
Chapter 3 

Numerical Linear Algebra 

This chapter aims to provide a brief introduction to numerical linear algebra. People 
who are unfamiliar with how to go about (say) solving linear equations, or how to 
compute eigenvalues and eigenvectors might find this useful for selecting the best 
routine(s) to solve their particular problem, and to understand the rationale for the way 
the routines are set up in the way they are. 

3.1 What numerical linear algebra is about 

There are a number of core operations and tasks that make up numerical linear algebra. 
At the lowest level these include calculating linear combinations of vectors and inner 
products, and at the higher level consists of solving linear equations, solving least
squares problems and finding eigenvalues and eigenvectors. 

The lower level operations are usually quite straightforward in terms of what they 
do and what the accuracy of the results are. However, with higher level operations 
more care must be taken with regard to both efficiency and the accuracy of the answers. 
The routines used to perform these higher level operations are more varied and allow a 
number of different ways of performing the same computation. The difference between 
them lies often in the speed (or lack of it) and the accuracy of the answers obtained. 

There are further complications because of some intrinsic limits to the computations 
that a computer can do accurately, at least with floating point arithmetic. Floating point 
arithmetic cannot store numbers to an accuracy (relative to the number stored) better 
than what is called "machine epsilon", or "unit roundoff'. This quantity is usually 
denoted by u, but is represented in the library by MACHEPS. It is also referred to 
in the ANSI C header file <float .h> as DBL_EPSILON for double precision and 
FLT_EPSILON for single precision. For most machines this quantity is about 2 x 10-16 

for double precision, and 10-7 for single precision. 
Practically all floating point calculations introduce errors of size of machine epsilon 

times the size of the quantities involved; for all intents and purposes, these errors are 
unavoidable. Perturbations in the data of a problem are essentially unavoidable. 
Algorithms that compute answers that would be exact for slightly perturbed data 
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