RANKING LIMIT PROBLEM

MICHEL LOEVE
UNIVERSITY OF CALIFORNIA, BERKELEY

1. The problem

Let (Ω, A, P) be our probability space and let X, with or without affixes, denote a measurable function [a random variable (r.v.) when finite] on this space. $\mathcal{L}(X)$ will represent the (probability) law of X defined by its distribution function (d.f.) F or its characteristic function (ch. f.) f with the same affixes as X, if any. A law degenerate at a is represented by $\mathcal{L}(a)$; if a is finite, it is the law of a r.v. which reduces to a with probability $1 ; \mathcal{L}(\infty)$ represents the law of any measurable function which is infinite with probability 1.

Distribution functions and, more generally, monotone functions, say, h on $R=$ $(-\infty,+\infty)$, will be continuous from the left: $h(x-0)=h(x), x \in R$. A sequence h_{n} of monotone functions, say, nondecreasing ones, converges weakly to h on R, and we write $h_{n} \xrightarrow{w} h$, if $h_{n} \rightarrow h$ on the continuity set of h (it suffices that $h_{n} \rightarrow h$ on a set everywhere dense in R); h_{n} converges completely to h, and we write $h_{n} \xrightarrow{c} h$, if, moreover, $h_{n}(\mp \infty) \rightarrow$ $h(\mp \infty)$. A sequence of laws $\mathcal{L}\left(X_{n}\right)$ converges weakly or completely to a law $\mathcal{L}(X)$ if $F_{n} \rightarrow F$ weakly or completely, respectively.

Convention I. Throughout this paper, and unless otherwise stated,
(a) To any probability p we make correspond the probability $q=1-p$ with the same affixes, if any.
(b) $n=1,2, \cdots ; k=1,2, \cdots, k_{n}$, with $k_{n} \rightarrow \infty$; all limits are taken for $n \rightarrow \infty$.
(c) $X_{n k}$ represent r.v.'s independent in k for every fixed n. For every $\omega \in \Omega$, the nondecreasingly ranked numbers $X_{n k}(\omega)$ are denoted by

$$
\begin{equation*}
X_{n 1}^{*}(\omega) \leqq X_{n 2}^{*}(\omega) \leqq \cdots \leqq X_{n k_{n}}^{*}(\omega) ; \tag{1}
\end{equation*}
$$

they are values of nondecreasingly ranked r.v.'s $X_{n r}^{*}, r=1,2, \cdots, k_{n}$, of rank r and relative rank $\rho=r / k_{n}$ (with the same affixes as r, if any), corresponding to the r.v.'s $X_{n k}$. The nonincreasingly ranked r.v.'s are denoted by ${ }^{*} X_{n s}, s=1,2, \cdots, k_{n}$, of end rank s, so that ${ }^{*} X_{n s}=X_{n, k_{n+1-s}}^{*}$.

Let the $X_{n k}$ be uniformly asymptotically negligible, that is, $\mathcal{L}\left(X_{n k}\right) \rightarrow \mathcal{L}(0)$ uniformly in k. We know that if $\mathcal{L}\left(\sum_{k} X_{n k}\right) \xrightarrow{c} \mathcal{L}(X)$, then $\mathcal{L}(X)$ is infinitely decomposable. We recall that a law $\mathcal{L}(X)$ is infinitely decomposable, that is, $f^{1 / n}$ is a ch. f. for every n if, and only if, for every $u \in R$

$$
\begin{align*}
\log f(u)=i a u-\frac{b^{2}}{2} u^{2}+\int_{-\infty}^{-0}\left(e^{i u x}-1\right. & \left.-\frac{i u x}{1+x^{2}}\right) d L(x) \tag{2}\\
& +\int_{+0}^{+\infty}\left(e^{i u x}-1-\frac{i u x}{1+x^{2}}\right) d M(x)
\end{align*}
$$

This paper was prepared with partial support of the Office of Naval Research, and of the Office of Ordnance Research, U.S. Army, under Contract DA-04-200-ORD-355.

