IDEAL STRUCTURE OF GROUPOID CROSSED PRODUCT C * ALGEBRAS

Jean Renault and Bill Moran

We generalise to groupoid crossed products a theorem of E.Gootman and J. Rosenberg [GR], which asserts that every primitive ideal of the crossed product C^{*}-algebra is contained in an induced primitive ideal.

More precisely, if G is a second countable locally compact groupoid acting continually on a separable continuous field A of C^{*}-algebras over the unit space $G^{(0)}$ of G, then every representative L of the (full) crossed product C^{*}-algebra $\mathrm{C}^{*}(\mathrm{G}, \mathrm{A})$ weakly contains the representation induced from the restriction of L to the isotropy group bundle of the action of G on Prim A. The reverse inclusion holds if the action of G on Prim A is amenable.

Just as in [GR], the key ingredient of the proof is a "local cross-section theorem" which is better phrased in the following topological setting. If G is a topological groupoid, x a point of continuity of the isotropy and K a neighbourhood of x in G , which is symmetric and conditionally compact (c.c. for short)- that is, KL is compact for each compact subset L of $G^{(0)}$, then there exists a neighbourhood V of x in $\mathrm{G}^{(0)}$ such that the relation $\mathrm{y} \stackrel{\mathrm{K}}{\sim} \mathrm{z}$ if y K z is non-void becomes on V an open and Hausdorff equivalence relation. This result is applied to the semi-direct product of the action of G on Prim A endowed with the regularized topology. Another tool is a G-equivariant version of a decomposition theorem for representations of C^{*} - algebras of E. Effros $[E]$. If L is a representation of $C^{*}(G, A)$, then there exist a transverse measure class Λ on Prim A and a covariant representation of (G, A) on a measurable field H of Hilbert spaces over Prim A, such that for almost every x the representation of A on H_{x} is homogeneous with kernel x , which provide by integration a representation unitarily equivalent to L.

This theorem, which compares a given representation with the representation induced from its restriction to the isotropy, does not give enough information on the

