Indeed, if we put $f_1 = \phi_1$, $f = \phi_2$ in Theorem 27 we get

$$lphaeta+lpha\gamma=lpha(eta+\gamma),$$

and putting $f_1 = \phi_1$, $f_2 = \phi_1$, $f = \phi_2$, $f_3 = \phi_2$, Theorem 26 yields

$$(\alpha\beta)\gamma = \alpha(\beta\gamma)$$

Further, if we put $f_1 = \phi_2$, $f = \phi_3$, Theorem 27 yields

$$\alpha^{\beta}\cdot\alpha^{\gamma}=\alpha^{\beta+\gamma},$$

while putting $f_1 = \phi_2$, $f_2 = \phi_1$, $f = \phi_3$, $f_3 = \phi_2$ one obtains, according to Theorem 26,

$$(\alpha^{\beta})^{\gamma} = \alpha^{\beta\gamma}.$$

7. On the exponentiation of alephs

We have seen that an aleph is unchanged by elevation to a power with finite exponent. I shall add some remarks concerning the case of a transfinite exponent.

Since $2^{\aleph_0} > \aleph_0$, we have $(2^{\aleph_0})^{\aleph_0} \ge \aleph_0^{\aleph_0}$, but $(2^{\aleph_0})^{\aleph_0} = 2^{\aleph_0 \aleph_0} = 2^{\aleph_0}$. On the other hand $2^{\aleph_0} \le \aleph_0^{\aleph_0}$. Hence

$$2^{\aleph_0} = \aleph_0^{\aleph_0}$$

Of course we then have for arbitrary finite n

$$2^{\aleph_0} = n^{\aleph_0} = \aleph_0^{\aleph_0},$$

and not only that. Let namely $\aleph_0 < \mathfrak{m} \leq 2^{\aleph_0}$. Then

$$2^{\aleph_0} = \aleph_0^{\aleph_0} \leq \mathfrak{m}^{\aleph_0} \leq 2^{\aleph_0},$$

whence

$$\mathfrak{m}^{\aleph_0} = 2^{\aleph_0}$$
.

In a similar way we obtain for an arbitrary \aleph_{α}

$$2^{\aleph \alpha} = m^{\aleph \alpha}$$

for all $\mathfrak{m} > 1$ and $\leq 2^{\aleph} \alpha$.

From our axioms, in particular the axiom of choice, we have derived that every cardinal is an aleph. Therefore $2^{\aleph}\alpha$ is an aleph. We can also prove by the axiom of choice that $2^{\aleph}\alpha > \aleph_{\alpha+1}$ or perhaps = $\aleph_{\alpha+1}$. One has never succeeded in proving one of these two alternatives and according to a result of Gödel such a decision is impossible. However, in many applications of set theory it has been convenient to introduce the so-called generalized continuum hypothesis or aleph hypothesis, namely