FOURIER TRANSFORM ASSOCIATED WITH HOLOMORPHIC DISCRETE SERIES

Takeshi Kawazoe

1. INTRODUCTION

The Plancherel formula on semisimple Lie groups G implies that each L^2 function f on G has a decomposition: $f = f_p + {}^{\circ}f$, where f_p consists of wave packets and ${}^{\circ}f$ the discrete part of f, that is, a linear combination of the matrix coefficients of the discrete series of G. We assume that $\Omega = G/K$, K is a maximal compact subgroup of G, is one of classical bounded symmetric domains. Then we shall give a characterization of ${}^{\circ}L^p(G)$ ($1 \le p \le 2$), the discrete part of L^p functions on G, by using the Fourier transform associated with the holomorphic discrete series realized on a Bergman space on Ω . This characterization is related to the theory of the weighted Bergman spaces on Ω and the fractional derivatives of holomorphic functions on Ω .

In this introduction we shall treat the case of Ω = the open unit disk; in the rest of two sections we shall state the generalization on bounded symmetric domains of classical type.

First we shall recall the Fourier transform on the open unit disk D= $\{z \in C ; |z| < 1 \}$. For $\lambda \in R$ and $b \in \partial D$, the boundary of D, it is given by

$$\hat{f}(\lambda,b) = \int_{D} f(z) \left(\frac{1-|z|^2}{|z-b|^2} \right)^{\frac{1}{2}(-i\lambda+1)} dz.$$

As well known, we can identify D with the symmetric space G/K, where G=SU(1,1) and K=SO(2). By this identification G acts on D transitively and a function f(z) on D corresponds to the function f(g) on G given by $f(g)=f(g\cdot 0)$, where 0 ϵ D and "·" means the action of G. Then we can rewrite the above integral as follows.