AN APPLICATION OF ERGODIC THEOREMS IN THE THEORY OF QUEUES

DAVID M. G. WISHART UNIVERSITY OF BIRMINGHAM

1. Introduction

We establish some notation: $\{Z_k, k \ge 0\}$ is a homogeneous Markov chain taking its values in a locally compact Hausdorff space \mathfrak{X} ; we denote by Σ the σ -algebra of subsets of \mathfrak{X} generated by the open sets; $ca(\Sigma)$ is the Banach space of totally finite regular measures on Σ ; and $C_0(\mathfrak{X})$ is the Banach space of realvalued, bounded, continuous functions on \mathfrak{X} which vanish at infinity. If $\Phi_k \in ca(\Sigma)$ is the probability measure of Z_k then there exists a bounded linear operator T on $ca(\Sigma)$ into itself such that $\Phi_{k+1} = T\Phi_k$. If this operator can be represented by a real-valued function P on the product space $\mathfrak{X} \times \Sigma$ with the properties

- (a) $0 \leq P(x, F) \leq P(x, \mathfrak{X}) = 1$ for all $x \in \mathfrak{X}, F \in \Sigma$;
- (b) for each $x \in \mathfrak{X}$, $P(x, \cdot) \in ca(\Sigma)$;
- (c) for each $F \in \Sigma$, $P(\cdot, F)$ is Σ -measurable;

then the mapping of $ca(\Sigma)$ into itself takes the form

(1)
$$\Phi_{k+1}(F) = \int_{\mathfrak{X}} \Phi_k(dx) P(x, F)$$

for each $F \in \Sigma$. We define inductively a sequence of real-valued functions $P_r(\cdot, \cdot)$ on $\mathfrak{X} \times \Sigma$ by the relations

(2)

$$P_{r+1}(x, F) = \int_{\mathfrak{X}} P_r(x, dy) P_1(y, F)$$

$$P_1(x, F) \equiv P(x, F).$$

We may identify the conditional probability $P\{Z_{k+r} \in F | Z_k = x\}$ with the function $P_r(x, F)$, so that the *r*th iterate of the operator T may be written

(3)
$$(T^{r}\Phi)(F) = \int_{\mathfrak{X}} \Phi(dx) P_{r}(x, F).$$

A principal problem of ergodic theory has been to determine conditions under which the sequence of operators $n^{-1} \sum_{r=0}^{n-1} T^r$ converges in some sense. The