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Numeration systems as dynamical
systems — introduction

Teturo Kamae!

Matsuyama University

Abstract: A numeration system originally implies a digitization of real num-
bers, but in this paper it rather implies a compactification of real numbers as
a result of the digitization.

By definition, a numeration system with G, where G is a nontrivial closed
multiplicative subgroup of Ry, is a nontrivial compact metrizable space
admitting a continuous (Aw + t)-action of (A\,¢t) € G X R to w € Q, such
that the (w 4+ ¢)-action is strictly ergodic with the unique invariant probability
measure (o, which is the unique G-invariant probability measure attaining the
topological entropy |log A| of the transformation w — Aw for any X\ # 1.

We construct a class of numeration systems coming from weighted substi-
tutions, which contains those coming from substitutions or (-expansions with
algebraic (. It also contains those with G = R..

We obtained an exact formula for the (-function of the numeration systems
coming from weighted substitutions and studied the properties. We found a
lot of applications of the numeration systems to the [(-expansions, Fractal
geometry or the deterministic self-similar processes which are seen in [10].

This paper is based on [9] changing the way of presentation. The complete
version of this paper is in [10].

1. Numeration systems

By a numeration system, we mean a compact metrizable space (2 with at least 2
elements as follows:

(#1) There exists a nontrivial closed multiplicative subgroup G of Ry and a
continuous action Aw + ¢ of (A\,t) € G x R to w € Q such that N(Qw +¢t) +¢' =
Mw+ Nt +t.

(#2) The (w + t)-action of t € R to w € § is strictly ergodic with the unique in-
variant probability measure uq called the equilibrium measure on €. Consequently,
it is invariant under the (Aw + t)-action of (A, t) € G X R to w € Q as well.

(#3) For any fixed A9 € G, the transformation w — Agw on € has the |log Aol
topological entropy. For any probability measure v on € other than pg which is
invariant under the Aw-action of A € G to w, and 1 # Ay € G, it holds that

hy (o) < hm@\o) = |log Ao.

The (w + t)-action of t € R to w € Q is called the additive action or R-action,
while the Aw-action of A € G to w €  is called the multiplicative action or G-action.

Note that if € is a numeration system, then 2 is a connected space with the
continuum cardinality. Also, note that the multiplicative group G as above is either
R or {\"; n € Z} for some A > 1. Moreover, the additive action is faithful, that
is, w+t=w implies t =0 for any w € Q and t € R.
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Numeration systems as dynamical systems 199

This is because if there exist w; € € and ¢; # 0 such that wy + t; = wy, then
take a sequence A, in G such that A\, — 0 and A\,w; converges as n — oo. Let
Woo = limy, o \ywy. For any t € R, let a, be a sequence of integers such that
anAnt; — t as n — o0o. Then we have

Weo +t = lm (Apwr + Anantt)
n—oo

= lim A, (w1 +ant;) = lim Awi = weo.
n—oo n—oo

Thus, we becomes a fixed point of the (w + t)-action of t € R to w € Q. Since
this action is minimal, we have Q = {w}, contradicting with that { has at least
2 elements.

An example of a numeration system is the set {0, 1} with the product topology
divided by the closed equivalence relation ~ such that

(...,01_2,04_1;040,041,0[2,...) ~ ("'76—275—1;60751’ﬂ23"')

if and only if there exists N € Z U {doo} satisfying that a,, = 8, (¥n > N),
ay = 0Onv+1and a, =0, B, = 1 (Vn < N) or the same statement with «
and 8 exchanged. Let Q(2) := {0,1}%/ ~ and the equivalence class containing
(... a2, a 1300, 01, a2,...) € {0,1}2 is denoted by > 07 «,2" € Q(2). Then,
(2) is an additive topological group with the addition as follows:

S e 3 aro 3
if and only if there exists (...,7_2,7_1;70, 71,72, - - .) € {0, 1} satisfying that
20nt1+ Yo =+ Bn + 10 (VTL € Z)'

This is isomorphic to the 2-adic solenoidal group which is by definition the pro-
jective limit of the projective system 6 : R/Z — R/Z with 0(a) = 2a (a € R/Z).
Moreover, R is imbedded in ©(2) continuously as a dense additive subgroup in

the way that a nonnegative real number « is identified with Y 02 _ @,2" such
that o = Zngoo ap2™ and a, = 0 (Vn > N) for some N € Z, while a negative

real number —a with a as above is identified with Y>> (1 — a;,)2". Then, R
acts additively to €2(2) by this addition. Furthermore, G := {2%; k € Z} acts
multiplicatively to ©(2) by

oo oo
k
2 Z 2" = Z Q12"
n=—oo n=—oo

Thus, we have a group of actions on (2) satisfying (#1), (§2)and (§3) with G :=
{2%; k € Z} and the equilibrium measure (1/2,1/2)Z.

Theorem 1.1. Q(2) is a numeration system with G = {2"; n € Z}.

We can express §2(2) in the following different way. By a partition of the upper
half plane H := {z = z + iy; y > 0}, we mean a disjoint family of open sets
such that the union of their closures coincides with H. Let us consider the space
Q(2)" of partitions w of H by open squares of the form (x1,22) X (y1,y2) with
o —x1 =yY2 —y1 = y1 and y; € G such that (z1,z2) X (y1,y2) € w implies

(21, (71 +22)/2) x (y1/2,51) €w (type 0) and

(21 + 22)/2,22) x (3/2,31) € w (type 1). M
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Fic 1. The tiling corresponding to ---01.101---.

An example of w € 2(2)’ is shown in Figure 1. For w € Q(2)’, let (o, a1, ...) be
the sequence of the types defined in (1) of the squares in w intersecting with the
half vertical line from +0 4 4 to 40 + ico and let (a—1,@_s,...) be the sequence
of the types of the squares in w intersecting with the line segment from +0 + ¢ to
+0. Then, w is identified with "> «,,2". Note that replacing 40 by —0, we get
Zzoz—oo ﬁn2n such that ( e, 9,00 _1;0p,01,.. ) ~ ( cey ﬁ,g,ﬁ,l; ﬁo,ﬁl, .. )

The topology on ©(2)" is defined so that w,, € Q(2)’ converges to w € Q(2)" as
n — oo if for every R € w, there exist R, € w, such that lim,_ ., p(R, R,) = 0,
where p is the Hausdorff metric between sets R, R’ C H

R,R) := inf |z — 2|, inf |z — 2'|}. 2
p(R, R') max{jtelgz}gR,lz 2| SEE,JQR'Z 2} (2)

Forw e Q2),te Rand A € {2"; n € R}, w+1t € Q(2) and \w € Q(2) are
defined as the partitions

wHti={(r1 —t,m2 —t) X (y1,92); (¥1,22) X (y1,¥2) € w}

and
Mw = {(Az1, Aa) X (Ay1, Ay2); (z1,72) X (y1,y2) € w}.
Let x : Q(2)" — Q(2) be the identification mapping defined above. Then, & is
a homeomorphism between Q(2)" and Q(2) such that k(w + t) = k(w) + t and
k(Aw) = Ak(w) for any w € Q(2), t € R and A € {2"; n € Z}. Thus, Q(2) is
isomorphic to £2(2) as a numeration system and will be identified with ©(2).
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We generalize this construction. Let A be a nonempty finite set. An element in
A is called a color. An open rectangle (x1,x2) X (y1,y2) in H is called an admissible
tile if

To —T1 = U1 (3)

is satisfied (see Figure 2). In another word, an admissible tile is a rectangle (x1, 23) X
(y1,y2) in H such that the lower side has the hyperbolic length 1. Let R be the set
of admissible tiles in H.

A colored tiling w is a subset of R x A such that
(1) RN R =0 for any (R,a) and (R',a’) in w with (R, a) # (R',d’), and
(2) Uaea U(R,a)eu R=H.

An element in R x A is called a colored tile. We denote
dom(w) := {R; (R,a) € w for some a € A}.

For R € dom(w), there exists a unique a € A such that (R, a) € w, which is denoted
by w(R) and is called the color of the tile R (in w). Let R = (z1, z2) X (y1,y2). We
call ya/y;1 the vertical size of the tile R which is denoted by S(R).

Let £2(A) be the set of colored tilings with colors in A. A topology is introduced
on Q(A) so that a net {wy, }ner C Q(A) converges tow € Q(A) if for every (R, a) € w,
there exists (R, a,) € w, such that

an, = a for any sufficiently large n € I and lim p(R, R,) =0,

n—oo

where p is the Hausdorff metric defined in (2).
For an admissible tile R := (z1,22) X (y1,¥2), t € R and A € R, we denote

R+t :
AR

(z1+t, 22 +1) X (y1,92)
()\.%‘1,)\.%‘2) X ()\yh)\yg).

Note that they are also admissible tiles.

FiG 2. Admissible tiles.
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For w € Q(A), t € R and A € R, we define w +t € Q(A) and lw € Q(A) as
follows:

wt+t = {(R—t,a); (R,a) €w}
lw = {(AR,a); (R,a) € w}.

Thus, we define a continuous group action Aw+t of (A, t) € Ry xR to w € Q(A).
We construct compact metrizable subspaces of Q(A) corresponding to weighted
substitutions which are numeration systems. Though fA > 2 is assumed in [7], we
consider the case A =1 as well.

2. Remarks on the notations

In this paper, the notations are changed in a large scale from the previous papers
[7], [8] and [9] of the author. The main changes are as follows:

(1) Here, the colored tilings are defined on the upper half plane H, not on R? as in
the previous papers. The multiplicative action here agree with the multiplication on
H, while it agree with the logarithmic version of the multiplication at one coodinate
in the previous papers. Here, the tiles are open rectangles, not half open rectangles
as in the previous papers.

(2) Here, we simplified the proof in [9] for the space of colored tilings coming from
weighted substitutions to be numeration systems by omitting the arguments on the
topological entropy.

(3) The roles of z-axis and y-axis for colored tilings are exchanged here and in [9]
from those in [7] and [8].

(4) Here and in [9], the set of colors is denoted by A instead of ¥. Colors are denoted
by a, a’, a; (etc.) instead of o, o', o; (etc.).

(5) Here and in [9], the weighted substitution is denoted by (o, 7) instead of (i, 7).
(6) Here and in [9], admissible tiles are denoted by R, R/, R;, R’ (etc.) instead of
S, S, S;, St (etc.).

(7) Here and in [9], the terminology “primitive” for substitutions is used instead of
“mixing” in [7] and [8].

3. Weighted substitutions

A substitution o on a set A is a mapping A — AT, where AT = (J;2, A’. For
¢ € AT, we denote [¢| := £ if £ € A?, and ¢ with |¢| = £ is usually denoted by
&€ -+ &1 with & € A. We can extend o to be a homomorphism AT — AT as
follows:

a(§) ==0(&)o(&1) - o(&e-1),

where ¢ € A’ and the right-hand side is the concatenations of o(&;)’s. We can define
02,03, ... as the compositions of o : AT — AT,

A weighted substitution (o,7) on A is a mapping A — AT x (0,1)T such that
lo(a)| = |7(a)| and 3=, | (o) T(a)i = 1 for any a € A. Note that ¢ is a substitution

on A. We define 7 : A — (0,1)* (n =2,3,...) (depending on o) inductively by
7" (a)k = 7(a)i™" " (o (a)s);
for any a € A and 1, j, k with

0<i<lo(a)l, 0<j<|o" Mo, k=) lo"  (o(a)n)] +J.
h<i
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Then, (o™, 7") is also a weighted substitution for n = 2,3,....

A substitution o on A is called primitive if there exists a positive integer n such
that for any a,a’ € A, 6™(a); = a’ holds for some ¢ with 0 <14 < |0™(a)|.

For a weighted substitution (o, 7) on A, we always assume that

the substitution o is primitive. (4)

We define the base set B(o, 7) as the closed, multiplicative subgroup of R generated
by the set

T™(a); ; a€A, n=0,1,... and 0 <4 < |[o"(a)|
such that c™(a); = a '

Example 3.1. Let A = {+,—} and (0, 7) be a weighted substitution such that

+ = (+,4/9)(—,1/9)(+,4/9)
= = (54/9)(+,1/9)(= 4/9),

where we express a weighted substitution (o, 7) by

a — (o(a)o, 7(a)o)(0(a)1,7(a)1) -~ (a € A).

Then, 4/9 € B(o,7) since o(+)o = + and 7(+)o = 4/9. Moreover, 1/81 € B(o, )
since 0?(+)4 = + and 7%(+)4 = 1/81. Since 4/9 and 1/81 do not have a common
multiplicative base, we have B(c,7) = R, . This weighted substitution is discussed
in the following sections. The repetition of this weighted substitution starting at +
is shown in Figure 3 by colored tiles. The substituted word of a color is represented
as the sequence of colors of the connected tiles in below in order from left. The
horizontal (additive) sizes of tiles are proportional to the weights and the vertical
(multiplicative) sizes are the inverse of the weights.

Let G := B(o, 7). Then, there exists a function g : A — R, such that

9(0(a)i)G = g(a)(a)iG ()

for any a € A and 0 < i < |o(a)|. Note that if G = R4, then we can take g = 1. In
the other case, we can define g by g(ag) = 1 and g(a) := 7"(ag); for some n and i
such that 0™ (ag); = a, where ag is any fixed element in A.

Let (0,7) be a weighted substitution satisfying (4). Let G = B(o, 7). Let g
satisfy (5). Let Q(o,7,g)" be the set of all elements w in Q(A) such that for any
((x1,22) X (y1,92),a) € w, we have

(D) 41 € g(a)G, and

(1) (R, 0(a);) € w holds for i =0,1,...,|o(a)] — 1, where

i—1 i
R' = (w1 4 (22 — 1) ZT )i» 21+ (T2 — 71) 7(a);)
=0 j=0

x (1(a)iy1, y1)-

A vertical line v := {z} x (—00, 00) is called a separating line of w € Q(o, T, g)" if
for any (R,a) € w, RN~y = 0. Let Q(0,7,9)"” be the set of all w € Q(o, 7, g)" which
do not have a separating line and (o, 7, g) be the closure of Q(o,7,g)"”. Then, the
action of G x R on Q(o, 7, g) satisfies (§1). We usually denote Q(c, 7, 1) simply by
(o, 7).
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+
4/9 : 1/9 : 4/9
+ +
+ + + +
+ + + + + + + +

Fic 3. The weighted substitution in Example 1.

Remark 3.2 ([7]). A nontrivial primitive substitution o : A — A™, where “non-
trivial” means ) | , |o(a)| > 2, is considered as a weighted substitution in a canon-
ical way. Let

M :=(#{0<i<|o(a)|; o(a); =a'})aaen

be the associate matrix. Let A be the maximum eigen-value of M and & := (£;)aen
be a positive column vector such that M& = M. Define weight 7 by

T(a)i = E;?)la

which is called the natural weight of o. Thus, we get a weighted substitution (o, 7)
which admits weight 1. We modify (o, 7) if necessary in the following way. If there
exists a € A with |o(a)] = 1, so that a — (a/,1) is a part of (o,7), then we
replace all the occurrences of a in the right hand side of “—” by a’ and remove
a from A together with the rule @ — (a/,1) from (o, 7). We continue this process
until no a € A satisfies |o(a)] = 1. After that if there exist a, o’ € A such that
(o(a),7(a)) = (c(a’),7(a")), then we identify them.

For example, the 2-adic expansion substitution 1 — 12, 2 — 12 corresponds
to the weighted substitution 1 — (1,1/2)(1,1/2). The Thue-Morse substitution
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1 — 12, 2 — 21 corresponds to the weighted substitution 1 — (1,1/2)(2,1/2), 2 —
(2,1/2)(1,1/2). The Fibonacci substitution 1 — 12, 2 — 1 corresponds to the
weighted substitution 1 — (1, \™')(1, A~2), where A = (1 +/5)/2.

The weighted substitution (o,7) obtained in this way satisfies that B(o,7) =
{A\"; n € Z} and that ¢g in (5) can be defined by g(a) = &, (a € A). Dynami-
cal systems coming from substitutions are discussed by many authors (see [2], for
example). Our weighted substitutions are a generalization of them.

Let (o, 7) be a weighted substitution on A satisfying (4). Let g satisfy (5). Con-
sider Q(o, 7, g). We call the tile R® in (II) the i-th child of the tile (x1,z2) X (y1, y2),
and (x1,22) X (y1,y2) the mother of R. Note that the vertical size S(R') of
R’ coincides with the inverse of the weight 7(a);. If R; is a child of Rjy; for
j=0,1,...,k—1. Then, the tile Ry is called a k-th descendant of the tile Ry. If Ry
is the i-th tile among the set of the k-th descendants of Ry counting as 0,1,2,---
from left, we call Ry the (k,)-descendant of the tile Ry. In this case, we also say
that Ry is the k-th ancestor of Ry.

Theorem 3.3. The space Q(o,T,g) is a numeration system with G = B(o,T).

Proof. We have already proved (f1) and (#2) in Theorem 3 of [7]. Here we prove
(#3). Let Q := Q(o, 7, g) and puq be the equilibrium measure. Since pg is the unique
invariant probability measure under the additive action, it is also invariant under
the multiplicative action.

By Goodman [4], it is sufficient to prove that for any A € G with A\ # 1, the
transformation w — Aw on € has the metrical entropy |log A\| under pgq, while it
has the metrical entropy less than |log A| under any other G-invariant probability
measure. L

Lemma 3.4. Let

Y = {w € Q; w has a separating line}
Yo = {w € Q; y-axis is the separating line of w}.

Then, we have

(i) X\ Xo s dissipative with respect to the G-action, so that v(X\ Xg) = 0 for
any G-invariant probability measure v on Q.

(ii) For any w € Yo, w restricted to the right quarter plane (0,00) x (0,00) and
to the left quarter plane (—o0,0) x (0,00) are cyclic individually with respect to the
G-action. Hence, Gw with respect to the G-action is either cyclic or conjugate to a
2-dimensional irrational rotation with a multiplicative time parameter.

(iil) 2o is a finite union of minimal and equicontinuous sets with respect to
the G-action. In fact, there is a mapping from the set of pairs a € A and i with
0<i<i+1<]o(a)| onto the set of minimal sets in L.

Proof. (i) If the line x = w is the separating line of w € 2, then = Au is the
separating line of Aw. Hence, X \ ¥ is dissipative.

(ii) Let w € ¥g. Denote by w™ the restriction of w to the right quarter plane
(0, 00) x (0, 00), while by w™ the restriction of w to the left quarter plane (—oo, 0) x
(0,00). Let (R)icz be the sequence of tiles in dom(w) such that R intersects
with the upper half lines of x = 40, and RijE is a child of R?EH for any i € Z
(£ respectively). Let aii = w(Rii) be the colors of Rii (£ respectively). Define
mappings o1 from A to A by o,(a) = o(a)o and 0_(a) = 0(a)|s(a)—1- Since

o+(af) = af | (i € Z) (£ respectively), the sequence (aF);cz is periodic, which
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also implies that the vertical sizes S (Rf) of Rli, which coincide with the inverses
of the weights 7(a;41)+, are also periodic in i € Z with the period, say r* which
is the minimum period of (af);ez (£ respectively). Then, A\t := T (ad)g? is

the minimum (multiplicative) cycle of w™, while A~ = 7" (aa);‘,(a,)‘ | 1s the
=)l-

minimum (multiplicative) cycle of w™, that is, \w* = w* holds for A = A* and \*
is the minimum among A > 1 with this property (& respectively).

Therefore, w is cyclic with respect to the G-action if A™ and A~ have a common
multiplicative base. In this case, the minimum cycle of w is the minimum positive
number z such that x = (AT)" = (A7)™ holds for some positive integers n,m.
Otherwise, the G-action to Gw is conjugate to an 2-dimensional irrational rotation
with a multiplicative time parameter.

(iii) We use the notations in the proof of (i7). Take any pair (a,4) with a € A and
0<i<i+1<|o(a)|l. Take any w’ € Q having a tile R € dom(w’) with w'(R) = a
such that the y-axis passes in between the i-th child of R and the ¢ + 1-th child of
R. Let ¢(a, i) be the set of limit points of A\w’ as A € G tends to co. Note that this
does not depend on the choice of w’. Then, 9 (a,i) is a closed G-invariant subset
of ¥g. Moreover, since the sequence (0" (0(a);), 0% (0(a)i+1))n=0,1,2,... enter into a
cycle after some time, ¥(a, ) is minimal and equicontinuous with respect to the
G-action.

To prove that the mapping v is onto, take any w € Xj. There exists w, €
Q(o,7,9)"” which converges to w as n — oo. We may assume that there exists a
pair (a,7) such that for any n = 1,2, -, there exists R € dom(w,,) with a = w, (R)
such that the y-axis separetes the i-th child of R and the i + 1-th child of R. Then,
w € Y(a, 1), which proves that ¢ is a mapping from the set of pairs (a,i) with a € A
and 0 < i <i+1 < |o(a)| onto the set of minimal sets in Xy with respect to the
G-action. O

Example 3.5. Let p with 0 < p < 1 satisfy that logp/log(1 — p) is irrational.
Let (o,7) be a weighted substitution on A = {1} such that 1 — (1,p)(1,1 — p).
Then, B(o,7) = Ry holds. Let Q = Q(o, 7). In this case, elements in ¥y are not
periodic, but almost periodic as shown in Figure 4. Then, the dynamical system
(30, X (A € Ry)) is isomorphic to ((R/Z)?, Ty (A € Ry)) with

Tx(x,y) = (x +1log A/ log(1/p), y +logA/log(1/(1 —p))).

Lemma 3.6. It holds that h,,(\) = |log A| for any A € G. Let A # 1 and v be any
other A-invariant probability measure on Q, then h, () < |log Al.

Proof. To prove the lemma, it is sufficient to prove the statements for A > 1. Take
any G-invariant probability measure v on 2 which attains the topological entropy
of the multiplication by A; € G with A\; > 1, that is, h, (A1) = log \;. We assume
also that the G-action to € is ergodic with respect to v. Then by Lemma 3.4, either
v(X) =1or v(Q\X) = 1. In the former case, h,(\) = 0 holds for any A € G since
the G-action on ¥ is equicontinuous by Lemma 3.4, which contradicts with the
assumption. Thus, we have v(Q\ ¥) = 1.

For w € Q, let Ro(w) € dom(w) be such that Ro(w) = (z1,22) X (y1,y2) with
1 <0<z and y; <1< ys. Take ag € A such that

v({w € Q& w(Ro(w)) = ao}) > 0.
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vertical sizes

1/(1—p)

vertical sizes

= N

Fic 4. An element in 3o in Ezample 2.

Take by := max{b < 1; b € g(ag)G} (see (5)). Let
= {weQ; theset {\ € G; M\w(Ro(Mw)) =ap}

is unbounded at 0 and oo simultaneously }

= {we€Qy; Ro(w) = (z1,22) X (Y1,92)
with y; = by and w(Ro(w)) = ao }.

For w € Qq, let Ao(w) be the smallest A € G with A > 1 such that Aw € Q. Define
a mapping A : Qp — Qo by Alw) := A(w)w.
For k=0,1,2,--- and i = 0,1,--- ,|0"(agp)| — 1, let
P(k,i) == { w € Qo; Ao(w) " Ro(Xo(w)w)
is the (k,4)-descendant of Ro(w)}

(see Figure 5) and let
Pi={Pki); k=1,2,---, 0<i<|o"(ao)| }

be a measurable partition of Q. Note that \o(w) = 7%(ag); * if w € P(k,i).
Since v(Q1) = 1 by the ergodicity and

m= U ark),

P(k,1)EP 1<x<rk(ag); !
Ae€eG

there exists a unique A-invariant probability measure vy on €y such that for any
Borel set B C €2, we have

v(B) = Y /bOT o ATIB N P(k,i))d\/ A

P(k,i)eP
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ao

bo

ago

Fi1G 5. w € P(3,4) with A\o(w) = 13/3

with
Clv):= > —logr"(an); vo(P(k,i)) < o0
P(k,i)eP
if G =R, and
v(B)=Cw)™" > > oA BN P(k,i))
P(ki)EP reG
b0 <A<bo TR (ag);
with
Cv) = (—log 7" (ag):/ log B) vo(P(k,i)) < oo
P(k,i)eP

it G={0"; neZ}with g>1.

Since
> Mao)i=1and D w(Plki) =1,
P(k,i)eP P(k,i)eP
we have
Hyy(P) == — Y loguo(P(k,i)) - vo(P(k, i)
P(k,3)eP
< - Z log 7" (ag)i - vo(P(k, 1))
P(k,3)eP

by the convexity of —logz. The equality in (8) holds if and only if

VO(P(kai)) = Tk(CLO)i (Vp(k‘,l) € P)
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By (6), (7), and (8), we have

Hy,(P) =~ > logw(P(k,i)) - vo(P(k,i)) < oo
P(ki)eP

For any w, w’ € Qg such that A*(w) and A¥(w’) belong to the same element in
P for k=0,1,2,---, the horizontal position of Ry(w), say (z1,22), coincides with
that of Ro(w’). Therefore, w and ' restricted to (z1,22) X (0,bg) coincide. In the
same way, if A¥(w) and A¥(w’) belong to the same element in P for any k € Z,
then Ry := Rp(w) = Rp(w’) holds and all the ancestors of Ry in w and w’ coincide
as well as their colors. Therefore, w and w’ restricted to the region covered by the
ancestors of Ry coincide. Hence, if w or w’ does not have the separating lines, then
w = w’ holds.

Since v(X) = 0, we have 15(X N Q) = 0. Hence, the above argument implies
that P is a generator of the system (o, v, A). Thus, hy,(A) = hy, (A, P). It follows
from (8) that

hu, (A) = hu, (A, P)
< Hy, (P)
<- Z log 7" (ag); - vo(P(k,1)). (10)
P(k,i)eP
The equality in the above that
huy(A) == Y log7*(a0)i - vo(P(k, i)
P(k,i)eP

holds if and only if (A"P),ez is an independent sequence with respect to vy satis-
fying (9).
Since
b
fQO Ao (w)dvg(w)
huy (A)
— 2 P(kiyer 108 TF(ao)i - vo(P(k, 1))

hy (A1) <log Ay follows from (10), while the equality holds if and only if (A"P),ez
is an independent sequence with respect to vy satisfying (9). Let this probability
measure be u. Then, it is not difficult to prove that u is invariant under the additive
action. Hence, the uniqueness of such measure ([7]) proves u = i, which completes
the proof of Lemma 3.6 and Theorem 3.3. U

h,,()\l)/ IOg )\1 =

The following Theorem 3.7 follows from a known result about the spectrum
of unitary operators corresponding to the affine action (Lemma 11.6 of [13], for
example).

Theorem 3.7 ([10]). Let 2 be a numeration system with G = Ry, that is, with
the multiplicative R, -action. Then, the additive action on the probability space 2
with respect to pq has a pure Lebesque spectrum.
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4. ¢-function

Here, we listed only the results on the {-functions. For the proof, refer [10].
Let Q := Q(o,7,¢) satisfying (4) and (5). For o € C, we define the associated
matrices on the suffix set A x A as follows:

M, = > r(a) (11)

i;0(a);=a’

a,a’ €A
Mo = (ot 7@F), en
Mo - = (10((1)\c<a>|—1=’1/ T(a)ﬁ’(“”‘l)aa'eA

Let © be the set of closed orbits of €2 with respect to the action of G. That is, ©
is the family of subsets £ of © such that £ = Gw for some w € Q with Aw = w for
some A € G with A > 1. We call A as above a multiplicative cycle of £&. The minimum
multiplicative cycle of £ is denoted by ¢(£). Note that ¢(§) exists since Aw # w for
any w € Q and A € G with 1 < A < min{r(a); }; a € A, 0 <i < |7(a)|}.

We say that £ € © has a separating line if w € £ has a separating line. Note that
in this case, the separating line is necessarily the y-axis and is in common among
w € £. Denote by Og the set of £ € © with the separating line.

Define the (-function of G-action to 2 by

Cala) = [T(0—e(6)) 7, (12)
=

where the infinite product converges for any o € C with R(a) > 1. It is extended
to the whole complex plane by the analytic extension.

Theorem 4.1. We have
_det(I — M, y)det(] — M, )
Gala) = det(I — M)

(s (@),

where

o) = [T =e(©)™

£€60

s a finite product with respect to & € Og.
Theorem 4.2. (i) (o(a) # 0 if R(a) # 0.

(ii) In the region R(a) # 0, « is a pole of Cq(a) with multiplicity k if and only
if it is a zero of det(I — My) with multiplicity k for any k =1,2,....

(iii) 1 is a simple pole of (a(a).
Theorem 4.3. For Q = Q(o,n,9), if B(o,7) = {\*; n € Z} with X > 1, then
there exist polynomials p,q € 7Z[z] such that (q(a) = p(A*)/q(A*). Conversely,
if Cala) = p(A*)/q(A*) holds for some polynomials p,q € Z[z] and X > 1, then
B(o,7) = {\k"; n € Z} for some positive integer k.

Theorem 4.4. If B(o,7) = {\"; n € Z}, then A is an algebraic number.
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