STRONG ERGODICITY AND QUOTIENTS OF EQUIVALENCE RELATIONS

Klaus Schmidt

1. STRONG ERGODICITY

Throughout this note (X, S, μ) will be a standard, nonatomic probability space. Let G be a countable group, and let $(g, x) \rightarrow T_g x$ be a nonsingular, ergodic action of G on (X, S, μ) . A sequence $(B_n) \subset S$ is <u>asymptotically invariant</u> (a.i.) under the action T of G if $\lim_n \mu(B_n \Delta T_g B_n) = 0$ for every $g \in G$, and (B_n) is <u>trivial</u> if $\lim_n \mu(B_n) \cdot (1-\mu(B_n)) = 0$. The action of G on (X, S, μ) is <u>strongly</u> n<u>ergodic</u> if every a.i. sequence is trivial.

The <u>full group</u> [T] of the action T of G on (X, S, μ) is the group of all nonsingular automorphisms V of (X, S, μ) such that $Vx \in T_G x = \{T_g x : g \in G\}$ for μ -a.e. $x \in X$. The following assertion is elementary and implies that strong ergodicity is a property of the full group [T] or, equivalently, a property of the equivalence relation of T (cf. section 2).

1.1 PROPOSITION [6] Let (B_n) be an a.i. sequence for T. Then $\lim_{n} \mu (B_n \Delta VB_n) = 0 \text{ for every } V \in [T].$

1.2 EXAMPLE [6] Let V be a measure preserving, ergodic automorphism of a probability space (X, S, μ) . Rokhlin's lemma implies that there exists, for every $n \ge 1$, a set $C_n \in S$ such that $\mu(C_n) = \frac{1}{2n}$ and

 $C_n \cap V^k C_n = \phi$ for $1 \le k \le 2n-2$. Put $B_n = \bigcup_{k=0}^{n-1} V^k C_n$ and observe that k=0