However we have proved earlier that if m and n are ≥ 2 , then $m + n \leq m \cdot n$. Thus we obtain mn = m + n.

6. Some remarks on functions of ordinal numbers

A function f(x) is called monotonic, if $(x \le y) \rightarrow (f(x) \le f(y))$. It is called strictly increasing, if

$$(x < y) \rightarrow (f(x) < f(y)).$$

The function is called seminormal, if it is monotonic and continuous, that is if $f(\lim \alpha_{\lambda}) = \lim f(\alpha_{\lambda})$, λ here indicating a sequence with ordinal number of the second kind, i.e., without immediate predecessor, while $(\lambda_1 < \lambda_2) \rightarrow (\alpha_{\lambda_1} < \alpha_{\lambda_2})$.

The function is called normal, if it is strictly increasing and continuous; ξ is called a critical number for f, if $f(\xi) = \xi$.

Theorem 17. Every normal function possesses critical numbers and indeed such numbers > any a.

Proof: Let α be chosen arbitrarily and let us consider the sequence α , $f(\alpha)$, $f^2(\alpha)$,.... Then if $\alpha_{\omega} = \lim_{n < \omega} f^n(\alpha)$, we have $f(\alpha_{\omega}) = f(\lim_{n < \omega} (f^n(\alpha)) = \lim_{n < \omega} f(\alpha)$.

 $f^{n+1}(\alpha) = \alpha_{\omega}$, that is, α_{ω} is a critical number for f.

Examples.

- 1) The function 1 + x is normal. Critical numbers are all $x = \omega + \alpha$, α arbitrary.
- 2) The function 2x is normal. Critical numbers are all of the form $\omega \alpha$, α arbitrary.
- The function ω^x is normal. Critical numbers of this function are called ε-numbers. The least of them is the limit of the sequence ω, ω^ω, ω^(ω^ω),

I will mention the quite trivial fact that every increasing function f is such that $f(x) \ge x$ for every x.

Theorem 18. Let $g(x) \ge x$ for all x and α be an arbitrary ordinal; then there is a unique semi-normal function f such that

$$f(0) = \alpha$$
, $f(x+1) = g(f(x))$.

Proof clear by transfinite induction.

Theorem 19. If f is a semi-normal function and β is an ordinal which is not a value of f, while f possesses values $<\beta$ and values $>\beta$, then there is among the x such that $f(x) < \beta$ a maximal one x_0 such that $f(x_0) < \beta < f(x_0 + 1)$.