$$\dim(A/p) \leq \dim(A).$$

The latter is geometrically interpreted as follows: If $x \in \overline{y}$, then dim $(V(j_x)) \leq \dim(V(j_y))$.

Dimension is a very coarse invariant, i.e. were we to consider the equivalence classes of affine varieties of a given dimension, we would obtain huge classes of highly non isomorphic varieties.

§3. DEPTH

The next numerical invariant we shall study in the notion of <u>depth</u>. We assume throughout this section that A is a noetherian local ring with maximal ideal **11**, and that M is a finitely generated A-module.

<u>Definition 3.1</u>. a) an element $x \in A$ is called M-regular if the homomorphism $\varphi: M \to M$ given by $\varphi(m) = xm$ is injective.

b) a sequence $\{x_1, \ldots, x_n\}$ of elements of A is called M-regular if x_i is $M/x_1 M + \ldots + x_{i-1} M$ regular, $1 \le i \le n$.

<u>Remark</u>. Clearly every $x \notin m$ being invertible is M-regular for every module M. Hence we shall confine our attention to those M-regular elements which belong to m. With regard to b) we state, without proof, the fact that the sequence $\{x_1, \ldots, x_n\}$ is M-regular if, and only if all sequences $\{x_{\sigma(1)}, \ldots, x_{\sigma(n)}\}$ $\sigma \in S_n$ are M-regular, where S_n denotes the group of permutations on n symbols. (Grothendieck, E.G.A., Ch. O, §15.1, I.H.E.S. no 20) The above statement is false if A is not noetherian.

44

and