arbitrary closed subsets by the formula

$$
\operatorname{dim}(V(\boldsymbol{L}))=\operatorname{dim}(A / \boldsymbol{x})
$$

where \mathscr{d} is an arbitrary ideal of A.
If M is a finitely generated A-module we define

$$
\operatorname{dim}(M)=\operatorname{dim}(\operatorname{Supp}(M))=\operatorname{dim}(A / \operatorname{ann}(M)) .
$$

Here we use the fact, mentioned in the preliminaries, that Supp(M) is the closure in Spec (A) of Ass(M), and Ass(M) consists of the prime ideals associated to ann(M).

If $N \subset M$ is another A-module we see trivially that

$$
\begin{aligned}
& \operatorname{dim}(N) \leqq \operatorname{dim}(M) \\
& \operatorname{dim}(M / N) \leqq \operatorname{dim}(M)
\end{aligned}
$$

In fact $\operatorname{ann}(N) \supset \operatorname{ann}(M), \operatorname{ann}(M / N) \supset \operatorname{ann}(M)$.
A non-trivial statement, proved in Bourbaki's, chapter IV, §2, is the following:

Theorem l.2. $\operatorname{dim}(M)=0$ if, and only if, M has finite length, in the composition series sense.
§2. HILBERT-SAMUEL POLYNOMIAL
Let H be a graded ring, i.e.

$$
\mathrm{H}=\mathrm{n} \stackrel{\oplus}{\geqq} 0_{\mathrm{H}}
$$

where H_{n} are (additive) groups and $h_{n} \cdot h_{m} \in H_{n+m}$, for $h_{n} \in H_{n}, h_{m} \in H_{m}$. Clearly H_{n} is an H_{0}-module. We assume:
a) H_{0} is an artinian ring
b) H is generated (as an H_{0}-algebra) by finitely many elements of H_{1}.

