$$
\mathfrak{m} \mathfrak{n} \leqq \mathfrak{m}+\mathfrak{n}
$$

However we have proved earlier that if \mathfrak{m} and \mathfrak{n} are $\geqq 2$, then $\mathfrak{m}+\mathfrak{n} \leqq \mathfrak{m} \cdot \mathfrak{n}$. Thus we obtain $\mathfrak{m} \mathfrak{n}=\mathfrak{m}+\mathfrak{n}$.

6. Some remarks on functions of ordinal numbers

A function $f(x)$ is called monotonic, if $(x<y) \rightarrow(f(x) \leqq f(y))$. It is called strictly increasing, if

$$
(x<y) \rightarrow(f(x)<f(y))
$$

The function is called seminormal, if it is monotonic and continuous, that is if $f\left(\lim \alpha_{\lambda}\right)=\lim f\left(\alpha_{\lambda}\right), \lambda$ here indicating a sequence with ordinal number of the second kind, i.e., without immediate predecessor, while $\left(\lambda_{1}<\lambda_{2}\right) \rightarrow\left(\alpha_{\lambda_{1}}<\right.$ $\alpha_{\lambda_{2}}$).

The function is called normal, if it is strictly increasing and continuous; ξ is called a critical number for f, if $f(\xi)=\xi$.

Theorem 17. Every normal function possesses critical numbers and indeed such numbers $>$ any α.
Proof: Let α be chosen arbitrarily and let us consider the sequence α, $\mathrm{f}(\alpha), \mathrm{f}^{2}(\alpha), \ldots$ Then if $\alpha_{\omega}=\lim _{\mathrm{n}<\omega} \mathrm{f}^{\mathrm{n}}(\alpha)$, we have $\mathrm{f}\left(\alpha_{\omega}\right)=\mathrm{f}\left(\lim \left(\mathrm{f}^{\mathrm{n}}(\alpha)\right)=\lim \right.$ $f^{\mathrm{n}+1}(\alpha)=\alpha_{\omega}$, that is, $\alpha_{\omega}{ }^{\mathrm{IS}}$ a critical number for f .
Examples.

1) The function $1+x$ is normal. Critical numbers are all $x=\omega+\alpha, \alpha$ arbitrary.
2) The function $2 x$ is normal. Critical numbers are all of the form $\omega \alpha$, α arbitrary.
3) The function $\omega^{\mathbf{x}}$ is normal. Critical numbers of this function are called ε-numbers. The least of them is the limit of the sequence $\left.\omega, \omega^{\omega}, \omega^{(\omega}{ }^{\omega}\right), \ldots$.
I will mention the quite trivial fact that every increasing function f is such that $\mathrm{f}(\mathrm{x}) \geqq \mathrm{x}$ for every x .

Theorem 18. Let $g(x) \geqq x$ for all x and α be an arbitrary ordinal; then there is a unique semi-normal function f such that

$$
\mathrm{f}(0)=\alpha, \mathrm{f}(\mathrm{x}+1)=\mathrm{g}(\mathrm{f}(\mathrm{x}))
$$

Proof clear by transfinite induction.
Theorem 19. Iff is a semi-normal function and β is an ordinal which is not a value of f, while f possesses values $<\beta$ and values $>\beta$, then there is among the x such that $f(x)<\beta$ a maximal one x_{0} such that $f\left(x_{0}\right)<\beta<f\left(x_{0}+1\right)$.

