RE in a such that neither $\mathbf{b} \leq \mathbf{c}$ nor $\mathbf{c} \leq \mathbf{b}$. The method used to define **0**', when relativized, shows that there is a largest degree RE in **a**. It is called the jump of **a**, and is designated by **a**'. The relativized Limit Lemma shows that a real is a limit of a recursive in **a** sequence of reals iff it has degree $\leq \mathbf{a}'$.

16. Evaluation of Degrees

We shall now show how to evaluate the degrees of certain explicitly given relations.

Let Φ be a class of relations. We say a relation R is $\underline{\Phi}$ complete if R is in Φ and every relation in Φ is reducible to R (where reducible is defined before 13.3). It follows that R has the largest degree of any relation in Φ ; so any two Φ complete relations have the same degree. (Caution: Some authors use complete in a somewhat different way.)

EXAMPLE. If F is total, $W_e^F(x)$ is RE in F complete; its degree is the jump of dg F. Hence any RE in F complete relation has degree (dg F)'.

The degree obtained by applying the jump n times to **0** is designated by $\mathbf{0}^{n}$.

16.1. PROPOSITION. For every *n*, there is a Σ_n^0 complete set of degree $\mathbf{0}^n$ and a Π_n^0 complete set of degree $\mathbf{0}^n$.

Proof. We use induction on *n*. If n = 1, let *P* be a recursive set; if n > 1, let *P* be a $\prod_{n=1}^{0}$ complete set of degree $\mathbf{0}^{n-1}$. Then $W_e^{P}(x)$ has degree $\mathbf{0}^n$ by the example. By Post's Theorem, Σ_n^0 is the class of relation RE in *P*; so $W_e^{P}(x)$ is Σ_n^0 complete. Then $\neg W_e^{P}(x)$ is of degree $\mathbf{0}^n$ and is \prod_n^0 complete. \Box

16.2. COROLLARY. Every Σ_n^0 complete or Π_n^0 complete relation has degree $\mathbf{0}^n$. \Box

If Φ is a class of RE sets, then the set of indices of sets in Φ is called the index set of Φ .

16.3. PROPOSITION (RICE). If Φ is a non-empty class of RE sets which is