and define the grid

Fe={y;; Gy =je /2 1<jcan}, n2lL
Also let

Zi(x):=1(¢i<x+ 6:) —G(x + &), x€eR, 1<i<n.
Write hj = hij, —hi., hi, = max(0, h;), so that
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Un(x) = n_l/zii_ilhi‘ Zi(x) — n_1/2i)r_ilhi_ Zi(x) = Us(x) — Ua(x), say.

Thus to prove (b)(i), by the triangle inequality, it suffices to prove it for Us
processes. The details of the proof shall be given for the U process only;
those for the U, being similar.

Next, we need to define the sequence of stopping times

X 32 2
2 (01) B{[Z(x)-Zi(y)]" | 4i}
T4 := n A max {k>1; max 1L

< 3ec2n}.
X, Y€ &*(x,y)

Observe that 74 < n. To adapt the present situation to that of the Pollard,
we first prove that P(74 < n) — 0 (see (8) below). This allows one to work
with oY/ 2('r{;)ll 2 Uy, instead of Uj. By Lemma 2.2b.2 and the fact that
arcsinh(x) is increasir?g and concave in x, one obtains that if x,y in 74
are such that d*(x, y) > ten /2 then

P 2(r) 2 ULy (x) = U2y ()] 2 )

t2

<€ in ¢ T .
2cd2(x,y) arcsinh(1/(6¢€°c))}, forall t>0

<2exp {—

This enables one to carry out the chaining argument as in Pollard. What
remains to be done is to connect between the points in R and a point in 74,
which will be done in (9) below. We shall now prove
(8) P(t4 <n) —0.

Proof of (8). For yj, yxin 4 with yj < yx, dz(yj, Yi) 2 (k—j)en_l/z.
Hence, using the fact that (hi,)zg h?,

y 2 : (v 21 A ) (v
2 (0:)" E{[Zi(yx) — Za(yi)]"| 4}/ & (y5.5)
n -
¢ 2 b} [0+ &) - Glyj + &) {(k-)e} " n'/?

- n k-1
< {(k-j)e} " nt/? b h3 2 [Glyea+ &) - G(yr + 65)]
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<elnl? max Eh [G(Fre1 + 65) — Gy + 6)]-
1<I'<an i=1

Now apply Lemma 2.2b.1 with r = 2 to obtain

P( m

This completes the proof of (8).

1< na ]<a [ 2 (h“) E{[Zi(yx) - Zi(y;)] |11}/d2(y],yk)] < 3ec? n) — 1.

Next, for each xeR, let Vi, denote the point in 74, that is the
closest to x in d-metric from the points in 74, that satisfy vi, ¢ x. We
shall now prove: V € > 0,

(9) P(supx | Us(x) — U,*.(ij)| > 8ce) — 0.

Proof of (9). Now write V3, Ji for Vi, Ju when {(h;} in these
quantities is replaced by {hi.}.

The definition of yj , G increasing, and the fact that hi, < |hs| for
all i, imply that

supx |0/ 2[74(x) - Ji(y; )]
< may, 228 bl GO+ ) - Gys + 8]
An application of Lemma 2.2b.1 with r =1 now yields that
(10) P(sup |n"/2[Ji(x) - Ji(y; )]| > 4ce) —0.

But hj, 20, 1<i< n,implies that V3 is nondecreasing in x. Therefore,
using the definition of y;_,

n [ U(y; ) ~Ua(yi )] + Ja(yi 1) -Jays) =
= Va(yi 1) -Valys) € Va(x) —Va(y; ) € Va(yi, ) - Va(yi)

'1 2 + + + +
= 0 2 Ui(y; ) Uiy )] + Jalys, ) ~J(3)-
Hence,



2.2b WEAK CONVERGENCE 27
Vh-Processes

(1) sups |n Vi) Vil )| € 20y, | Uk(vsa) ~UR(v3)| +

+ 2y [0/ %15i(10) -RG)-
Thus, (9) will follow from (10), (11) and
(12) P( I%‘ﬁaJ Ua(y;+1)-Ua(yj)| > ce) — 0.

In view of (8), to prove (12), it suffices to show that

(13)  P(may, o AU (530) - Ugy ()] > e =0,

But,
3o o 1/2
1hs.(13) ¢ ¥ (1 2, b (25300 - )]l > cen'/?,

Now apply Lemma 2.2b.2 with ¢§; = hi, [Zi(yje) - Zi(y;)], Fia = 4, 7= 74,

M=c,a= cen1/2, m = n. By the definition of 73, L = 3c2¢? n'/?

. Hence
by Lemma 2.2b.2,

+

Tn 1/2
1/2 .
P(| i2=31 hi. [Zi(yj+1)-Zi(y;j)]| > cen / ) £ 2 exp|[- n_2_g arcsinh(1/6¢)).
Since this bound does not depend on j, it follows that
- 1/2
Lhs.(13) ¢ 26 n'/2 expl— E€ arcsinh (1/6€)] — 0.

This completes the proof of (9) for Us. As mentioned earlier the proof of (9)
for Uy is exactly similar, thereby completing the proof of (b)(i).

Adapt the above proof of (b)(i) with 6; =0 to conclude (b)(ii). Note
that (b)(ii) holds solely under (A1) and the assumption that G 1s continuous
and strictly increasing, the other assumptions are not required here. The
proof of (2) is now complete.

The claim (3) follows from (1), (b)(ii) above, Lemma A.3 of the
Appendix and the Cramer—Wold device. o
As noted in the proof of the above theorem, the weak convergence of

Us holds only under (A1), (A5) and the assumption that G is continuous
and strictly increasing. For an easy reference later on we state this result as
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Corollary 2.2b.1. Let the setup of Theorem 2.2b.1 hold. Assume that

G s continuous and strictly increasing and that (A1), (A5) hold. Then, U;
3 a-B(G), where B is a Brownian bridge in ([0, 1], independent of a. o

Remark 2.2b.1. Consider the process #p(t) := U;(G_l(t)), 0<t<l.

Now work with the metric |t—s| Y2 on [0, 1]. Upon repeating the arguments
in the proof of the above theorem, modified appropriately, one can readily
conclude the following

Corollary 2.2b.2. Let the setup of Theorem 2.2b.1 hold. Assume that
G is continuous and that (A1), (A5) hold. Then {lUn} * a-B, where B isa
Broumian Bridge in €0, 1], independent of a. o

Remark 2.2b.2. Suppose that in Theorem 2.2a.2 the r.v.’s 7yy, ...,
Non are ii.d Uniform [0, 1]. Then, upon choosing hp; = ot/ 2dni, Cni =

G 1(nni), one sees that Uy = Wq4(G), provided G is continuous. Moreover,
the condition (D) is a priori satisfied, (B) is equivalent to (A1) and (N1)
implies (A5) trivially. Consequently, for this special setup, Theorem 2.2a.2
is a special case of Corollary 2.2b.2. But in general these two results serve
different purposes. Theorem 2.2a.1 is the most general for the independent
setup given there and cannot be deduced from Theorem 2.2b.1. o

Note: The inequality (5) and its proof appears in Levental (1989). See
also Proposition 3.1 in Johnson, Schechtman and Zinn (1985). The proof of Theorem
2.2b.1 has its roots in Levental and Koul (1989) and Koul (1991). It was recently
generalized by Koul and Ossiander (1992) to include unbounded weights. o

2.3. ASYMPTOTIC UNIFORM LINEARITY (A.U.L.) OF RESIDUAL
W.E.P.s.

In this section we shall obtain the asymptotic uniform linearity (a.u.l.) of
residual w.e.p.’s. It will be observed that the asymptotic continuity property
of the type specified in Theorem 2.2a.1(i) is the basic tool to obtain this
result. Accordingly let {Xni}, {Fni}, {H} and {Lai} be asin (2.2a.33) and

define
(1) Sa(t, u) := i dni I(Xni < H(t) + catu),
Ld(t, u) := 3 dn; Fni(H-I(t) + c,’,iu),
Yd(t’ 11) = Sd(t’ ll) _ﬂd(t) 11), 0<t<1, ue [Rp)

where {cni, 1<i<n} are pxl vectors of real numbers. We also need
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(2a) S3(x, u) := %; dng I(Xni < X + caqu),
u3(x, ) := i dni Fai(x + caiu),

Yd(x, u) := Sa(x, u) — pd(x, u), —0<x<w, uekl

Clearly, if H is strictly increasing then Sg(x, u) = Sq(H(x), u). Similar
remark applies to other functions.

Throughout the text, any w.e.p. with weights dpn; = n /2

indicated by the subscript 1. Thus, e.g.,V -w < x<w, u€RP,

will be

(2b) S3(x, u) = 0% 55 I(Xas < x + oy w),
Y3(x, 0) = 02 % {I(Xni < x + cnitt) — Fai(x + casu)}.
Theorem 2.3.1. In addition to (2.2a.34), (Nl) (N2) and (C*) assume

that d.f.’s {Fni, 1 <i<n} have densities {fm, <1<n} w.ri A suchthat
the following hold:
(3a) lim, - lim supy 3% SUP|, L1¢s | fai(x) — fai(y)| = 0,
(3b) max||faif| <k < .
isn ®

In addition, assume that

(4) 123 lleaill = o(1)

and

(5) Zi ||dni cail| = O(1).

Then, for every 0 < B < o,

(6) sup |Sa(t, u) — Sa(t, 0) — u Bi du; €ai qni(t)| = 0p(1),

where qni:= fniH_l, 1 <1< n, and the supremum is taken over 0 <t <1,
[[u| < B.
Consequently, if H 1is strictly increasing on R, then

(7) sup |S§(x, 11) — Sd(x, 0)—u Ei dni Cni fni(x)| = Op(l).

where the supremum is taken over -o < x < o, ||ul| < B.
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Theorem 2.3.1 is a consequence of the following four lemmas. In these
lemmas the setup is as in the theorem.

In what follows, {B) = {uck®; |lu) < B}; sup stands for the
u
supremum over 0<t <1 and u € M{B), unless mentioned otherwise. Let

(8) Vd(t) := 3j dni Cni Qni(t)a
Ry(t, u) := Sa(t, u) — Sa(t, 0) —u wa(t), 0<t<1, uelP.
Lemma 2.3.1. Under (3), (4) and (5),

(9) sup | pa(t, u) — pia(t, 0) — ' wa(t) | = o(1).

Proof. Let 6, = B max; ||ci|}. By (3), {Fi} are uniformly
differentiable for sufficiently large n, uniformly in 1< i< n. Hence,

Lh.s. (9) < (Zi ||dici]|) max; SUP | y|<bn |fi(x) — fi(y)| = o(1),
by (3), (4) and (5). 0
Lemma 2.3.2. Under (N1), (N2), (C*), (3), (4) and (5),V u € ¥(B),

(10) sup | Ya(t, u) — Yq(t, 0] = op(1).
0<t<1

Proof. Fixa u € /(B). The lemma will follow if we show
(1) Ya(t, u) — Yg(t, 0) = op(1) foreach 0<t <1,
and
(i) VY e>0,andfor b=u or b=0,

lim_  lim sup, P( sup | Ya(t,b)— Yy(s, b)| 2 €) =0.
640 | t-s] <é

Since Yy(., 0) = Wz(.) of (2.2a.33), for b = 0, (ii) follows from
(2.2a.35) of Corollary 2.2a.1.
To verify (ii) for b= u, take #; = H(X; — c'iu), 1<i<n, in (2.2a.1).

Then Yj(-, u) = Wa() of (2.2a.1) and Gs(-) = F5(H 1(-) + ciu), 1i<n.
Moreover,
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(11) Sup sz:i d? [Fs(E Y (t+8) + ciu) = Fi(H1(t) + ciu)]
0<t<1-
< 2Bk max; ||ci| + sup [La(t+6) — La(t)], by (3)
0<t<1-6

=o0(1) as n — o, then §— 0, by (4) and (C*).

Hence (C) is satisfied by the above {Gi}. The other conditions being (N1)
and (N2) which are also assumed here, it follows that the above {mi and
;Wd satisfy the conditions of Theorem 2.23,.1.(2. Thus (ii) for b= u
ollows from Theorem 2.2a.1(i). Hence (ii) is proved.

To obtain (i), note that the

Var[ Ya(t, u) — Ya(t, 0)] < 55 47 |Fi(H1(t) + ciu) — F3(H (1))
< Bk max; ||ci, by (3),
= o(1), by (4).
This together with the Chebychev inequality yields (i) and hence (10). o

To state and prove the next lemma we need some more notation. Let
kni = ||caill, 1< i< n, and define

(12)  Sa(t, 0, b) = % dni I(Xai < B (t)+cniusb &ng),
pa(t, w, b) = E Sa(t, u, b),
Ya(t, u, b) = Sq(t, u, b) — pa(t, v, b), 0<t<1, uek?, beR

b < maf?:”(&m(,}nder (N1), (N2), (C*), (3), (4) and (5),V € > 0,

(13) lim,  lim supy P( sup |Y;(t, u, b) —Y;(s, u, b)| > ¢) =0.
- | t-s] <6
Proof. In Theorem 2.2a.1(i), take #; = H(Xi—c'iu—bni), 1<i<n. Then
* - ’
W4(-) = Yq(-, u, b) and Gjy(-)=FiH 1(-)+ciu+blci), 1<i<n.  Again,
similar to (11),
sup  [Ga(t+6) — Gq(t)] € 2k(B+b) max; ||ci|| + sup  [La(t+6) — La(t)]
0<t<1-6 0<t<1-6
= o(1), by (4) and (C¥).
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Hence (13) follows from Theorem 2.2a.1(i). o

Lemma 2.3.4. Under (N1), (N2), (C*), (3), (4) and (5),V €¢> 0
there is a 6> 0 such that for every v € J(B),

(4)  GmsupaP( sup  |Ra(t,u)—Ra(t, v)| 2 € =0,

t,||u—v||{é
where Rq 1s defined at (8).
Proof. Assume, without loss of generality, that d; > 0, 1 <i < n.

For, otherwise write dj = di, - di-, 1 <i< n, where {di., di-} are as in the
proof of Lemma 2.2a.4. Then Sq = 74.S4: - 74-Sd-, R4 = 7a+:Ra+ - T4 Ra-,

where 7(21, =3 Sdi,,)z, 7(21- =Y (di_)z. In view of (N1), 7q.< 1, 74-< 1.
Moreover, if {d;} satisfy (N2) and (5) above, so do {di., di-} because

d?vd? = d%, + d%. = d% 1 <i < n. Hence the triangle inequality will yield
(14), if proved for Rq. and Rg.. But note that dj.Ad;-> 0 for all i.

Now, |lu—v|| < § implies
(15) ~8ki + €1V < ciu € bk + ¢y, ki=|leill, 1<i<n
Therefore, because d; > 0 for all i,
(16) Sa(t, v, -6) < Sa(t, u) < Sa(t, v, §) for all t,
yielding
(17)  Li(t,u,v):= Sa(t, v, ~8) — Sa(t, v) — (u —v) va(t)
< Ry(t, u) — Ry(t, v)
< Sa(t, v, 6) — Sa(t, v) — (u—v) va(t) =: Lo(t,u,v).
We shall show that thereisa 6> 0 such that for every v € /(B),

(18) P( sup |Lj(t,gv)] 2 €) =o(1), i=12
b, vl <5

We shall first prove (18) for L. Observe that

* *
(19) | La(t,u,v)| < [ Ya(t, v, 6) — Ya(t, v, 0)]

* *. ’
+ I’J'd(ta v, 5) _#d(ty v, 0) I+|(U—V) Vd(t)l
The Mean Value Theorem, (3), and ||u—v|| < § imply
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* *
(20) sup| ua(t, v, 6) — pa(t, v, 0)| < 6k X; [|dicill,
sup| (w—v) ()] < k 63 [ldscs].

Let M(t) denote the first term on the r.h.s. of (19). ILe.,

M(t) = Ya(t, v, §) — Ya(t, v, 0), 0¢t<l.
(21) Claim: sgp|M(t)| = op(1).
To begin with,
Var (M(t)) < 55 d2 [Fi(H1(t)+civebrs) — Fi(H (t)+civ)]
< &k max; ki, by (33.), (3b),
= o(1), by (5).
Hence
(22) M(t) = op(1) forevery 0<t<1.

Next, note that, fora ¢> 0,

* *
IM(t) —M(s)| ¢ sup  |Ya(t, v, 6) — Yq(s, v, §)| +
t—sﬁ)(-y t—s|<y

* *
+ sup |Ya(t, v, 0) —Yq(s, v, 0)].
t—s?('y

Apply Lemma 2.3.3 twice, once with b = § and once with b = 0, to obtain
that V ¢> 0,

(23) lim lim supy P( sup |M(t) — M(s)] 2 €) = 0.
|t—s7<'y

But (23) and (22) imply the Claim (21).

Now choose § > 0 so that
(24) lim supy, 6k ¥ ||dsci|| < €/3. (use (5) here).
From (19), (20) and (21) one readily obtains
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lim supy, P( sup  |La(t,u,v)| 2 €) < lim supp P(sgp |M(t)]| 2 ¢/3) = 0.

t,||u—v||<d

This prove (18) for Lj;. A similar argument proves (18) for L; with the
same ¢ asin (24), thereby completing the proof of the Lemma. o

Proof of Theorem 2.3.1. Fixan ¢ > 0 and choosea 4> 0 satisfyin§

(242‘. By the compactness of M(B) there exist points vy, ..., v¢ in MB
such that for any u e M(B), [lu—vjl| < 6 forsome j=1,2, .., 1. Thus

lim sup, P( sup |Ra(t, u)| 2 €)

T
<% limsup, P( sup  |Ra(t, u) —Ra(t, vj)| 2 €/2)
=1 t, [ju—v;j||<
T
+j§_1l lim sup, P(sups |Ra(t, vj)| 2 €/2) =0
by Lemmas 2.3.2 and 2.3.4. o

Remark 2.3.1. Upon a reexamination of the above proof one finds
that Theorem 2.3.1 is a sole consequence of the continuity of certain w.e.p.’s
and the smoothness of {Fyi}. Note that the above proof does not use the
full force of the weak convergence of these w.e.p.’s. o

Remark 2.3.2. By the relationship

Rd(t1 ll) = Yd(t7 11) - Yd(t) 0) + #d(t: Il) _/"d(t) 0) —u Vd(t)
and by Lemma 2.3.1, (6) of Theorem 2.3.1 is equivalent to

(25) et ey il ) = Yl O] = 0)

This will be useful when dealing with w.e.p.’s based on ranks in Chapter 3. o
The above theorem needs to be extended and reformulated when

dealing with a linear regression model with an unknown scale parameter or
with M-estimators in the presence of a preliminary scale estimator. To that

end, define, forx,s € R, 0<t <1, ueRP,
(26) Sa(s, t, u) := X; dnil(Xni < (1+sn_1/2)H-1(t) + c;,in),
S3(s, x, ) := i dnil(Xni < (1450 Y2)x + cagu),

and define Yy(s, t, u), uq(s, t, u) similarly. We are now ready to prove
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Theorem 2.3.2. In addition to the assumptions of Theorem 2.3.1,
assume that

(27) ma.x'i,n Sllpx |x fni(X)l S k < o
Then

(28)  sup |Sa(s, t, u)-Sa(0, t, 0)-5: dnsfsn Y/ 2H Y(t)rensu}qni(t)| = op(1).

where the supremum is taken over |s| <b, ued(B),0<t < 1.
Consequently, if H 1s strictly increasing for all n > 1, then

(20) sup|S3(s, X, u) - S3(0, x, 0) - Bdns {50/ %x + casu}fui(x)| = op(1).
where the supremum is taken over |s|< b, ueM(B) and xeR.

Sketch of proof. The argument is quite similar to that of Theorem
2.3.1. We briefly indicate the modifications of the previous proof.
An analogue of Lemma 2.3.1 will now assert

sup| pa(s, t, u) - pa(L, t, 0) - {(n ™/ 28diqs(t)H1())s + u wa(t)}] = o(1).
This uses (3), (4), (5), (27) and (N1).

An analogue of Lemma 2.3.2 is obtained by applying Theorem

2.2a.1(i) to 7i:= Hs)()(1 - c1u)¢7n ), 1<1<n, Op = (1+sn_1/ 2). This states
that for every |s| <b and every uel[

(30) sup | Yq(s, t, u) — Yd(s, t, 0)| = op(1).
0<t<1

In verifying (C) for these {7;}, one has an analogue of (11):

sup [Ga(t + 6) — Ga(t)]
0<t<1-6

< 2k{B max; [lcil| + bn "%} + sup [La(t+6) — La(t)].
0<t<1-6

Note that here Gg(t) =2%id 2iFi(anH'l(t)+c'iu)

One similarly has an analogue of Lemma 2.3.3. Consequently, from
Theorem 2.3.1 one can conclude that for each fixed se[-b, b],

(31) sup  |Ra(s, t, u)] = op(1),
oct<t,[[uf<B
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where Rq(s, t, 1? equals the Lh.s. of (28) without the supremum. To
complete the proof, once again exploit the compactness of [-b, b] and the
monotonic structure that is present in Sq and pg. Details are left for
interested readers. o

Consider now the specialization of Theorems 2.3.1 and 2.3.2 to the
case when Fp;=F, F ad.f. Note that in this case (N1) implies that Lgq(t)
= t so that (C*) is a priori satisfied. To state these specializations we need
the following assumptions:

(F1) F has uniformly continuous density f w.r.t. A.
(F2) f>0,ae A
(F3) sup, g |X(x)| <k <.

Note that (F1) implies that f is bounded and that (F2) implies that
F is strictly increasing.

Corollary 2.3.1. Let Xy, ...., Xon be t.i.d. F. In addition, suppose
that (N1), (N2), (4), (5) and (F1) hold. Then (6) holds with qn; = f(F ).

If, in addition, (F2) holds, then (7) holds with fy;=1. o

Corollary 2.3.2. Let Xyy, ...., Xnn be 1.3.d. F. In addition, suppose
that (N1), (N2), (4), (5), (F1) and (F3) hold. Then (28) holds with H = F
and qn; = f(F ).

If, in addition, (F2) holds, then (29) holds with fn;= 1. o

We shall now apply the above results to the model (1.1.1) and the
{V;j}-processes of (1.1.2). The results thus obtained are useful in studying
the asymptotic distributions of certain goodness-of-fit tests and a class of

M-estimators of # of (1.1.1) when there is an unknown scale parameter also.
We need the following assumption about the design matrix X.

(NX) (X'X)! ezists, n>p;  maxxai(X X) ™ xas = o(1).
This is Noether’s condition for the design matrix X. Now, let
(32) A=X'x)2 D := XA,

q,(t) = (in(t): ey an(t))1 A(t) = diag(q(t)):
Ty(t) := AX A(t) XA, TIyt):=n"Y2H"'t)D'qt), O0¢t<lL
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Write D = ((djj)), 1<i<n, 1<j<p, and let dj) denote the jth column of D.
Note that D'D = pxp- This in turn implies that

(33) (N1) is satisfied by d(j, forall 1< j<p.
Moreover, with a(j, denoting the jth column of A,

’ p ’
(34) max; d%j = max; (xia(j) )2 < max; j§1 (xiaj )2

’ p ’
= max;j X (J)_Jl a(j)a(j)) Xi

= max; x; (X X) ' x;=0(1), by (NX).
Let

(35) L) = 5 &% Fi(E (1)), 0¢t<1, 1<j<p.
1=
We are now ready to state

Theorem 2.3.3. Let {(Xni, Yni), 1<i<n}, B, {Fai, 1<i<n} beas
in the model (1.1.1). In addition, assume that {Fai} satisfy (3a), (3b) and
that (C*) is satisfied by each L; of (35), 1< j<p.

Then, for every 0 < B < w,

(36)  sup A{V(H'(t), B+ Au) - V(H (1), )} - Ti(t)ull = oy(1).
where the supremum is over 0 < t <1, u € #/(B).

If, in addition, H is strictly increasing for all n > 1, then, for every
0<B<u,

(37) sup ||A{V(x, A+ Au) — V(x, f)} — I'y(H(x))u|| = op(1).
where the supremum is over -w < x € o, u € MB).
Theroem 2.3.4. Suppose that {(x;i, Yni), 1<i<n} and PeR® obey
the model
(38) Ynizxniﬂ+'7fni; 1<i<n, v>0,

with {eni} independent r.v.’s having d.f.’s {Fni}. Assume that (NX) holds.
In addition, assume that {Fni} satisfy (3a), (3b), (27) and that (C*) is
satisfied by each Lj of (35), 1<j<p.

Then for every 0 < b, B < o,
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(39)  sup [|A{V(aH'(t), B +Auy)- V(yH'(t), A)}-Ti(t)u-To(t)v] = op(1),

1/2

where v :=1n (a—'y)'y_l, a > 0, and the supremum i3 over 0<t<1, uel(B)

and |v| <b.
If, in addition, H s strictly increasing for every n > 1, then

(40)  supl|A{V(ex, B+ Auy)- V(1x, A)} - T'(H(x))u - T5(H(x))v|| = op(1).

where v := nl/z(a—'y)'y_l, a > 0, and the supremum is over -o<x<w, u€M(B)
and |v| <Db.

Proof of Theorem 2.3.3. Apply Theorem 2.3.1 to X; = Y; — x'iﬂ,
c¢i=x3A, 1<i<n. Then F; isthe df. of X; and the jth components of

AV(H 1(‘?, f+Au) and AV(H l(t), f) are Sg(t, u), Sa(t, 0) of (1),
respectively, with d; = djj, 1<i<n, 1£j<p. Therefore (36) will follows by p
applications of (6), one for each d(j,, provided the assumptions of Theorem
2.3.1 are satisfied. But in view of (33) and (34), the assumption (NX)
implies (N1), (N2) for d(jy, 1 < j < p. Also, (4) for the specified {ci} is
equivalent to (NX). Finally, the C-S inequality and (33) verifies (5) in the
present case. This makes Theorem 2.3.1 applicable and hence (36) follows. o

Proof of Theorem 2.3.4. Follows from Theorem 2.3.2 when applied to

X;=(Yi— x'iﬂ)'y_l, c’i = x'iA, 1<i<n, in a fashion similar to the proof of
Theorem 2.3.3 above. o

The following corollaries follow from Corollaries 2.3.1 and 2.3.2 in the
same way as the above Theorems 2.3.3 and 2.3.4 follow from Theorems 2.3.1
and 2.3.2. These are stated for an easy reference later on.

Corollary 2.3.3. Suppose that the model (1.1.1) with Fn; = F holds.
Assume that the design matriz X and the d.f. F satisfying (NX) and (F1).
Then,Y 0 < B < w,

(41)  sup [A{V(F\(t), 5) = V(F"'(t), )} = (F '(t))A" (s — B)|| = 0p(1)-

where the supremum is over 0 <t < 1; 5 € RP, ||A—1(s - P < B.
If, in addition, F satisfies (F2), then

(42)  sup A{V(x, 5) - V(x, )} —£(x) A"}(s — Bl = op(1).

where the supremum is over -w < x € m; s € R, ||A_1(s - P)| < B. o
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Corollary 2.3.4. Suppose that the model (38) with Fni = F holds and
that the design matriz X and the d.f. F satisfy (NX), (F1) and (F3). Then
(39) holds with
(43) Tyt) = f(F 1 (t)Ipxp, Tat) = F (t) f(F1(t))AX'1, 0<t<l.

If, in addition, F satisfies (F2), then (40) holds with T';(H) = T'j(F), j
=1, 2. e,

(44)  sup ||A{V(ex, f+ Auy) — V(7x, f)} —1(x)u — xf(x)v|| = 0p(1),
where the supremum is over -w<x<w; u€MB) and |v|<b, with v asin (39). o

We end this section by stating an a.u.l. result about the ordinary
residual empirical processes Hy of (1.2.1) for an easy reference later on.

Corollary 2.3.5. Suppose that the model (1.1.1) with Fni = F holds.
Assume that the design matriz X and the d.f. ¥ satisfying (NX) and (F1).
Then,¥ 0 < B < m,

(45)  sup|n/A{HA(F7\(t), 5) - Ha(F (1), )} —
~H(F 4 (t))-n Y28 x5 A-A (s - )| = 0p(1),
where the supremum is over 0<t < 1;5 € RP, |A™ (s - Al < B.
If, in addition, F satisfies (F2), then,V 0 < B < o,
(46)  sup|nY/2{Hu(x, 5)-Ha(x, )} - {(x)-0 /2% xp5A- A1 (5-B)| = op(1).

where the supremum is over -o < x € w; § € R?, ||A_1(s - f)|l < B.

Proof. The proof follows from Theorem 2.3.1 by specializing it to the

case where dpj = 1" Y/2 and the rest of the entities as in the proof of Theorem
2.3.3. o

Note: Ghosh and Sen (1971) and Koul and Zhu (1991) have proved an almost sure
version of (42) in the case p=1and p > 1, respectively. o

2.4. SOME FURTHER PROBABILISTIC RESULTS FOR W.E.P.’S.

For the sake of general interest, here we state some further results about
w.e.p.’s. To begin with, we have
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2.4.1. Laws of the iterated logarithm:

In this subsection, we assume that

(1) dpni=di, 7mi=?M, Gni= Gy 1<idm.
Define
(2) Un(t) = é‘}ldi {I(n: <) — Gi(t)}, o2 :=i§:}ld21,
£a(t) := %(t)/{202 tn tn o2}?, nyl, 0<t<l.

Let r(s,t) :=sAt —st, 0<s,t <1, and H(r) be the reproducing kernel
Hilbert space generated by the kernel r with ||:||; denoting the associated
norm on H(r). Let

(3) K= {fe H(); |if: < 1}.

Theorem 2.4.1. If 71, 72, ... are i.i.d. uniform on [0, 1] and d, do,
. are any real numbers satisfying

im. o2 , 2 tn In o
(a) limy o = o, lim, (112?5{11 d3) nTg’Un— =0,

n
then
P(& (én, K) — 0 and the set of limit points of {¢n} s K)=1. o

Theorem 2.4.1 was proved by Vanderzanden (1980, 1984) using some
of the results of Kuelbs (1976) and certain martingale properties of ¢p.

Theorem 2.4.2. Let 7y, 73, .... be independent nonnegative r.v.’s. Let
{di} be any real numbers. Then

lim supy sup,, af,ll %n(t-)] < @, as.. o

A proof of this appears in Marcus and Zinn (1984). Actually they
prove some other interesting results about w.e.p.’s with weights which are
r.v.’s and functions of t. Most of their results, however, are concerned with
the bounded law of the iterated logarithm. They also proved the following
inequality that is similar to, yet a generalization of, the classical
Dvoretzky-Kiefer-Wolfowitz exponential inequality for the ordinary
empirical process. Their proof is valid for triangular arrays and real r.v.’s.

Exponential inequality. Let Xy, Xpo, ..., Xon be independent r.v.’s
with respective d.f.’s Fpy, ..., Fon and {dni} be any real numbers satisfying
(N1). Then,¥V A >0,V n1,
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(4) P(Tuﬁ) | % dns{I(Xni < x) — Fai(x)}| 2 A) < [1+(87)/2AJexp(-22/8). o
x| <o 17t

The above two theorems immediately suggest some interesting
probabilistic questions. For example, is Vanderzanden’s result valid for
nonidentical r.v.’s {nil? Or can one remove the assumption of nonnegative
{ni} in Theorem 2.4.17

2.4.2. Weak convergence of w.ep.’s in D[0, 1], in & -metric and an
embedding result.
Next, we state a weak convergence result for multivariate r.v.’s. For this we

revert back to triangular arrays. Now suppose that i € [0, 1]p, 1<i<n,
are independent r.v.’s of dimension p. Define

(5) Wa(t) =2 dasf{l(mi € 1) = Gas(t)},  te [0, 1P

Let Gnpjj be the jth marginal of Gpi, 1<i<n, 1<j<p.

Theorem 2.4.3. Let {mi, 1<i< n} be independent p-variate r.v.’s
and {dni} satisfy (N1) and (N2). Moreover suppose that for each 1< j< p,

n
. . 2
lim,  lim supn SUD ¢ oq1- i§1 dni{Gnij(t+6) — Gnij(t)} = 0.
Then, for every € >0

(1) lim, o lim supy P(I sups | Wa(t) — Wqy(s)| > ¢€)=0.
s—t| <

(i)  Moreover, Wq 3 some W on (D[0,1]%, &) if, and only if, for each
s, t € [0, 1]°, Cov(Wqy(s), Wq(t)) — Cov(W(s), W(t)) =: C(s, t).

In this case W is necessarily a Gaussian process, P(We([0, 1]P) = 1,
W(0) =0 = W(1). o

Theorem 2.4.3 is essentially proved in Vanderzanden (1980), using
results of Bickel and Wichura (1971).

Mehra and Rao (1975), Withers (1975), and Koul (1977), amon
others, obtain the weak convergence results for {Wgq}-processes when {nni?
are weakly dependent. See Dehling and Taqqu (1989) and Koul and
Mukherjee (1992) for similar results when {7} are long range dependent.

Shorack (1979) proved the weak convergence of Wgq/q-process in the
Z-metric, where q € @, with
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0 := {q; q a continuous function on [0, 1], q > 0, q(t) = q(1-t), q(t) 1
and t Y%q(t) | for 0<t<1/2, S YY)t < w).

Theorem 2.4.4. Suppose that mny, ...., Mun  are independent r.v.’s in
[0, 1] with respective d.f.’s Gny, ..., Gnn Such that

-1 n
0% Gut) =t, 0<t<l.
i=
In addition, suppose that {dni} satisfy (N1) and (B). Then,
(i) Ve>0,Vqeq,

. . Wa(t) Wals
lim_  lim sup, P( su |—(-()-)-— | >¢€)=0.
540 n |t-s?<6 q(t q(s

(i) q'Wa 3 q'W, W o continuous Gaussian process with
covariance function C if, and only if Cg — C. o

Shorack (1991) and Einmahl and Mason (1991) proved the following
embedding result.

Theorem 2.4.5. Suppose that #ni, ...., fan are i.4.d. Uniform [0, 1]
r.v.’s. In addition, suppose that {dni} satisfy (N1) and that

n n 4
% dni =0, a3 di=O0(1)

i=1

Then on a rich enough probability space there ezist a sequence of versions Nq
of the processes Wq and a fized Brownian bridge B on |0, 1] such that

, a(t) - B(t)|
{a-/rr

n

sup Op(1), forall 0<v <1
1/nt<1-1/n

The closed interval 1/n < t < 1-1/n may be replaced by the open interval
min{7y,j; 1 < j<n} <t < max{myj; 1 <j<n} o
2.4.3. A martingale property.

In this subsection we shall prove a martingale property of w.e.p.’s. Let Xp;,

Xn2, ..., Xnn be independent real r.v.’s with respective d.f.’s Fy, ..., Fon;
dny, ---, dnn be real numbers. Let a < b be fixed real numbers. Define,

Ma(t) = 2 dai{I(Xas € (3, t] = pai(a, 41} {1~ pas(a, 1},
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n -
Ra(t) = 2 dni{I(Xni € (t, b] = pai(t, bI} {1 — pus(t, B}, teR,
where
Pni(s,t] := Fni(t) —Fni(s), 0<s<t<1, 1<i<n.

Let T;C [a, w), T2C (— o, b] be such that My(t) [Rn(t)] is well-defined
for t € T, [t € T2]. Let

Fin(t) := o-field {I(Xni € (a,8]), a<s<t, i=1,..,n}, teT,
Fon(t) := o—field {I(Xai € (s, b]), t<s<b, i=1,..,n}, teT,

Martingale Lemma. Under the above set up, for each n > 1, {My(t),

Fin(t), t € T1} 1is a martingale and {Rn(t), Fan(t), t € T2} is a reverse
martingale.

Proof. Write qi(a, s] = 1 —pi(a, s]. Because {X;} are independent,
for a<s<t

E{Ma(t) Fia(s)}
=3 aifai(atl X €(a, s]) E{UXs €, 1) — pia, 1) | Xs €(a, )
+1(Xs (2, s)) E{(I(Xs €(a, 1) —li2, 1) | Xi £, o}
B di{aita, )X €(a, slai(a, 4] +
+1(Xs (s, 5] {BR2— — pi(a, 1]}
2 afai(a, 8)}(1(Xs €(a, 1) - ai(a, o]} = Mas).

A similar argument yields the result about Ry. o

Note. In the case {Xpi} are i.i.d. and dpj = n_,1/2, this Lemma is well
known. In the case {Xpi} are i.i.d. and {dpi} are arbitrary, the observation
about {M;} being a martingale first appeared in Sinha and Sen (1979). The above
Martingale Lemma appears in Vanderzanden (1980, 1984).

Theorem 2.4.1 above generalizes a result of Finkelstein (1971) for the
ordinary empirical process to w.e.p.’s of i.i.d. r.v.’s.. In fact, the set K is
the same as the set K of Finkelstein. oo





