EXAMPLES OF EXPONENTIALLY BOUNDED STOPPING TIME OF INVARIANT SEQUENTIAL PROBABILITY RATIO TESTS WHEN THE MODEL MAY BE FALSE

R. A. WIJSMAN
University of Illinois

1. Summary and introduction

Two examples are presented (one of them the sequential χ^{2} test) of parametric models in which the invariant Sequential Probability Ratio Test has exponentially bounded stopping time N, that is, satisfies $P(N>n)<\rho^{n}$ for some $\rho<1$, where the true distribution P may be completely arbitrary except for the exclusion of a certain class of degenerate distributions. Another example demonstrates the existence of P under which N is not exponentially bounded, but even for those P we have $P(N<\infty)=1$. In the last section a proof is given of the representation (2.1), (2.2) of the probability ratio R_{n} as a ratio of two integrals over the group G if G consists of linear transformations and translations.

Let Z_{1}, Z_{2}, \cdots be independent, identically distributed (i.i.d.) random vectors which take their values in d dimensional Euclidean space E^{d} and possess distribution P. The symbol P will also be used for the probability of an event that depends on all the Z_{i}. Let Θ be an index set (parameter space) such that for each $\theta \in \Theta, P_{\theta}$ is a probability distribution on E^{d}. We shall say "the model is true" if the true distribution P is one of the $P_{\theta}, \theta \in \Theta$, but it should be kept in mind throughout that we shall also consider the possibility that the model is false, that is, that P is not one of the P_{θ}. In the latter case we shall also speak of P being outside the model as opposed to P being in the model. Let Θ_{1}, Θ_{2} be two disjoint subsets of Θ. It is not assumed that their union is Θ. The problem is to test sequentially H_{1} versus H_{2}, where H_{j} is the hypothesis: $P=P_{\theta}$ for some $\theta \in \Theta_{j}, j=1,2$.

If the hypotheses H_{j} are simple, that is, $\Theta_{j}=\left\{\theta_{j}\right\}, j=1,2$, then Wald's Sequential Probability Ratio Test (SPRT) [23] computes the sequence of probability ratios

$$
\begin{equation*}
R_{n}=\prod_{i=1}^{n} \frac{p_{2}\left(Z_{i}\right)}{p_{1}\left(Z_{i}\right)}, \quad n=1,2, \cdots, \tag{1.1}
\end{equation*}
$$

Research supported in part by National Science Foundation Grant GP-23835.

