Indeed, if we put $f_{1}=\phi_{1}, f=\phi_{2}$ in Theorem 27 we get

$$
\alpha \beta+\alpha \gamma=\alpha(\beta+\gamma)
$$

and putting $\mathrm{f}_{1}=\phi_{1}, \mathrm{f}_{2}=\phi_{1}, \mathrm{f}=\boldsymbol{\phi}_{2}, \mathrm{f}_{3}=\boldsymbol{\phi}_{2}$, Theorem 26 yields

$$
(\alpha \beta) \gamma=\alpha(\beta \gamma)
$$

Further, if we put $f_{1}=\phi_{2}, f=\phi_{3}$, Theorem 27 yields

$$
\alpha^{\beta \cdot} \cdot \alpha^{\gamma}=\alpha^{\beta+\gamma}
$$

while putting $f_{1}=\phi_{2}, f_{2}=\phi_{1}, f=\phi_{3}, f_{3}=\phi_{2}$ one obtains, according to Theorem 26,

$$
\left(\alpha^{\beta}\right)^{\gamma}=\alpha^{\beta \gamma} .
$$

7. On the exponentiation of alephs

We have seen that an aleph is unchanged by elevation to a power with finite exponent. I shall add some remarks concerning the case of a transfinite exponent.

Since $2^{\aleph_{0}}>\aleph_{0}$, we have $\left(2^{\aleph_{0}}\right)^{\aleph_{0}} \geqq \aleph_{0} N_{0}$, but $\left(2^{N_{0}}\right)^{N_{0}}=2^{N_{0} N_{0}}=2^{\aleph_{0}}$. On the other hand $2^{\aleph_{0}} \leqq N_{0}{ }^{N_{0}}$. Hence

$$
2^{N_{0}}=\kappa_{0}{ }^{N_{0}} .
$$

Of course we then have for arbitrary finite n

$$
2^{\aleph_{0}}=n^{\aleph_{0}}=\aleph_{0}{ }^{\aleph_{0}},
$$

and not only that. Let namely $\aleph_{0}<\mathfrak{m} \leqq 2^{\aleph_{0}}$. Then

$$
2^{\aleph_{0}}={\aleph_{0}{ }^{\aleph_{0}} \leqq \mathfrak{m}^{\aleph_{0}} \leqq 2^{\aleph_{0}}, ~}_{\text {, }}
$$

whence

$$
\mathfrak{m}^{N_{0}}=2^{\aleph_{0}},
$$

In a similar way we obtain for an arbitrary \aleph_{α}

$$
2^{\aleph} \alpha=\mathfrak{m}^{\aleph \alpha} \alpha
$$

for all $m>1$ and $\leqq 2^{*} \alpha$.
From our axioms, in particular the axiom of choice, we have derived that every cardinal is an aleph. Therefore $2^{N} \alpha$ is an aleph. We can also prove by the axiom of choice that $2^{\aleph}{ }^{\alpha}>\aleph_{\alpha+1}$ or perhaps $=\aleph_{\alpha_{+1}}$. One has never succeeded in proving one of these two alternatives and according to a result of Gödel such a decision is impossible. However, in many applications of set theory it has been convenient to introduce the so-called generalized continuum hypothesis or aleph hypothesis, namely

